
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Information Weighted Consensus for Distributed Estimation in Vision Networks

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

by

Ahmed Tashrif Kamal

August 2013

Dissertation Committee:

Dr. Amit K. Roy-Chowdhury, Chairperson
Dr. Jay A. Farrell
Dr. Ertem Tuncel



Copyright by
Ahmed Tashrif Kamal

2013



The Dissertation of Ahmed Tashrif Kamal is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

In the past few years of my academic endeavor, I had an amazing journey through the

vast ocean of knowledge with some of the most amazing people of my time. I would like

to start by expressing my deepest gratitude to my advisor Dr. Amit Roy-Chowdhury

and co-advisor Dr. Jay Farrell. I was introduced to my research topic by Dr. Roy-

Chowdhury. He was there for me in every ups and downs of my academic endeavor

throughout my graduate life. I was able to achieve my academic goals due to all the

support and mentoring I received from both my advisors.

I am also grateful to my committee member Dr. Ertem Tuncel. He helped me

out with different conceptual issues that arose throughout different graduate courses and

my PhD research. I learnt most of the background materials I needed for my research

from the courses taught by committee members Dr. Roy-Chowdhury, Dr. Farrell and

Dr. Tuncel who are also amazing teachers.

I would also like to express my gratitude to my colleagues Dr. Bi Song and

Chong Ding. I did learn a lot by collaborating with them at the foundation stage of

my PhD research. Due to all the brain-storming with them and my supervisors, I was

able to grasp a good understanding of the challenges in the problem and was able to

successfully formulate it. I would also like to thank my colleague Anirban Chakraborty

for his help in various experiments and brainstorming sessions.

I will be ever grateful to all my teachers throughout my earlier academic life.

Especially, I would like to thank Mr. Mahmud for inspiring me in science and Mr. Nimai

Das for inspiring me in mathematics. I would also like to thank Mr. Delowar Hossain

who was an amazing teacher to me.

Words cannot express the level of my gratitude to my mother Tahmina Begum

iv



and my father Dr. Kamaluddin Ahmed for all their support, guidance, teaching and

unconditional love. I am also ever grateful to my wife Mehnaz Mahbub for all her love

and support that made the tough barriers easy to pass throughout my graduate years.

I would also like to thank my sister Kashfia Mehrin for her love and support.

I would also like to thank the Office of Naval Research for their grant (N000140910666)

supporting my research.

v



To my parents and my wife for all the support.

vi



ABSTRACT OF THE DISSERTATION

Information Weighted Consensus for Distributed Estimation in Vision Networks

by

Ahmed Tashrif Kamal

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, August 2013

Dr. Amit K. Roy-Chowdhury, Chairperson

Due to their high fault-tolerance, ease of installation and scalability to large networks,

distributed algorithms have recently gained immense popularity in the sensor networks

community, especially in computer vision. Multi-target tracking in a camera network

is one of the fundamental problems in this domain. Distributed estimation algorithms

work by exchanging information between sensors that are communication neighbors.

Since most cameras are directional sensors, it is often the case that neighboring sensors

may not be sensing the same target. Such sensors that do not have information about

a target are termed as “naive” with respect to that target. State-of-the-art distributed

state estimation algorithms (e.g., the Kalman Consensus Filter (KCF)) in the sensor

networks community are not directly applicable to tracking applications in camera net-

works mainly due to this naivety issue. In our work, we propose generalized distributed

algorithms for state estimation in a sensor network taking the naivety issue into account.

For multi-target tracking, along with the tracking framework, a data associa-

tion step is necessary where the measurements in each camera’s view are associated with

the appropriate targets’ tracks. At first, under the assumption that the data association

is given, we develop distributed state estimation algorithms addressing the naivety is-

vii



sue. In this process, first, we propose the Generalized Kalman Consensus Filter (GKCF)

where an information-weighting scheme is utilized to account for the naivety issue. Next,

we propose the Information-weighted Consensus Filter (ICF) which can achieve optimal

centralized performance while also accounting for naivety. This is the core contribution

of this thesis. Next, we introduce the aspect of multi-target tracking where a probabilis-

tic data association scheme is incorporated in the distributed tracking scheme resulting

the Multi-Target Information Consensus (MTIC) algorithm. The incorporation of the

probabilistic data association mechanism makes the MTIC algorithm very robust to

false measurements/clutter.

The aforementioned algorithms are derived under the assumption that the

measurements are related to the state variables using a linear relationship. However, in

general, this is not true for many sensors including cameras. Thus, to account for the

non-linearity in the observation model, we propose non-linear extensions of the previous

algorithms which we denote as the Extended ICF (EICF) and the Extended MTIC

(EMTIC) algorithms. In-depth theoretical and experimental analysis are provided to

compare these algorithms with existing ones.

viii



Contents

List of Figures xi

1 Introduction 1
1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Kalman Consensus Filter and its Extension 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Average Consensus: Review . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Kalman Consensus Filter: Review . . . . . . . . . . . . . . . . . . . . . 14
2.5 Generalized Kalman Consensus Filter . . . . . . . . . . . . . . . . . . . 18

2.5.1 Weighted Average Consensus . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Covariance/Information Matrix Propagation . . . . . . . . . . . 19
2.5.3 Two-stage Update . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Theoretical Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7.1 Experiment 1: Varying K . . . . . . . . . . . . . . . . . . . . . . 26
2.7.2 Experiment 2: Varying ∆ . . . . . . . . . . . . . . . . . . . . . . 27
2.7.3 Experiment 3: Varying SR . . . . . . . . . . . . . . . . . . . . . 28
2.7.4 Experiment 4: Varying NC . . . . . . . . . . . . . . . . . . . . . 28

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Information-weighted Consensus Filter 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Centralized MAP Estimation . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Information Consensus based Distributed MAP Estimation (IC-MAP) . 39

3.4.1 Distributed Implementation . . . . . . . . . . . . . . . . . . . . . 42
3.4.2 Computation of F−i . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.2.1 Case 1: Converged Priors . . . . . . . . . . . . . . . . . 44
3.4.2.2 Case 2: Uncorrelated Prior Errors . . . . . . . . . . . . 45

3.5 Information-weighted Consensus Filter . . . . . . . . . . . . . . . . . . . 46

ix



3.5.1 Initialization and Special Situations . . . . . . . . . . . . . . . . 48
3.5.2 ICF, GKCF and KCF Comparison . . . . . . . . . . . . . . . . 50

3.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6.1 Experiment 1: Varying K . . . . . . . . . . . . . . . . . . . . . . 56
3.6.2 Experiment 2: Varying µ and τ . . . . . . . . . . . . . . . . . . . 57
3.6.3 Experiment 3: Varying ∆ . . . . . . . . . . . . . . . . . . . . . . 59
3.6.4 Experiment 4: Varying SR . . . . . . . . . . . . . . . . . . . . . 59
3.6.5 Experiment 5: Varying NC . . . . . . . . . . . . . . . . . . . . . 60
3.6.6 Experiment 6: Arbitrary Communication Graph . . . . . . . . . 61
3.6.7 Experiment 7: Full Observability . . . . . . . . . . . . . . . . . . 62
3.6.8 Experiment 8: Stability Analysis . . . . . . . . . . . . . . . . . . 62
3.6.9 Experiment 9: Robustness to inaccurate knowledge of NC . . . . 63
3.6.10 Experiment 10: Robustness to non-linear state propagation . . . 63

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Multi-Target Information Consensus 66
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Joint Probabilistic Data Association Filter: Review . . . . . . . . . . . . 70
4.4 Data Association: Information Form . . . . . . . . . . . . . . . . . . . . 71
4.5 Multi-Target Information Consensus . . . . . . . . . . . . . . . . . . . . 72
4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Information-weighted Consensus with non-linear models 80
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 Camera Observation Model (Non-linear ) . . . . . . . . . . . . . . . . . 81
5.3 Extended Information-weighted Consensus Filter . . . . . . . . . . . . . 82
5.4 Extended Multi-target Information Consensus . . . . . . . . . . . . . . . 85
5.5 Comparison of KCF, ICF, MTIC, EKCF, EICF and EMTIC . . . . . . 88
5.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6.1 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . 91
5.6.2 Real-life Experiments . . . . . . . . . . . . . . . . . . . . . . . . 94

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Conclusions and Future Work 99
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1.1 Mobile Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.1.2 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . 102

Bibliography 103

A EKF: Information Form 106

B JPDAF: Information Form 108

C EMTIC: Derivation 110

D Single step consensus comparison: 112

x



List of Figures

1.1 Camera network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Camera network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 GKCF simulation framework . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 GKCF performance comparison varying K (equal priors) . . . . . . . . 27
2.4 GKCF performance comparison varying K (unequal priors) . . . . . . . 27
2.5 GKCF performance comparison varying network connectivity . . . . . . 28
2.6 GKCF performance comparison varying sensing range . . . . . . . . . . 28
2.7 GKCF performance comparison varying NC . . . . . . . . . . . . . . . . 29

3.1 Camera network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 ICF convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3 ICF simulation framework . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4 ICF performance comparison varying K (equal priors) . . . . . . . . . . 56
3.5 ICF performance comparison varying K (uncorrelated priors) . . . . . . 57
3.6 ICF performance comparison varying K (correlated priors) . . . . . . . 57
3.7 ICF performance comparison varying communication bandwidth . . . . 58
3.8 ICF performance comparison varying computation resource . . . . . . . 58
3.9 ICF performance comparison varying communication bandwidth . . . . 58
3.10 ICF performance comparison varying computation resource . . . . . . . 58
3.11 ICF performance comparison varying network connectivity . . . . . . . 60
3.12 ICF performance comparison varying sensor range . . . . . . . . . . . . 60
3.13 ICF performance comparison varying NC . . . . . . . . . . . . . . . . . 61
3.14 ICF performance comparison varying K (imbalanced communication graph) 61
3.15 ICF performance comparison under unlimited observability . . . . . . . 62
3.16 ICF stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.17 ICF robustness to inaccurate knowledge on NC . . . . . . . . . . . . . . 63
3.18 ICF robustness to model assumption error . . . . . . . . . . . . . . . . . 63

