
Partial Grading

Readme

Aron Pasieka
aron@aron.ca

September 3, 2012

1 About

The PartialGrading library was written for use in Maple TA. In developing
content for a first-year university-level electricity and magnestism course, I found
that I wanted more flexibility in how Maple TA assigned grades. The numeric
grading options therein allowed for marks to be given if a student was correct
within sig figs or within uncertainty or within uncertainty in the Nth digit – but
these rules could not be in effect concurrently. More importantly, on a question
with units, there was no way to assign part marks to the value and units if one
also wanted flexibility for the students to enter 3cm or 0.03m.

After building Maple code to handle these scenarios, I decided that I could
build upon the code to handle vectors responses as well – providing part marks
if students not only got a single component incorrect, but if they permuted
components, provided a scalar instead of a vector, etc.

With this code in place, it was a simple matter to extend the output to
include a detailed list of how a particular grade was calculated for the comments
section.

Finally, I added partial grading for algebraic responses.

2 Structure

Calls should be routed through the module PartialGrading[Grade]. It will
then pass options along to either GradeVectors[GVectors] or GradeScalars[GScalars].
These two procedures can handle either numeric or algebraic input. As a fail-
safe, GradeVectors[GVectors] will pass back to GradeScalars[GScalars] if
both answer and response are scalar quantities.

The module SigFigs does not need to be addressed directly, but provides
sig fig checking and rounding support.

3 Usage

3.1 General

The partial grading can be used in any Maple-Graded question (including Ques-
tion Designer). The files,

PartialGrading.lib

PartialGrading.ind

must be uploaded via the Web Site Editor. In the question itself, under Repos-
itory, link the .lib file. In the Grading Code section, enter the appropriate call
to PartialGrading[Grade] as described in the following sections.

3.2 Grading Comments

Currently, the grading comments are only available in Maple-Graded questions
(not Question Designer). This is due to the fact that $ANSWER and $RESPONSE

are not addressable in Question Designer questions. Furthermore, the input
method must be set to Text Entry, not Equation Editor. If the syntax option is
set to Maple, Text Entry can be forced, but if it is set to Formula, the student
cannot be forced into Text Entry mode.

Example code for the comment section (replace _options with grading op-
tions as outlined in the following sections and _PATH with the path to the li-
brary):

${if(eq($RESPONSE,No answer),"No answer entered.",maple("PartialGrading[Grade]($ANSWER,‘$RESPONSE‘,_options,giveComments);,libname=_PATH/PartialGrading.lib"))}

3.3 Scalars

Numeric scalars can be graded with the following call:

PartialGrading[Grade]($ANSWER,$RESPONSE,subPackage=numericScalar,_options);

while algebraic scalars can be graded with the following:

PartialGrading[Grade]($ANSWER,$RESPONSE,subPackage=algebraicScalar,_options);

Both of these calls will be routed to the GradeScalars[GScalars] proce-
dure. They will, by default, output a float between 0.0 and 1.0.

There are a number of keyword style options that can be used. Most key-
words have a long-form and short-form for ease of use, which are indicated by
square brackets, a type indicated by colons and a default value indicated by
assignment, as follows:

[longForm,shFrm]::type:=defaultValue

3.3.1 Global Flags

The options in this section affect the way the entire procedure functions. They
apply to GradeScalars[GScalars].

1. [algebraicScalar,algScal]::boolean:=false

Controls whether numeric or algebraic processing and checking is per-
formed on $ANSWER and $RESPONSE. This is set by PartialGrading[Grade]

as noted above.

Table 1: Scalar Grading Categories

Category Name Description

1 Base Grades The property that defines a fully correct answer
2 Secondary Grades Properties that define almost fully correct answers
3 Multiplicative If Non-zero If the grade is non-zero at this point and they do not

satisfy this property, multiply the grade.
4 Multiplicative Factors I Properties that warrant a scaling of the grade
5 Additive Factors Properties that warrant an addition to the grade
6 Subtractive Factors Properties that warrant an subtraction from the

grade
7 Additive and Subtractive If the grade at this point is 0.0 and they satisfy this

property, add to the grade. If the grade is non-zero
and they do not satisfy this property, subtract from
the grade

8 Multiplicative Factors II Properties that warrant a final scaling of the grade

2. [giveComments]::boolean:=false

Controls whether the procedure outputs a grade or MathML comments.

3. [internalComments]::boolean:=false

Instead of fully formed MathML, outputs just MathML table rows for
insertion into other commands.

3.3.2 Grading Options

These options affect how the grading is performed in GradeScalars[GScalars].
In order to make the marking as flexible as possible, each grading option can
be assigned to one of eight categories, which can be seen in Table 1 in the order
that they are applied.