4.1 MTIC performance comparison varying amount of clutter . . . . . . . . 77
4.2 MTIC Performance comparison varying different parameters. . . . . . . 78

5.1 EICF and EMTIC Simulation setup . . . . . . . . . . . . . . . . . . . . 91
5.2 EICF performance comparison varying K . . . . . . . . . . . . . . . . . 93
5.3 EMTIC performance comparison varying K . . . . . . . . . . . . . . . . 94
5.4 Camera Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.5 EMTIC real-life experiments . . . . . . . . . . . . . . . . . . . . . . . . 97

xi



5.6 EMTIC, EICF and EKF tracking results in the ground plane. . . . . . . 98
5.7 Comparing mean error from EKF . . . . . . . . . . . . . . . . . . . . . . 98

xii



List of Algorithms

1 Kalman Consensus Filter (Review) . . . . . . . . . . . . . . . . . . . . . 15

2 Generalized Kalman Consensus Filter . . . . . . . . . . . . . . . . . . . 20

3 Information-weighted Consensus Filter . . . . . . . . . . . . . . . . . . . 47

4 Multi-Target Information Consensus . . . . . . . . . . . . . . . . . . . . 73

5 Extended Information-weighted Consensus Filter . . . . . . . . . . . . . 84

6 Extended Multi-Target Information Consensus . . . . . . . . . . . . . . 87

xiii



Important Notations

Notation Dimension Description

i, i′ scalar sensor index
j scalar target index
NC scalar total number of sensors
NT scalar total number of targets
Ni set set of neighbors of node i
t scalar time step
k scalar consensus iteration no.
p scalar state vector length
mi scalar Ci’s measurement vector length

m scalar
∑NC

i=1mi

x p target’s true state
x̂c, x̂i p centralized and Ci’s estimate
Jc, Ji p× p information matrix of xc & xi

X̂
−

NCp stack of estimates from all nodes

P NCp×NCp error covariance of X̂
−

F NCp×NCp information matrix of X̂
−

Fii′ p× p {i, i′}th block element of F
F−i p× p

∑NC
i′=1 Fi′i

HI NCp× p [Ip, Ip, . . . Ip]
T

( )−, ( )+ prior and posterior information
Φ p× p state transition matrix
Q p× p process noise covariance

zi mi Ci’s measurement
Ri mi ×mi covariance matrix of zi
Hi mi × p observation matrix at Ci
hi function observation function of Ci
Z m stack of all measurements
R m×m covariance matrix of Z
H m× p stack of all Hi

ε scalar consensus speed parameter
∆i scalar degree of node connectivity

vi[k] p consensus weighted information
Vi[k],Wi[k] p× p consensus information matrix

βjn scalar probability that zn is T j ’s obs.
βj0 scalar probability that T j was not observed
λf scalar clutter density

xiv



Chapter 1

Introduction

Due to the availability of modern low-cost sensors, large-scale camera networks

are being used in applications such as wide-area surveillance, disaster response, envi-

ronmental monitoring, etc. Multiple sensors can cover more area, provide views from

different angles and the fusion of all their measurements may lead to robust scene under-

standing. Among different information fusion approaches, distributed schemes are often

chosen over centralized or hierarchical approaches due to their scalability to a large num-

ber of sensors, ease of installation and high tolerance to node failure. In this article, we

focus on the problem of distributed multi-target tracking in a camera network. However,

the proposed methods are much generalized distributed state estimation schemes and

their applications are not limited only to camera networks. We use the term distributed

to mean that each camera processes its own data and arrives at a final solution through

negotiations with its neighbors; there is no central processor. Note that term distributed

has been also used in computer vision to refer to a camera network that is distributed

over a wide area but where the processing is centralized. To motivate the core contribu-

tion of this work, we first describe the inter-relationship between distributed estimation

1



C1

C5

C3C2 C4

C6

Figure 1.1: In this figure, there are six sensing nodes, C1, C2, . . . , C6 observing an area (black

rectangle) consisting of four targets. The solid blue lines show the communication channels

between different nodes. This figure also depicts the presence of “naive” nodes. For example,

C3, C5, C6 get direct measurements about the black target which it shares with its immediate

network neighbors. However, C1 does not have direct access to measurements of that target and

thus is naive w.r.t. that target’s state.

and camera networks.

Most of the work in distributed tracking has been in the multi-agent systems

community [18]. The methods there assume that each target can be viewed by each

sensor which may not be true for many application scenarios, especially for a camera

network (see Fig. 1.1) where each camera can view only a limited portion of the entire

area. This limits the observability of each sensor to a subset of all the targets. In this

work, our goal is to design distributed tracking schemes which are suited for such sensors

2



with limited field-of-view (FOV).

A distributed multi-target tracking problem can be divided into three sub-

problems, namely, distributed information fusion, data association (measurement to

track association) and dynamic state estimation. Among many types of distributed in-

formation fusion approaches, consensus algorithms [18] are schemes where each node,

corrects its own state using information only from its network neighbors. By iteratively

doing so, each node can individually compute a global function of the information from

all the nodes (e.g. average). The important fact is that consensus is reached without

all-to-all communication; thus consensus based frameworks do not require any specific

communication network topology and are generally applicable to any arbitrary, con-

nected network. The consensus estimates asymptotically converge to the global result.

However, in a finite time window, only a limited number of iterations can be performed

due to limited bandwidth. Due to the simplicity and robustness of consensus algo-

rithms, they have been used in many applications, including estimation problems in

sensor networks (e.g., [28, 30, 31]).

In a distributed multi-target tracking scheme, each node may need to maintain

a state estimate of each target even though it is not directly observing the target, since

the nodes will need to collaborate with each other. Each node gets measurements of

the targets and must associate the measurements to the appropriate target’s track. In

a consensus-based scheme, each node maintains its own copy of the state estimates of

all the targets which makes consensus-based approaches inherently appropriate for our

problem.

When applying these approaches to camera networks, we need to be aware

of one particular issue with vision sensors. As exemplified in Fig. 1.1, many of the

cameras may not see a target and it is very much possible that neighboring cameras on

3



the communication graph do not see the same target. We call a node ‘naive’ about a

target when there are no measurements of that target available in its local neighborhood

(consisting of the node and its immediate network neighbors). In such a situation, in

a consensus-based framework, due to limited local observability and limited number of

consensus iterations, the naive node has access to less information about the target’s

state. Naivety relative to the j-th target is likely to be present in the network when

nodes on the vision graph for target j are sparsely connected in the communication

graph. The vision graph for target T j is a graph where there is an edge between each

pair of nodes that are observing T j . The vision graph is usually time varying, different

from the communication graph, and different for different targets.

A well-known consensus-based scheme for distributed state estimation is the

Kalman Consensus Filter (KCF) [17]. The KCF algorithm was originally designed for

the scenario where each node has an observation of the target. The quality of neighbor-

ing node’s prior information was not taken into account in KCF. Thus, naive nodes may

adversely affect the overall performance of the network. Moreover, the cross-covariance

terms between the state estimates at different nodes were not incorporated in the estima-

tion process in KCF as they are usually hard to compute in a distributed environment.

Due to these reasons, the performance of KCF often suffers when applied to a camera

network. Distributed algorithms that are derived under the assumption that each sensor

has full state observability at each time (e.g. KCF), may be adapted to be used in the

presence of naive nodes when communication protocols (e.g. [9]) for translating a known

vision graph into a set of routing paths that connect nodes in the communication graph

are available. However, scalable distributed vision graph discovery algorithms do not

exist. Moreover, distributed algorithms that require the knowledge of the vision graphs

usually require special target handoff protocols. Such issues are important for networks

4



with sparse communication topology. For example, camera networks are often spread

over a wide area which prevents each camera from communicating directly with all other

cameras. There can be many naive nodes in sparse communication topologies.

1.1 Contribution

The presence of these naive nodes motivates us to propose various novel dis-

tributed state estimation frameworks which can be utilized in many applications in

sensor networks including target tracking in camera networks.

First, we propose the Generalized Kalman Consensus Filter (GKCF) [11] where

each node’s confidence in its state estimate is also incorporated in the distributed es-

timation framework. In the presence of naive nodes, the proposed GKCF algorithm

outperforms the standard KCF.

The results of the KCF and the GKCF algorithms are sub-optimal i.e., they

do not converge to the optimal centralized Kalman filter [10] results. Additionally, com-

putation and communication resource constraints are important issues in a distributed

estimation framework because in many application scenarios, the nodes are low powered

wireless devices. Therefore, a distributed state estimation framework that can guaran-

tee convergence to the optimal centralized estimate while maintaining low computation

and communication resource requirements in the presence of naive nodes is desirable.

To achieve this, next we propose the distributed state estimation framework called the

Information-weighted Consensus Filter (ICF) [12, 13]. The ICF is guaranteed to con-

verge to the optimal centralized performance under certain reasonable conditions.

The issue of naivety is handled in the ICF algorithm by proper information

weighting in the estimation framework. Optimality is achieved by proper relative weight-

5



ing between the prior and the measurement information. Both the GKCF and ICF

algorithms support multiple consensus iterations at each time step t to improve per-

formance. In addition, the experimental results show that ICF outperforms other dis-

tributed estimation algorithms such as KCF and GKCF at any given computation and

communication resource limit. The ICF algorithm (and its derivatives that we propose

later) does not require handoff protocols or the knowledge of the vision graph.

The above mentioned methods assume that there is a single target, or for

multiple targets, the measurement-to-track association is provided. For a multi-target

tracking problem, the data association and the tracking steps are highly inter-dependent.

The performance of tracking will affect the performance of data association and vice-

versa. Thus, an integrated distributed tracking and data association solution is required

where the uncertainty from the tracker can be incorporated in the data association

process and vice-versa. Among many single-sensor multi-target data association frame-

works, the Multiple Hypothesis Tracking (MHT) [23] and the Joint Probabilistic Data

Association Filter JPDAF [2] are two popular schemes. MHT usually achieves higher

accuracy at the cost of high computational load. On the other hand, JPDAF achieves

reasonable results at much lower computation cost. As distributed solutions are usu-

ally applied to resource constrained systems, the JPDAF scheme will be utilized in the

distributed multi-target tracking framework we propose in our work.

With the tight integration between the JPDAF algorithm and our previously

derived ICF algorithm, we next propose the Multi-Target Information Consensus (MTIC)

[14] algorithm. The estimation errors in tracking and data association, as well as the

effect of naivety, are jointly addressed in the development of the MTIC algorithm. The

incorporation of the probabilistic data association mechanism makes the MTIC algo-

rithm very robust to false measurements/clutter.

6



The aforementioned methods are derived assuming a linear observation model.

However, camera observation models are non-linear. Thus to apply these distributed

tracking algorithms in a realistic camera network, we also need to extend these algo-

rithms to handle non-linearity in the observation model. To accomplish this, we present

the Extended Information Consensus Filter (EICF) and the Extended Multi-target In-

formation Consensus (EMTIC) algorithms.

1.2 Related Work

The purely decentralized nature of the fusion algorithm differentiates it from

the majority of multi-camera tracking approaches in the computer vision literature.

For example, in [6], a centralized approach for tracking in a multi-camera setup was

proposed where the cameras were distributed spatially over a large area. In [4], an

efficiently target hand-off scheme was proposed but no multi-camera information fusion

was involved. However, in this thesis, we deal with the distributed multi-target tracking

problem where there is no centralized server, the processing is distributed over all the

camera nodes and no target hand-off strategy is required.

Various methods for distributed multi-target tracking have been proposed in

the sensor-networks literature. In [5], a solution to the distributed data association

problem was proposed by means of the message passing algorithm based on graphical

models in which iterative, parallel exchange of information among the nodes viewing

the same target was required. However, in our proposed framework, no special commu-

nication pattern is assumed. In [22], the authors proposed a framework for querying a

distributed database of video surveillance data in order to retrieve a set of likely paths

of a person moving in the area under surveillance using a dynamic Bayesian Model.

7



However, unlike our proposed methods, this method does not deal with the distributed

fusion of the information in the network.

In [21, 26, 28], the distributed multi-target tracking schemes did not account for

naivety or the presence of cross-correlation between the estimates at different nodes. We

propose the ICF to deal with both these issues. The MTIC algorithm, is an extension of

the ICF to deal with data association between multiple targets. The EICF and EMTIC

provide the ability to work with non-linear camera models. Along with proposing these

novel distributed algorithms, we also provide in-depth proof and analysis of all these

algorithms.

1.3 Organization

We organize this article as the following. In Chapter 2, we review the average

consensus and the KCF algorithm and propose the GKCF algorithm. In Chapter 3, we

propose the ICF algorithm. In Chapter 4, we propose the MTIC algorithm. Finally, in

Chapter 5, we propose the non-linear extensions to the previous algorithms resulting the

EICF and the EMTIC algorithms. Thorough theoretical and experimental comparisons

are provided in each chapter for each method.

8



Chapter 2

Kalman Consensus Filter and its

Extension

2.1 Introduction

In this chapter, we propose a consensus-based framework that is capable of

tracking targets throughout the network in a distributed manner. The problem of track-

ing targets in a distributed sensor network has been studied previously. The Kalman

Consensus Filter (KCF) [17] is a state-of-the-art distributed algorithm for fusing mul-

tiple measurements from different sensors. The KCF is a very appropriate framework

for camera networks and has been applied in [27, 28]. However, certain issues that are

specific to video sensors have not been considered in the existing solutions.

A camera is a unidirectional sensor with a limited sensing region which is called

the field-of-view (FOV). Thus, in a realistic camera network, a target would usually be

seen in only a few of the nodes Fig. 2.1. In a distributed decision making process, the

nodes are assumed to have peer-to-peer communication channels. Thus, when a sensor

gets new measurements for a target, say T j , it shares this measurement information with

9



C1 C5

C3

C2
C4

T1

T2

T3

T4

T5

T6

T7

Figure 2.1: In this figure, there are five sensing nodes, C1, C2, . . . , C5 observing an area (black

rectangle) consisting of seven targets T 1, T 2, . . . T 7. The solid blue lines show the communication

channels between different nodes. This figure also depicts the presence of “naive” nodes. For

example, C1 gets direct measurements about T 1 which it shares with its immediate network

neighbor, C2. However, the rest of the cameras, i.e., C3, C4, C5 do not have direct access to

measurements of T 1 and thus are naive w.r.t. T 1’s state.

its network neighbors. This measurement information is used to update the estimate

of T j ’s state and error covariance at each node that directly observes T j or receives

measurement of T j from their neighbor(s). At the same time, the nodes also share their

previous state estimate with each other and try to compensate the difference between

their state estimates of T j using a consensus scheme. Thus, at some nodes in the network

that are neither sensing T j directly nor are neighbor to a node sensing T j (termed as

naive nodes for T j), the state estimate for this target is only adjusted by the consensus

scheme and its error covariance is not adjusted; therefore, the error covariance matrices

of each target may diverge. Even if the consensus term maintains consistency of the

state estimates, the different covariance matrices at each node can have a profound

effect on the convergence transients, as each agent uses its local covariance matrix in

the computation for incorporating measurement information.

10



Such issues are important for networks with sparse communication topology.

For example, camera networks are often spread over a wide area which prevents each

camera from communicating directly with all other cameras. There can be many naive

nodes in sparse communication topologies. The presence of these naive nodes motivates

us to propose certain modifications to the KCF framework for application in camera net-

works. In such scenarios, the proposed Generalized Kalman Consensus Filter (GKCF)

outperforms the standard KCF. Although this article is focused on camera networks

(since it is a common scenario where these constraints apply), the GKCF approach is

applicable to other sensor networks that have similar characteristics. If the network is

fully (or close to fully) connected, then the effect of naive nodes is usually very low and

the standard KCF performs well [27, 28].

To allow for a clear discussion of the literature and our motivation, Sec. 2.2

states the problem of interest and related notation. Secs. 2.3 and 2.4 reviews the

related literature, presents a technical description of our motivation and overviews the

contributions of the chapter. In Sec. 2.5, we derive our Generalized Kalman Consensus

Filter algorithm. Finally, Sec. 2.7, shows simulation results comparing the performance

of our approach with other methods.

2.2 Problem Formulation

Consider a sensor network with NC sensors. There are no specific assumptions

on the overlap between the FOVs of the sensors. The communication in the network

can be represented using an undirected connected graph G = (C, E). The set C =

{C1, C2, . . . , CNC
} contains the vertices of the graph and represents the sensor nodes.

The set E contains the edges of the graph which represents the available communication

11



channels between different nodes. The set of nodes having direct communication channel

with node Ci (sharing an edge with Ci) is represented by Ni.

The target’s state is represented by the vector x ∈ Rp. For example, for a

tracking application in a camera network, x might be a vector containing ground plane

position and velocity components. The state dynamics of the target are modeled as

x(t+ 1) = Φx(t) + γ(t). (2.1)

Here Φ ∈ Rp×p is the state transition matrix and the process noise γ(t) is modeled as

N (0,Q).

At time t, depending on its FOV and the location of the target, a sensor may

get a measurement. Note that in this chapter, our assumption of the knowledge of data

association implies that if we have a measurement, it belongs to the target. Let us

denote the measurement of the target at Ci as zi. It is assumed that zi was generated

by the following observation model

zi = Hixi + νi. (2.2)

Here, Hi ∈ Rm×p is the observation matrix for node Ci. The noise νi ∈ Rm is modeled

as a zero mean Gaussian random variable with covariance Ri ∈ Rm×m.

Each node also maintains a prior/predicted state estimate x̂−i (t) (and its covari-

ance P−i (t)) for each target. Throughout this article, the inverse of the state covariance

matrix (information/precision matrix) will be used and denoted as Ji = (Pi)
−1. We

assume that the initial prior state estimate and information matrix is available to each

node for the target upon its detection. Our goal is to track the target at each node, i.e.,

find the state estimate for the target at each node by using the prior and measurement

information available in the entire network in a distributed fashion.

12



2.3 Average Consensus: Review

Average consensus [18] is a popular distributed algorithm to compute the arith-

metic mean of some values {ai}NC
i=1. Suppose, each node i has a quantity ai. We are

interested in computing the average value of these quantities i.e. 1
NC

∑NC
i=1 ai, in a dis-

tributed manner.

In average consensus algorithm, each node initializes its consensus state as

ai[0] = ai and iteratively communicates with its neighbors and updates its own state

information. Throughout this article, the index inside a square bracket will indicate

the consensus iteration number as opposed to the index inside a parenthesis that will

typically refer to the time index. At the beginning of iteration k, a node Ci sends its

previous state ai[k − 1] to its immediate network neighbors Ci′ ∈ Ni and also receives

the neighbors’ previous states ai′ [k−1]. Then it updates its own state information using

the following equation

ai[k] = ai[k − 1] + ε
∑
i′∈Ni

(ai′ [k − 1]− ai[k − 1])

= A(ai[k − 1]) (2.3)

Here A(ai) is a shorthand mathematical operator for a single step of average consensus

(defined as the above). By iteratively doing so, the values of the states at all the

nodes converge to the average of the initial values. The rate parameter ε should be

chosen between 0 and 1
∆max

, where ∆max is the maximum degree of the network graph

G. Choosing larger values of ε will result in faster convergence, but choosing values

equal or more than ∆max will render the algorithm unstable. The average consensus

algorithm can be used to compute the average of vectors and matrices by applying it

to their individual elements separately. Average consensus assumes all agents have an

estimate for all elements of a.