1. [useExactMatch,uEM]::boolean:=algebraicScalar

[marksExactMatch,mEM]::float:=1.0

[catExactMatch,cEM]::integer:=1

Checks to see if $ANSWER and $RESPONSE are equal without concern for sig
figs. The default is false (my preference for sig figs marking).

2. [useSigFigs,uSF]::boolean:=true

[numSigFigs,nSF]::integer:=3

[marksSigFigs,mSF]::float:=1.0

[catSigFigs,cSF]::integer:=1

Checks to see if $ANSWER and $RESPONSE are equal to the specified sig figs.
No effect in algebraic mode.

3. [useAlgMultMarks,uAMM]::boolean:=true

[marksAlgMultMarks,mAMM]::float:=1.0

[catAlgMultMarks,cAMM]::integer:=1

Checks to see if $ANSWER and $RESPONSE are equal. For every algebraic
term in $ANSWER/$RESPONSE, reduce the grade by the inverse of the num-
ber of terms in the correct answer. No effect in numeric mode.

4. [usePercentError,uPE]::boolean:=false

[numPercentError,nPE]:=1.0

[marksPercentError,mPE]::float:=0.8

[catPercentError,cPE]::integer:=2

Checks to see if $ANSWER and $RESPONSE are equal to the specified percent
error (numPercentError). No effect in algebraic mode.

5. [useUncertainty,uU]::boolean:=false

[numUncertainty,nU]:=0.01

[marksUncertainty,mU]::float:=0.8

[catUncertainty,cU]::integer:=2

Checks to see if $ANSWER and $RESPONSE are equal to the specified uncer-
tainty (numUncertainty). No effect in algebraic mode.

6. [useUncertaintyNth,uUN]::boolean:=false

[numUncertaintyNth,nUN]::integer:=1

[digUncertaintyNth,dUN]::integer:=3

[marksUncertaintyNth,mUN]::float:=0.66

[catUncertaintyNth,cUN]::integer:=2

Checks to see if $ANSWER and $RESPONSE are equal to the specified un-
certainty (numUncertaintyNth) in the Nth digit (digUncertaintyNth). No
effect in algebraic mode.

7. [useDimensionsMarks,uDM]::boolean:=true

[marksDimensionsMarks,mDM]::float:=0.25

[catDimensionsMarks,cDM]::integer:=7

Checks to see if $ANSWER and $RESPONSE are equal dimensioanlly. No
effect in algebraic mode.

8. [useSignMarks,uSM]::boolean:=true

[marksSignMarks,mSM]::float:=0.75

[catSignMarks,cSM]::integer:=4

Checks to see if $ANSWER and $RESPONSE are equal in sign.

9. [useOrderMarks,uOM]::boolean:=true

[marksOrderMarks,mOM]::float:=0.75

[catOrderMarks,cOM]::integer:=3

Checks to see if the mantissa of $ANSWER and $RESPONSE are equal. No
effect in algebraic mode.

3.3.3 Examples

A few example scenarios:

1. Numeric. Full marks if numbers match to 3 sig figs. Give 0.9 if values
differ by 1 in the third sig fig. Subtract 0.25 if they get the sign incorrect.
Ignore any dimensionality.

PartialGrading[Grade]($ANSWER,$RESPONSE,subPackage=numericScalar,uSF,cSF=1,

nSF=3,mSF=1.0,uUN,cUN=2,nUN=1,dUN=3,mUN=0.9,uSM,cSM=5,mSM=0.25,uDM=false);

2. Numeric. Full marks if number match without sig figs. Must get dimen-
sions exactly correct. Must get sign correct.

PartialGrading[Grade]($ANSWER,$RESPONSE,subPackage=numericScalar,uSF=false,uEM,

cEM=1,mEM=1.0,uSM,cSM=7,mSM=0.0,uDM,cDM=7,mDM=0.0);

3. Numeric. Full marks if answer equals response dimensionally, with no
regard to value.

PartialGrading[Grade]($ANSWER,$RESPONSE,subPackage=numericScalar,uSF=false,

uDM,cDM=1,mDM=1.0,uSM=false);

3.4 Vectors

Vectors with numeric components can be graded with the following call:

PartialGrading[Grade]($ANSWER,$RESPONSE,subpackage=vectorNumericComponents,_options);

while vectors with algebraic components can be graded with the following:

PartialGrading[Grade]($ANSWER,$RESPONSE,subPackage=vectorAlgebraicComponents,_options);

Both of these calls will be routed to the GradeVectors[GVectors] proce-
dure. They will, by default, output a float between 0.0 and 1.0. GradeVectors[GVectors]
will pass the question along to GradeScalars[GScalars] if both $ANSWER and
$RESPONSE are scalars. For this reason, subpackage=vectorNumericComponents
is the default value and may be omitted.