13



Consensus algorithms have been extended to perform various tasks in a net-

work of agents such as linear algebraic operations like SVD, least squares, PCA, GPCA

[31]. These distributed estimation frameworks have been applied in various fields includ-

ing camera networks for distributed implementations of 3-D point triangulation, pose

estimation [30], and action recognition [28]. The average consensus algorithm is appli-

cable only for a static parameter estimation problem. For a dynamic state estimation

problem, a predictor-corrector solution approach is needed.

2.4 Kalman Consensus Filter: Review

Now, we present the KCF algorithm [17] in Algorithm 1 and explain the mo-

tivation for proposing the GKCF. It should be noted that the KCF algorithm works

under the assumption that all the sensors have sensed all the targets. The issue of lim-

ited sensing range in the distributed estimation process has been considered previously.

In [20], the authors considered the case where not all sensors get measurements of the

target. However, the solution was not fully distributed; rather it was a hybrid solution

consisting of a distributed and a centralized scheme for information fusion. The nodes

used the KCF algorithm to update their state estimates. These state estimates were sent

along with the state covariance information to a fusion center. For larger networks a hi-

erarchical tree structure of fusion centers was proposed, where the information of all the

nodes reached a root fusion center. Throughout this article, we are interested in solving

the problem using a completely distributed architecture. We will now discuss various

specific conditions that require attention when the KCF is applied to sparse networks

with naive nodes, and next we will propose solution strategies for each of them.

14



Algorithm 1 KCF at Ci at time step t

Given J−i (t), x̂−i (t) and ε

1) Get measurement zi.

2) Compute information vector and matrix

ui ← HT
i R−1

i zi (2.4)

Ui ← HT
i R−1

i Hi (2.5)

3) Broadcast ui, Ui, x̂−i to neighbors and receive ui′ , Ui′ , x̂−i′ from neighbors.

4) Fuse the information vectors and matrices

bi ←
∑

i′∈Ni∪{i}

ui′ (2.6)

Bi ←
∑

i′∈Ni∪{i}

Ui′ (2.7)

5) Compute Kalman Consensus estimate

Mi ← (J−i + Bi)
−1

(2.8)

x̂+
i ← x̂−i + Mi

(
bi −Bix̂

−
i

)
+ γ(J−i )−1

∑
i′∈Ni

(
x̂−i′ − x̂−i

)
(2.9)

γ = ε/(1 + ||(J−i )−1||), ||X|| = tr(XTX)
1
2 (2.10)

6) Predict for next time step

J−i (t+ 1) ← (ΦMiΦ
T + Q)

−1
(2.11)

x̂−i (t+ 1) ← Φx̂+
i (t) (2.12)

15



1) Average vs. weighted average: The basic KCF algorithm uses average consensus

to combine state estimates from neighboring nodes (see Eqn. (2.9)). With average

consensus, the state estimates of all the nodes get the same weight in the summation.

Since naive nodes do not have observations of the target, their estimates are often highly

erroneous. This results in reduced performance in the presence of naive nodes.

2) Covariance/Information Matrix Propagation: The information matrix mea-

surement update of Eqn. (2.8) considers the node’s own information matrix and the

local neighborhood’s measurement covariance. It does not account for cross covariance

between the estimates by the node and its neighbors. In the theoretical proof of op-

timality for KCF, the cross covariances terms between neighbors’ state estimates were

present [17]. It has been stated in [17] that dropping these cross covariance terms is a

valid approximation when the state estimate error covariance matrices are almost equal

in all the nodes.

However, when Ci is naive w.r.t. the target, bi and Bi are both zero. Therefore,

Mi = (J−i )−1 at Eqn. (2.8). Consequently, from Eqn. (2.11) it can be seen that the

diagonal elements of J−i tend to zero at each time update as long as Ci remains naive

with respect to the target. This makes the covariance matrix diverge. From this, it can

be clearly seen that omitting the cross covariances in the covariance update equation

is not valid for sparse networks with naive agents. The correlation between the two

dependent variables is the unknown parameter making this computation difficult. There

has been some work, e.g. [24] and [1], where the authors incorporated cross covariance

information, which should lead to the optimum result. But, no method for computing

these terms were provided and predefined fixed values were used instead.

3) Over-correction of the states: The measurement update term and consensus

term in Eqn. (2.9) are both functions of the prior state estimate x̂−i . Both terms apply

16



corrections to the prior state estimate, from different information sources. Thus the state

estimate might get over-corrected. This is usually not a big issue in sensor networks

without naive nodes because every node’s state estimate will be close to the consensus.

In sparse networks, the estimates of naive nodes may lag behind by a significant time.

This happens because naive nodes do not have direct access to new observation of a

target, the only way they can get updated information about a target is through a

neighbor’s state estimate which was updated in the previous iteration. Thus a naive

node might be multiple iterations away from getting new information about a target.

This information imbalance can cause large oscillations. In the KCF algorithms this

effect can be decreased by choosing a smaller rate parameter ε. However, decreasing ε

yields slower convergence of the naive node’s state estimate.

The above issues can be problematic for tracking applications involving a cam-

era network with naive nodes. A naive node may associate an observation to a wrong

target. This can affect the tracking performance of nodes that are actually observ-

ing the target by influencing them to drift away from their estimates. Since KCF is

a very appropriate framework to build a distributed tracker in a camera network, we

propose some changes to address the above challenges leading to a Generalized Kalman

Consensus Filter. The following are the main proposed modifications.

1) The consensus portion of the GKCF correction step at each node will take into

account the state covariances of neighbors. The nodes will then converge towards the

weighted mean, instead the unweighted mean.

2) Each node and its neighbors’ state covariance matrices will be used jointly at con-

sensus step to update that node’s error covariance matrix. This will prevent the state

covariance of the naive nodes from monotonically increasing.

3) Weighted average consensus will correct the prior estimate towards the weighted

17



mean. Then the measurement information in the local neighborhood will be utilized

to update this consensus state and covariance, thus preventing the overcorrection issue

mentioned above.

2.5 Generalized Kalman Consensus Filter

Now, we will present the GKCF algorithm which is summarized in Algorithm

2. To derive the GKCF algorithm, we first introduce the weighted average consensus.

Next, we show how to incorporate this consensus scheme into our framework.

2.5.1 Weighted Average Consensus

Let the initial state estimate of all NC agents be x̂−i with information matrix

J−i . As we use this information matrix term as weights in the weighted average consensus

algorithm, the terms weight and information matrix will be used interchangeably. So,

the centralized weighted average of the initial states is

x̄c =

(
NC∑
i=1

J−i

)−1 NC∑
i=1

J−i x̂−i . (2.13)

Define the initial weighted state and weight of each agent as

vi[0] = J−i x̂−i , (2.14)

Vi[0] = J−i . (2.15)

Weighted average consensus [18] states that if the iterative update in Eqns. (2.16) and

(2.17)

vi[k] = vi[k − 1] + ε
∑
i′∈Ni

(vi′ [k − 1]− vi[k − 1]) (2.16)

Vi[k] = Vi[k − 1] + ε
∑
i′∈Ni

(Vi′ [k − 1]−Vi[k − 1]) (2.17)

18



is performed for all i = 1, . . . , NC , then each of the terms Vi[K]−1vi[K] tends to the

weighted average x̄c as K → ∞. As a by-product, the weights also converge to the

average of the initial weights i.e., Vi[K] → 1

NC

NC∑
i=1

J−i . Both these properties of the

weighted average consensus will be utilized in our approach.

2.5.2 Covariance/Information Matrix Propagation

After communicating with its neighbors and prior to using measurement in-

formation, the optimal (in the local neighborhood) state estimate at Ci is a linear

combination of the information from Ci and its neighbors. Since these variables are not

independent, optimal estimation would require knowledge of the cross correlation struc-

ture between each pair of these random variables. Since, it is usually quite difficult to

compute this cross correlation, we need some other way to approximate the covariance

or in this case the information matrix. The update operation of the information matrix

Vi[k] in Eqn. (2.17) can be used as an approximation of the information matrix due to

the incoming information from the neighbors’ states. A property of the weighted average

consensus is that the weights also converge to the average of the weights as the state

estimates converge towards the weighted average. Thus, this kind of covariance/weight

propagation enables the weights to be updated accordingly when informative state esti-

mates arrive at a naive node.

After computing the state and weight estimates with all the available informa-

tion, we need to propagate the weight and state in time. One should note that instead

of propagating the state estimate, we have to propagate the weighted state estimate as

necessitated by the weighted average consensus equations. Thus the weight propagation

equation takes the form of Eqn. (2.28).

19



Algorithm 2 GKCF on sensor Ci a time-step t

Given J−i , x̂−i , ε and K. Also let,

1) Get measurements zi

2) Compute information vector and matrix

ui ← HT
i R−1

i zi (2.18)

Ui ← HT
i R−1

i Hi (2.19)

3) Broadcast ui,Ui to neighbors and receive ui′ ,Ui′ from neighbors

4) Fuse the information matrices and vectors in the local neighborhood

bi ←
∑

i′∈Ni∪{i}

ui′ (2.20)

Bi ←
∑

i′∈Ni∪{i}

Ui′ (2.21)

5) Initialize consensus variables

vi[0] ← J−i x̂−i (2.22)

Vi[0] ← J−i (2.23)

6) For K iterations run average consensus on vi[k] and Vi[k] and then compute updated estimate

x̄−i ← Vi[K]−1vi[K] (2.24)

J̄−i ← Vi[K] (2.25)

7) Compute GKCF estimate

J+
i ← J̄−i + Bi (2.26)

x̂+
i ← x̄−i + (J+

i )−1 (bi −Bix̄
−
i

)
(2.27)

8) Propagate for next time step

J−i (t+ 1) ← (ΦJ+
i (t)

−1
ΦT + Q)

−1
(2.28)

x̂−i (t+ 1) ← Φx̂+
i (t) (2.29)

20



2.5.3 Two-stage Update

To resolve the issue of overcorrection of the states, we divide the estimation

process in two stages. First, as mentioned above, Ci updates its state and information

matrix using its neighbors’ states and information matrices. Next, we further update our

state and information matrix with current measurement information, which we explain

below.

Consider that a node that has completed Step 2 in Algorithm 2. If it did not

have any observation, then zi and R−1
i were set to zero. Using the fused information

vector and matrix and the updated prior weight and state estimate (from the weighted

average consensus step of Eqns. (2.24) and (2.25)), we get the final state and weight

estimate at time t. Thus, using Eqns. (2.26) and (2.27) we can estimate the state

and weight which includes the properly weighted innovations from the measurements

and the state estimates of the neighbors. Note that GKCF is a more general algorithm

that at the expense of additional communications can converge even closer to the global

weighted average (by virtue of the weighted average consensus steps).

2.6 Theoretical Comparison

The KCF algorithm in [17] was originally presented using a single consensus

step. This section presents the state estimation step of the GKCF and KCF algorithm

in an equivalent form for a single consensus step (i.e., K = 1) and compares the differ-

ences between the algorithms theoretically. The derivation of the following results are

presented in the appendix.

21



GKCF (see Proposition 5 in Appendix)

x̂+
i = x̂−i +

(
A(J−i ) + Bi

)−1

bi −Bix̂
−
i + ε

∑
i′∈Ni

J−i′
(
x̂−i′ − x̂−i

) (2.30)

J+
i = A(J−i ) + Bi (2.31)

KCF

x̂+
i = x̂−i +

(
J−i + Bi

)−1 (
bi −Bix̂

−
i

)
+

ε

1 + ||(J−i )−1||
(J−i )−1

∑
i′∈Ni

(
x̂−i′ − x̂−i

)
(2.32)

J+
i = J−i + Bi (2.33)

The following points of comparison are important:

1) In the third term of Eqn. (2.32), KCF gives equal weight to all the neighbors’ priors.

In the presence naivety, this has detrimental effect as the information at different nodes

are different and need to be weighted by their information matrices. This is properly

accounted for in the GKCF algorithm as the innovation from each neighbor’s prior state(
x̂−i′ − x̂−i

)
is properly weighted by their information matrix J−i′ in Eqn. (2.30).

2) In Eqn. (2.30), GKCF uses
(
A(J−i ) + Bi

)−1
to normalize both the innovation from

the measurements and the innovation from the state priors. Whereas, in Eqn. (2.32),

the normalizing terms are not balanced because KCF uses
(
J−i + Bi

)−1
to normalize

the measurement innovation and (J−i )−1 to normalize the innovation from the priors.

3) In Eqn. (2.32), the normalizing term 1 + ||(J−i )−1|| is a design choice [17] to maintain

stability of the algorithm. However, it does not guarantee optimality of KCF. Although

GKCF is also not guaranteed to converge to the optimal centralized estimate, it does

not bear such a design choice.

22



2.7 Experimental Evaluation

In this section, we evaluate the performance of the proposed GKCF algorithm

in a simulated environment and compare it with other methods: the Centralized Kalman

Filter (CKF) and the Kalman Consensus Filter (KCF) [17]. Comparison in a simulated

environment allows an in-depth analysis of the proposed algorithms as parameters are

varied to measure performance under different conditions.

We simulate a camera network containing NT targets randomly moving (with

a fixed model) within a 500× 500 space. Each target’s initial state vector is random. A

set of NC camera sensors monitor the space (we consider that each communication node

consists of one camera). In each experiment, the cameras are randomly distributed in

the space with random orientations resulting in overlapping field-of-views (FOVs).

Target State Parameters

Each target was initialized at the center of the simulation grid. The target’s

state vector was a 4D vector, with the 2D position and 2D velocity components. The

initial speed was set to 2 units per time step and with a random direction uniformly

chosen from 0 to 2π. The targets evolved for 40 time steps using the target dynamical

model of Eqn. (2.1). Only the targets which remained in the simulation grid for the 40

time steps were considered. The process covariance Q is set to diag(10, 10, 1, 1).

For the target state-estimation model, the dynamical model of Eqn. (2.1)

was also used with the same Q defined above. The initial prior state x̂−i (1) and prior

covariance P−i (1) are set equal at each node. A diagonal matrix is used for P−i (1)

with the main diagonal elements as {100, 100, 10, 10}. The initial prior state x̂−i (1) is

generated by adding Gaussian noise of covariance P−i (1) to the ground truth state.

23



Sensor Parameters

A total of NC = 15 nodes were generated at uniformly chosen random locations

on the simulation area. The measurement vector length for each sensor is 2. The FOV

was chosen to be equilateral triangles. We define the sensing range, SR, for each sensor

to be the height of this equilateral triangle. SR was chosen to be 300 units for all the

sensors. A sensor can have an observation of a target only if the ground truth position of

the target is within the sensor’s FOV and in that case, a measurement zi was generated

using the linear observation model Eqn. (2.2) with noise covariance Ri = 100I2. The

observation matrix Hi and state transition matrix Φ is given below.

Hi =

1 0 0 0

0 1 0 0

, Φ =



1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1


.

Network Topology Parameters

A circulant graph was chosen as the communication topology for the sensor

network to highlight the different issues associated with the sparsity of the communi-

cation network. The circulant graph is ∆-regular where the degree of each node is the

same, say ∆. The adjacency matrix of a circulant graph is a circulant matrix. So, we

denote ∆ to be the degree of the communication graph G. In the experiments, ∆ = 2

was used, unless stated otherwise. Note that, in this scenario, the maximum degree

∆max = ∆ because the degree of all the nodes are same.

24



Consensus Parameters

In Algorithm 2, each sensor communicates its measurement information to

its neighbors iteratively. The maximum number of consensus iterations K was set

to 5 unless stated otherwise. The consensus speed parameter was chosen to be ε =

0.65/∆max = 0.65/∆.

Experimental Description

The parameters that were varied in the experiments are, the maximum number

of consensus iterations K, degree of the communication network ∆, sensing range SR

and the number of cameras NC . For each experiment, only one parameter was varied

while the others were kept constant. As a measure of performance, we computed the

estimation error, e, defined as the Euclidean distance between the ground truth position

and the estimated posterior position. An example of the simulation framework is shown

in Fig. 2.2.

For each experiment, 20 different simulation environments differing in camera

poses were randomly generated using the method discussed above. For each environ-

ment, 20 different randomly generated target tracks were used. Thus, for each experi-

ment, the estimation errors e, were averaged over 20 × 20 = 400 random scenarios, 40

time steps and over all sensors NC . The mean errors for different methods are shown in

the following graphs as the results of different experiments. In the graphs, each line (of

a unique color) corresponds to the mean error ē for one estimation method.

The KCF algorithm as originally proposed in [17] uses a single consensus step

per measurement update. To compare it with GKCF, which supports multiple iterations,

we extend KCF for multiple iterations. For this, at each time step, the measurement

25



0 100 200 300 400 500
0

100

200

300

400

500

Figure 2.2: In this image of an example simulation environment, the red arrows indicate the

locations and orientations of the cameras. The camera FOVs are shown in blue triangles. There

are 7 cameras in this example. The green dotted lines represent the network connectivity. Each

black arrows depict the actual trajectory of a target moving on the grid.

innovation component is set to zero for k > 1 and we consider only the new information

provided by the neighboring nodes’ estimates.

2.7.1 Experiment 1: Varying K

The objective of this experiment is to compare the performance of different

estimation algorithms for different K. Here, K was varied from 1 to 20 at increments

of 1. The other parameters were kept constant at their default values. The priors were

chosen to be equal.

The results of this experiment are shown in Fig. 2.3. The graph shows that

for K = 1, GKCF performs much better than KCF close to CKF. As, the number of

iterations K is increased, the mean error for GKCF decreases. The main reason for

this difference in performance between KCF and GKCF is that KCF does not account

for the different information content in different nodes’ prior information which unlike

KCF, GKCF does. In this simulation all the initial priors were equal.

26



2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35

40

Number of Consensus Iterations, K

M
ea

n
Er

ro
r,

ē

CKF
KCF
GKCF

Figure 2.3: Varying K with equal initial priors

100

150

200

250

300

2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35

Number of Consensus Iterations, K

M
ea

n
Er

ro
r,

ē

CKF
KCF
GKCF

Figure 2.4: Varying K with unequal initial

priors

To show the robustness of the GKCF approach, we conducted the same exper-

iment with unequal and uncorrelated priors (Fig. 2.4) using Algorithm 2. The results

show that the performance of KCF is severely affected by this whereas GKCF is very

robust to unequal initial priors.

2.7.2 Experiment 2: Varying ∆

The objective of this experiment is to compare the performance of different

approaches for different values of the degree ∆ (i.e., vary the sparsity of the network

from sparse connectivity to dense connectivity). For NC = 15, the maximum possible

degree can be ∆ = 14 at full mesh connectivity. In this experiment, ∆ was varied from

2 to 14 at increments of 2.

The results are shown in Fig. 2.5, where the total number of consensus itera-

tions K was set to 5. It can be seen that the GKCF performs much better than KCF

at all ∆ even with very sparse connectivity. For full connectivity, i.e. ∆ = 14, where G

is a complete graph, all the distributed methods achieve centralized performance.