There are a number of keyword style options that can be used. Most key-
words have a long-form and short-form for ease of use, which are indicated by
square brackets, a type indicated by colons and a default value indicated by
assignment, as follows:

[longForm,shFrm]::type:=defaultValue

Table 2: Vector Grading Categories

Category Name Description

11 Component Multiplicative Factors Properties that warrant a scaling of the component
grade

12 Component Subtractive Factors Properties that warrant a subtraction from the com-
ponent grade

21 Global Multiplicative Factors Properties that warrant a scaling of the total grade
22 Global Subtractive Factors Properties that warrant a subtraction from the total

grade

3.4.1 Global Flags

The options in this section affect the way the entire procedure functions. They
apply to GradeVectors[GVectors].

1. [algebraicComponents,algComp]::boolean:=false

Controls whether numeric or algebraic processing and checking is per-
formed on $ANSWER and $RESPONSE.

2. [giveComments]::boolean:=false

Controls whether the procedure outputs a grade or MathML comments.

3.4.2 Grading Options

These options affect how the grading is performed in GradeVectors[GVectors].
In order to make the marking as flexible as possible, each vector grading op-
tion can be assigned to one of four categories, which can be seen in Table 2
in the order that they are applied. These options define the permutations of
the components in the response that are valid. The permutation and penalty
combination that yields the highest total grade will be used. Each component
is individually marked by the GradeScalars[GScalars] procedure as outlined
above, thus one can include the full selection of scalar grading options along
with the vector grading options when using this procedure.

1. [useComponentMatch,uCM]::boolean:=true

[marksComponentMatch,mCM]::float:=1.0

[catComponentMatch,cCM]::integer:=21

Defines the default permutation, no components are moved.

2. [useSwitch12,uS12]::boolean:=false

[marksSwitch12,mS12]::float:=0.75

[catSwitch12,cS12]::integer:=11

Defines a permutation where components one and two are interchanged.

3. [useSwitch23,uS23]::boolean:=false

[marksSwitch23,mS23]::float:=0.75

[catSwitch23,cS23]::integer:=11

Defines a permutation where components two and three are interchanged.

4. [useSwitch13,uS13]::boolean:=false

[marksSwitch13,mS13]::float:=0.75

[catSwitch13,cS13]::integer:=11

Defines a permutation where components one and three are interchanged.

5. [useSwitchAny2,uSA2]::boolean:=false

[marksSwitchAny2,mSA2]::float:=0.75

[catSwitchAny2,cSA2]::integer:=11

Defines all three of the preceeding permutations. If they are set indi-
vidually as well, the individual settings override these for the specified
components.

6. [useComponentTranspose,uCT]::boolean:=true

[marksComponentTranspose,mCT]::float:=0.75

[catComponentTranspose,cCT]::integer:=21

Defines all possible permutations of the components.

7. [useVectorScalar,uVS]::boolean:=true

[marksVectorScalar,mVS]::float:=0.5

[catVectorScalar,cVS]::integer:=21

Defines all ways to match a scalar $RESPONSE to a vector $ANSWER or vice-
versa. Combined with the fact that if both $ANSWER and $RESPONSE are
scalars the question is forwarded to the scalar marker, one could call the
vector marker alone for, what should be, fully scalar questions.

3.4.3 Examples

A few example scenarios:

1. Numeric. Full marks if numbers match to 3 sig figs. Give 0.9 if values
differ by 1 in the third sig fig. Subtract 0.25 if they get the sign incorrect.
Ignore any dimensionality. Scale total mark by 0.75 if they mix up the
components in any way.

PartialGrading[Grade]($ANSWER,$RESPONSE,subPackage=vectorNumericComponents,

uSF,cSF=1,nSF=3,mSF=1.0,uUN,cUN=2,nUN=1,dUN=3,mUN=0.9,uSM,cSM=5,

mSM=0.25,uDM=false,uCT,cCT=21,mCT=0.75);

2. Algebraic. Full marks if values match. Subtract 0.25 if they get the
sign incorrect. Scale component marks by 0.75 if they mix up any two
components. Scale total mark by 0.8 if they enter a scalar response.

PartialGrading[Grade]($ANSWER,$RESPONSE,subPackage=vectorAlgebraicComponents,

uSM,cSM=5,mSM=0.25,uSA2,cSA2=11,mSA2=0.75,uVS,cVS=21,mVS=0.8);