27



2 4 6 8 10 12 14
8

10

12

14

16

18

20

22

24

26

28

Degree of Communication Graph, ∆

M
ea

n
Er

ro
r,

ē
CKF
KCF
GKCF

Figure 2.5: Varying the density of connectiv-

ity of the network graph.

150 200 250 300 350 400 450 500 550 600
0

10

20

30

40

50

60

Sensor Range, SR

M
ea

n
Er

ro
r,

ē

CKF
KCF
GKCF

Figure 2.6: Varying the sensing range of the

sensors.

2.7.3 Experiment 3: Varying SR

The objective of this experiment is to compare the performance of different

approaches as a function of the sensor range SR (i.e., varying the area of coverage of

each sensor.)

Fig. 2.6 shows the performance of each approach as SR is varied and the total

number of iterations K was set to 5. It can be seen that GKCF performed better than

KCF at each sensor range.

2.7.4 Experiment 4: Varying NC

The objective of this experiment is to compare the performance of different

approaches as a function of the total number of sensors, NC , as it was varied from 5 to

31 at increments of 2. Values less than 5 were not used because at such low number of

sensors, even the centralized algorithm cannot perform well due to the high number of

time instants at which the number of measurements is insufficient for the state vector

to be observable, due to the low percentage coverage of the environment.

Fig. 2.7 shows results for variable NC and fixed K = 20. As the number

of sensors is increased, the observability of the targets by the network increases, but

28



5 10 15 20 25 30
0

10

20

30

40

50

Number of Sensors, N C

M
ea

n
Er

ro
r,

ē

CKF
KCF
GKCF

Figure 2.7: Performance comparison of different approaches by varying total number of sensors.

the number of naive nodes also increases. Due to the amount of information about

the targets increasing, the performance of all the approaches (including centralized)

improves. For a small NC , all the distributed methods performed close to the centralized

method, because the number of naive nodes is small and the network distance from a

naive node to an informed node is small. As the number of nodes increases, the number

of consensus iterations required to reach consensus also increases. Thus we can see

that the performance of all distributed algorithms (both GKCF and KCF) deteriorates

more from the centralized performance for high number of sensors. For all NC , GKCF

outperformed KCF.

2.8 Conclusion

In this chapter, we introduced a novel method for distributed state estima-

tion algorithm, the Generalized Kalman Consensus Filter (GKCF). We discussed under

what circumstances the assumptions of KCF are not valid and hence modifications are

necessary. This is especially true in camera networks where each sensor has a limited

FOV and they are geographically separated by distances that do not allow full commu-

nication. Then we proposed a generalized framework, Generalized KCF, which outper-

29



formed the KCF approach under such conditions. We showed the theoretical derivation

of our framework and also showed simulation results to compare the performance of our

algorithm with other approaches.

30



Chapter 3

Information-weighted Consensus

Filter

3.1 Introduction

Among many types of distributed estimation schemes, consensus algorithms

[18] are schemes where each node, by iteratively communicating with its network neigh-

bors, can compute a function of the measurements at each node (e.g. average). The

consensus estimates asymptotically converge to the global result. In practice, only a

limited number of iterations can be performed due to limited bandwidth and target

dynamics. Thus, true convergence may not be always reached. In the presence of state

dynamics, usually a predictor-corrector model is used for state estimation, where a state

prediction is made from the prior information and corrected using new measurements.

The Kalman Consensus Filter (KCF) [17] is a popular distributed state estimation

framework based on the average consensus algorithm. KCF works well in situations

where each node gets a measurement of the target.

31



C1 C5

C3

C2
C4

T1

T2

T3

T4

T5

T6

T7

Figure 3.1: In this figure, there are five sensing nodes, C1, C2, . . . , C5 observing an area (black

rectangle) consisting of seven targets T 1, T 2, . . . T 7. The solid blue lines show the communication

channels between different nodes. This figure also depicts the presence of “naive” nodes. For

example, C1 gets direct measurements about T 1 which it shares with its immediate network

neighbor, C2. However, the rest of the cameras, i.e., C3, C4, C5 do not have direct access to

measurements of T 1 and thus are naive w.r.t. T 1’s state.

In a sensor network, a node might have limited observability when it does not

have any measurement of a target available in its local neighborhood (consisting of the

node and its immediate network neighbors). Due to limited observability and limited

number of iterations, the node becomes naive about the target’s state. A naive node (see

Fig. 3.1) contains less information about the state. If a naive node’s estimate is given

an equal weight in the information fusion scheme (as in KCF), the performance of the

overall state estimation framework may decrease. The effect of naivety is severe in sparse

networks where the total number of edges is much smaller than the maximum possible

number of edges. The Generalized Kalman Consensus Filter (GKCF), was discussed in

the previous chapter which overcomes this issue by utilizing a weighted-averaging con-

sensus scheme where the priors of each node were weighted by their covariance matrices.

32



Both KCF and GKCF estimates are suboptimal and the main reason is that

the cross-covariances between the priors across different nodes are not incorporated in

the estimation framework. As the consensus progresses, the errors in the information

at each node become highly correlated with each other. Thus, to compute the optimal

state estimate, the error cross-covariances cannot be neglected. However, it is difficult to

compute the cross-covariance in a distributed framework. We note that in a consensus-

based framework, the state estimates at different nodes achieve reasonable convergence

over multiple iterations. At this point, each node contains almost identical/redundant

information. This fact can be utilized to compute the optimal estimate in a distributed

framework without explicitly computing the cross-covariances.

Motivated by this idea, we propose an information-weighted consensus algo-

rithm for distributed state estimation which is guaranteed to converge to the optimal

centralized estimates as the prior state estimates become equal at different nodes i.e.,

the total number of iterations approach to infinity at the previous time step. We also

show experimentally that even with limited number of iterations, the proposed algorithm

achieves near-optimal performance. The issue of naivety and optimality is handled by

proper information weighting of the prior and measurement information. The commu-

nication bandwidth requirement is also low for the proposed method.

3.1.1 Contributions

The KCF algorithm weights all its neighbors’ prior states x̂−i′ ’s equally which

causes high estimation error when naive nodes are present. An initial approach to

resolve this issue was proposed in [11]. There the Generalized Kalman Consensus Filter

(GKCF) algorithm was proposed where the neighbors’ prior x̂−i′ ’s were weighted by

their covariance matrices P−i′ ’s. The GKCF algorithm outperforms the KCF in the

33



presence of naive nodes. However, the effect of correlation between errors of the nodes’

prior estimates was not brought into account in any of the prior methods because it

is usually extremely hard to estimate the cross-covariance across all the nodes in a

distributed framework. Mainly due to this reason, these distributed estimation schemes

are suboptimal.

Naivety relative to the j-th target is likely to be present in the network when

nodes on the vision graph for target j are sparsely connected in the communication

graph. The vision graph (see [30]) for target T j is a graph where there is an edge

between each pair of nodes that are observing T j (see Fig. 3.1). The vision graph is

usually time varying, different from the communication graph, and different for different

targets. Distributed algorithms that are derived under the assumption that each sensor

has full state observability at each time (e.g. KCF), may be adapted to be used in the

presence of naive nodes when communication protocols (e.g. [9]) for translating a known

vision graph into a set of routing paths that connect nodes in the communication graph

are available. However, scalable distributed vision graph discovery algorithms do not

exist. Moreover, distributed algorithms that require the knowledge of the vision graphs

usually require special target handoff protocols.

Additionally, computation and communication resource constraints are impor-

tant issues in a distributed estimation framework because in many application scenarios,

the nodes are low powered wireless devices. Therefore, a distributed state estimation

framework that can guarantee convergence to the optimal centralized estimate while

maintaining low computation and communication resource requirements in the presence

of naive nodes is desirable. In this chapter, we propose such a distributed state esti-

mation framework called the Information-weighted Consensus Filter (ICF). The ICF

is guaranteed to converge to the optimal centralized performance under certain rea-

34



sonable conditions. We also show experimentally that in other conditions it achieves

near-optimal performance.

The issue of naivety is handled in the ICF algorithm by proper information

weighting in the estimation framework. Optimality is achieved by proper relative weight-

ing between the prior and the measurement information. ICF also supports multiple

consensus iterations at each time step t to improve performance. In addition, the ex-

perimental results show that ICF outperforms other distributed estimation algorithms

at any given computation and communication resource limit. The ICF algorithm does

not require handoff protocols or the knowledge of the vision graph.

3.1.2 Related work

Recently, distributed decision and control frameworks have gained immense

popularity. Consensus algorithms [18] are one of the many types of distributed schemes

used for collective decision making. Consensus algorithms are protocols that are run in-

dividually by each agent where each agent communicates with just its network neighbors

and corrects its own information iteratively using the information sent by its neighbors.

The protocol, over multiple iterations, ensures the convergence of all the agents in the

network to a single consensus. The consensus they reach is a predefined function of all

the information available in the network. It is important to note that this consensus

is reached just by peer-to-peer communication without requiring a central fusion node.

For example, the item being estimated may be the arithmetic mean (average consensus)

[18] or the geometric mean [19] of the initial values. The simplicity and scalability of

consensus algorithms makes them extremely useful in distributed estimation tasks in

sensor networks.

35



Consensus algorithms have been extended to perform various linear algebraic

operations such as SVD, least squares, PCA, GPCA in a network of agents [30] It also

has been utilized in distributed state estimation framework such as the Kalman Consen-

sus Filter (KCF) [17] and the Generalized Kalman Consensus Filter (GKCF) [11] that

we discussed in the previous chapter. The KCF algorithm is a popular distributed esti-

mation framework and has reasonable performance in networks where the entire state is

individually observable by each node. However, its performance deteriorates in the pres-

ence of naivety [11]. The idea of information-weighted consensus was introduced in [13];

however, that article did not provide the detailed theoretical analysis of its properties,

comparisons with other approaches, or the implications for its application in wide-area

camera networks. These items are each provided herein. A survey on distributed esti-

mation and control applications using linear consensus algorithms can be found in [8].

Here the authors show how a weighted average can be computed in a distributed frame-

work using two parallel average consensus schemes. Distributed state and parameter

estimation frameworks have been applied in various fields including camera networks

for distributed implementations of 3-D point triangulation, pose estimation [30], track-

ing [28], action recognition [28, 15], collaborative tracking and camera control [27, 7],

camera calibration [29, 3] etc.

3.2 Problem Formulation

The communication network is represented by the undirected connected graph

G = (C, E). The set C = {C1, ..., CNC
} contains the vertices of the graph and represents

the communication nodes. The set E contains the edges of the graph, which represent

the available communication channels between different nodes. Also, let Ni be the set of

36



nodes that have a direct communication channel with node Ci (i.e. shares an edge with

Ci). We call the nodes in Ni, the neighbors of Ci. The number of neighbors (degree)

of Ci is represented by ∆i. For simplicity, we will drop the time step index t in places

where the time step is not important to explain the issue under consideration. There

are NT targets in the area and the length of their individual state vectors is q. Thus,

for x ∈ Rp, p would be equal to qNT . The number of targets can be time-varying, but

that will not be a focus of the thesis, as it would distract from the main topic.

A data association protocol is required for a multi-target estimation framework.

However, in this chapter, to analyze the performance of the state estimation approaches

independent of a data association method, we assume that the data association is given

and without errors. Data association will be brought into account in the following

chapters.

At each time step t, a node Ci may get some measurements from its sensors. For

example, for a target state estimation task in a camera network, a measurement might

be the projection of the position of some target onto a camera’s pixel coordinate system.

We denote the measurement at Ci as zi ∈ Rmi . As, the sensors can be heterogeneous

and the number of sensors can be different at each communication node, the length

of the measurement vector mi can vary across different nodes. The measurement zi is

modeled as

zi = Hix + νi. (3.1)

Here Hi ∈ Rmi×p is the observation matrix for node Ci. The matrix Hi can be time-

varying. The noise νi ∈ Rmi in the measurement of Ci is modeled as a zero mean

Gaussian random variableN (0,Ri) where Ri ∈ Rmi×mi . As we will derive the estimator

in the information form, we will generally end up with equation with inverse covariances

37



(information matrix/ precision matrix). If a node Ci does not have a measurement, we

will use (Ri)
−1 = 0 ∈ Rmi×mi and zi = 0 ∈ Rmi . Note that Hi is typically not full

column rank (mi < p). In fact, we are not assuming that the state x is observable from

zi. We do assume that x is observable from {zi}NC
i=1. The collection of all measurements

from all sensors can be expressed as,

Z = Hx + ν. (3.2)

Here, Z = [zT1 , z
T
2 , . . . z

T
N ]T ∈ Rm is the concatenation of all measurements in the

network where m =
∑N

i=1mi and H = [HT
1 ,H

T
2 , . . .H

T
N ]T ∈ Rm×p is the stack of all

the observation matrices. For the measurement noise vector, ν = [νT1 ,ν
T
2 , . . .ν

T
N ]T ∈

Rm, we denote its covariance as R ∈ Rm×m. We assume the measurement noise

to be uncorrelated across nodes. Thus, the measurement covariance matrix is R =

diag(R1,R2, . . .RNC
).

3.3 Centralized MAP Estimation

Before considering the decentralized solution for the estimation of x it is in-

formative to review the centralized solution, i.e., the centralized maximum a posteriori

(MAP) estimator. The centralized prior state estimate of x is denoted as x̂−c ∈ Rp

where the error in the prior estimate is ηc = x̂−c − x with cov(ηc) = P−c ∈ Rp×p, which

is assumed to be nonsingular. The observation model in Eqn. (3.2) and prior state x̂−c

can be combined into one equation as x̂−c

Z

 =

 Ip

H

x +

ηc
ν

 . (3.3)

Here Ip is the p× p identity matrix.

38



Letting, Y =

 x̂−c

Z

, Hc =

 Ip

H

 and β =

ηc
ν

, we have Y = Hcx + β,

where β ∼ N (0,C). We assume that the error in the prior state estimate is uncorrelated

to the measurement noise. Thus, we have the block diagonal covariance matrix C =

diag(P−c ,R). Let us define the prior information matrix to be J−c = (P−c )−1 ∈ Rp×p.

Thus, defining J = C−1 we have J = diag(J−c ,R−1). The centralized maximum a

posteriori (MAP) estimate [16] of the state x is

x+
c = (HT

c JHc)
−1(HT

c JY)

=
(
J−c + HTR−1H

)−1
(J−c x−c + HTR−1Z), (3.4)

J+
c =

(
J−c + HTR−1H

)
. (3.5)

where J+
c = (cov(x̂+

c ))
−1

quantifies the information about x in x̂+
c . Eqns. (3.4-3.5) are

useful in the discussion of the physical interpretations of the alternative decentralized

algorithms.

3.4 Information Consensus based Distributed MAP Esti-

mation (IC-MAP)

In a distributed estimation framework, each node Ci possesses a prior estimate

of the state vector that we denote as x̂−i ∈ Rp (unlike a single prior state estimate in a

centralized solution). The objective of the network is to use distributed computations

across the network such that the posterior state estimate x̂+
i ∈ Rp at each node converges

to the centralized estimate x̂+
c . However, due to resource constraints, this convergence

may not be fully achieved at any given time. Therefore, if consensus were performed

directly on the priors, then at the k-th consensus iteration, the estimate of the i-th node

39



can be modeled as having three components

x̂−i [k] = x + ηc + δi[k],

where x̂−c = x + ηc with the quantities x and ηc having been previously defined, and

the consensus algorithm ensures that ‖δi[k]‖ approaches zero as k approaches infinity

for all i. The index in the parenthesis after a variable will refer to the time-index and

the index in the square brackets will refer to the consensus iteration index.

The error covariance in the prior estimate at Ci is P−ii [k] = E[ηi[k] (ηi[k])T ] ∈

Rp×p, where ηi[k] = ηc + δi[k]. Similarly, the error cross-covariance between Ci and

Ci′ ’s prior estimates is P−ii′ [k] = E[ηi[k] (ηi′ [k])T ] ∈ Rp×p. As k → ∞, at each node,

consensus forces x̂−i [k] → x̂−c . Therefore, for any {i, i′}, x̂−i [k] and x̂−i′ [k] becomes

correlated as x̂−i [k] → x̂−i′ [k] resulting in P−ii′ [k] 6= 0. In fact, it is straightforward to

show that as the number of consensus iterations k approaches infinity, P−ii′ [k] converges

to P−c for all {i, i′}.

We drop the k and denote the collection of all the state priors from all the nodes

as X̂
−

= [(x̂−1 )T , (x̂−2 )T , . . . , (x̂−NC
)T ]T ∈ RNp. The relationship between the state, the

priors and the prior errors can be summarized as,

X̂
−

= HIx + η. (3.6)

Here, x is the true state of the targets, η = [ηT1 ,η
T
2 , . . .η

T
NC

]T ∈ RNCp is the error

vector, and HI = [Ip, Ip, . . . , Ip]
T ∈ RNCp×p.

Combining the measurements with the result of a finite number k of steps of

consensus on the priors yields X̂
−

Z

 =

 HI

H

x +

η
ν

 . (3.7)

40



Letting, Y ′ =

 X̂
−

Z

, H′
c =

 HI

H

 and β′ =

η
ν

, we have Y ′ = H′
cx+β′, where

β′ ∼ N (0,C′). The noise term β′ is Gaussian because it is accumulated through one or

more consensus iterations (which are linear operations) performed on Gaussian random

variables.

Let us denote the prior information matrix F = P−1 where these two matrices

can be expressed as (p× p) blocks,

P =



P−11 P−12 . . . P−1NC

P−21 P−22

...

...
. . .

P−NC1 . . . P−NCNC


, F =



F11 F12 . . . F1NC

F21 F22
...

...
. . .

FNC1 . . . FNN


. (3.8)

Let us define the information matrix of the prior of node i as

J−i = (P−ii )
−1 (3.9)

Here, J−i ∈ Rp×p and in general, J−i 6= Fii. Assuming that the error in the prior

state estimates are uncorrelated to the noise in the new measurements, we have the

block diagonal covariance matrix C′ = diag(P ,R). Thus, we get its inverse as J ′ =

diag(F ,R−1).

The centralized maximum a posteriori (MAP) estimate of the state x is

x̂+
c = (H′T

c J ′H′
c)
−1(H′T

c J ′Y ′)

=
(
HT
I FHI + HTR−1H

)−1
(HT

I FX̂
−

+ HTR−1Z), (3.10)

J+
c = HT

I FHI + HTR−1H. (3.11)

Defining

F−i =

NC∑
i′=1

Fi′i, (3.12)

41



we have

HT
I FHI =

NC∑
i=1

F−i and HT
I FX̂

−
=

NC∑
i=1

F−i x−i . (3.13)

Let us define Ui = HT
i R−1

i Hi and ui = HT
i R−1

i zi. Due to the block diagonal

structure of R−1, we get

HTR−1H =

NC∑
i=1

HT
i R−1

i Hi =

NC∑
i=1

Ui, (3.14)

HTR−1Z =

NC∑
i=1

HT
i R−1

i zi =

NC∑
i=1

ui. (3.15)

Thus, from Eqns. (3.10) and (3.11), we get

x̂+
c =

(
NC∑
i=1

(F−i + Ui)

)−1 NC∑
i=1

(F−i x−i + ui), (3.16)

J+
c =

NC∑
i=1

(F−i + Ui). (3.17)

This is the centralized solution that fully accounts for the presence of different priors at

each agent, and the cross-correlated errors in the priors between agents, which develop

naturally due to consensus, but which are not known in a decentralized implementation.

In the following, we show how Eqns. (3.16) and (3.17) can be computed in a distributed

manner.

3.4.1 Distributed Implementation

To implement Eqns. (3.16-3.17) in a distributed fashion, define, Vi[0] = F−i +

Ui and vi[0] = F−i x̂−i + ui, so that

x̂+
c =

(
NC∑
i=1

Vi[0]

)−1 NC∑
i=1

vi[0], (3.18)

J+
c =

NC∑
i=1

Vi[0]. (3.19)

42



Under the assumption that a node Ci has information about F−i (methods for computing

F−i will be discussed later), Ci could compute Vi[0] = F−i + Ui and vi[0] = F−i x̂−i + ui

from F−i , its own state prior x̂−i , measurement zi, measurement information matrix R−1
i

and measurement model parameter Hi. Then, each node transmits to its neighbors its

own information matrix Vi[k] ∈ Rp×p and information vector vi[k] ∈ Rp, receives its

neighbors’ information, and uses the average consensus algorithm as described in Sec.

2.3 to converge toward the global averages of these two quantities. Therefore, from

Eqns. (3.18-3.19) we get

x̂+
c = lim

k→∞
(NCVi[k])−1 (NCvi[k]) = lim

k→∞
(Vi[k])−1 vi[k] (3.20)

J+
c = lim

k→∞
NCVi[k] (3.21)

From the discussion above, given F−i , it is clear that the centralized MAP estimate

in Eqns. (3.18-3.19) is achieved using a distributed scheme as k → ∞. We call this

distributed approach of computing the MAP estimate, the Information Consensus based

MAP (IC-MAP) estimation framework.

3.4.2 Computation of F−i

To compute the distributed MAP estimate, node Ci needs to have knowledge

of F−i . In general, computation of F−i requires the knowledge of the entire covariance

matrix P defined in Eqn. (3.8) (i.e. the prior covariances (P−ii ’s) of each node and the

prior cross-covariances (P−ii′ ’s) between each pair of nodes). However, computing P at

every time step at each node in a distributed framework is unrealistic as it would require

too much information exchange among the nodes. However, in the following, we show

that for two special cases (which are of great practical importance), F−i can be com-

puted at each node using only a node’s own prior covariance matrix P−ii (or J−i in the

43



information form). The first case is for converged priors which is an important scenario

because in a consensus-based framework, with high-enough number of consensus itera-

tions, the prior state information at all the nodes ultimately converge to the same value.

The second case is when the prior state estimates across the nodes are uncorrelated to

each other. This is generally true at the early steps of consensus when the nodes had no

prior information about the target and initialized their prior information with random

quantities.

The proposed distributed state estimation framework in Sec. 3.5 is based on

these two special cases. The practical significance of these two cases can be seen from

the experimental results in Sec. 3.6 which implies that the proposed algorithm (derived

from these two special cases) is robust even when the assumptions of neither of these

two cases are met.

3.4.2.1 Case 1: Converged Priors

Here we will discuss the case where the estimate of the state vector at each node has

converged to the centralized estimate at the previous time step t − 1. Thus at time t,

the prior information at each node is the same and equal to the prior information of a

centralized framework (i.e., k sufficiently large such that ‖δi[k]‖ = 0 for all i). This case

will be of great significance when we will incorporate target dynamics and additional

measurement steps to our framework. From Eqns. (3.5) and (3.17) we have

J+
c = J−c + HTR−1H =

NC∑
i=1

(F−i + Ui). (3.22)

as from Eqn. (3.14), HTR−1H =
∑NC

i=1 Ui. Thus, from Eqn. (3.22),

NC∑
i=1

F−i = J−c =

NC∑
i=1

J−c
NC

. (3.23)

44



Now, for converged priors, for all i we have J−c = J−i . Using this in Eqn. (3.23), we

have

NC∑
i=1

F−i =

NC∑
i=1

J−i
NC

. (3.24)

Using this in Eqns. (3.16) and (3.17) and using the fact that x̂−i = x̂−c for converged

priors, we have

x̂+
c =

(
NC∑
i=1

(
J−i
NC

+ Ui

))−1 NC∑
i=1

(
J−i
NC

x̂−i + ui

)
, (3.25)

J+
c =

NC∑
i=1

(
J−i
NC

+ Ui

)
. (3.26)

This can be computed in a distributed manner by initializing Vi[0] =
1

NC
J−i + Ui

and vi[0] =
1

NC
J−i x̂−i + ui. This is equivalent to using

1

NC
J−i instead of F−i in Eqns.

(3.16-3.17).

The intuition behind this is as follows. After convergence, given the prior at

one node, the other priors do not contain any new information. Upon convergence in

the previous time step, the prior information matrix at each node J−i is equal to J−c :

Each agent has an identical copy (x̂−i = x̂−c ) and amount of information (J−i = J−c ).

Thus at the current time step, the prior information matrix J−i should be divided by

NC as shown in the formulation of Eqns. (3.25-3.26), so that the effective total weight

of all the priors in the estimation scheme remains as J−c .

3.4.2.2 Case 2: Uncorrelated Prior Errors

Now, we consider the case where the errors in the priors are uncorrelated with each

other across different nodes. This case can be used at the initial time step if it is known

that the prior errors are uncorrelated across different nodes.

45



When the prior state errors are uncorrelated, the covariance matrix P will be

block diagonal. So, its inverse F will also be block diagonal as, F = diag(F11 , F22,

. . . FNCNC
) = diag

(
(P−11)−1, (P−22)−1, . . . (P−NCNC

)−1
)

. In this special case, with J−i

defined in Eqn. (3.9), we have

Fii = (P−ii )
−1 = J−i . (3.27)

As the off-diagonal block elements of F are zero, from the definition of F−i in Eqn.

(3.12), we have

F−i =

NC∑
i′=1

Fi′i = Fii = J−i . (3.28)

Thus, when the prior errors are uncorrelated across the different nodes, using F−i = J−i

(in Eqns. (3.16-3.17)) and average consensus, we can compute the centralized MAP

estimate in a distributed framework.

3.5 Information-weighted Consensus Filter

In the previous section, we derived the Information Consensus based MAP

(IC-MAP) estimation framework and proved its optimality for two important scenarios.

In this section, we will consider a dynamic model in state space form and extend the

IC-MAP framework in Sec. 3.4 for distributed state estimation. We call this distributed

state estimation framework, the Information-weighted Consensus Filter (ICF). We prove

theoretically that as the number of consensus iteration k → ∞, the ICF estimates

converge to the estimates of the centralized Kalman filter.

Let us consider the following linear dynamical model

x(t+ 1) = Φx(t) + γ(t). (3.29)

Here Φ ∈ Rp×p is the state transition matrix and the process noise is γ(t) ∼ N (0,Q).

46



For this model, for the centralized case, we have the following state prediction

step [16],

J−c (t+ 1) =
(
ΦJ+

c (t)−1ΦT + Q
)−1

, (3.30)

x̂−c (t+ 1) = Φx̂+
c (t). (3.31)

Combining this with the IC-MAP estimation framework proposed in Sec. 3.4, we get

the Information-weighted Consensus Filter (ICF) in Algorithm 3.

Algorithm 3 ICF at node Ci at time step t

Input: prior state estimate x̂−i (t), prior information matrix J−i (t), observation matrix Hi, consensus

speed factor ε and total number of consensus iterations K.

1) Get measurement zi and measurement information matrix R−1
i

2) Compute consensus proposals,

Vi[0] ← 1

NC
J−i (t) + HT

i R−1
i Hi (3.32)

vi[0] ← 1

NC
J−i (t)x̂−i (t) + HT

i R−1
i zi (3.33)

3) Perform average consensus (Sec. 2.3) on vi[0] and Vi[0] independently for K iterations.

4) Compute a posteriori state estimate and information matrix for time t

x̂+
i (t) ← (Vi[K])−1vi[K] (3.34)

J+
i (t) ← NCVi[K] (3.35)

5) Predict for next time step (t+ 1)

J−i (t+ 1) ←
(
Φ(J+

i (t))−1ΦT + Q
)−1

(3.36)

x̂−i (t+ 1) ← Φx̂+
i (t) (3.37)

Output: ICF estimate x̂+
i (t) and information matrix J+

i (t).

47



Note that in Eqns. (3.32) and (3.33), we have used the results for the converged

prior case (Sec. 3.4.2.1), i.e., using
1

NC
J−i instead of F−i . Theoretically, at each time

step, if k → ∞, the IC-MAP estimator guarantees that the priors for the next time

step at each node will be equal to the optimal centralized one. This convergence further

guarantees that the optimal centralized estimate will be reached at the next time steps

if F−i =
1

NC
J−i is used. This guarantees the optimality of Algorithm 3 with k → ∞ at

each time step.

In practice, due to the fact that the total number of iterations, k, is finite,

convergence will not be achieved fully. Therefore, the distributed implementation will

not perform quite as well as the centralized solution. The simulation results in Sec. 3.6

will demonstrate that the ICF has near-optimal performance as either k increases or t

increases for a fixed k.

While Eqn. (3.20) shows that inclusion of NC is inconsequential in the com-

putation of x in the CKF, the role of NC is critical in the distributed implementation.

At Eqns. (3.32) and (3.33), due to prior consensus steps, all nodes have the same es-

timate with the same information J−i . If the
1

NC
is neglected, then the measurement

information receives too little relative weighting by a factor of NC .

3.5.1 Initialization and Special Situations

In a practical implementation scenario, at system startup or for the first few

iterations in a naive node, Vi[0] in Eqn. (3.34) can be 0, if there is no prior or mea-

surement information available in the local neighborhood. In this situation, a node will

not perform step 4 and 5 in Algorithm 3 until it receives non-zero information from its

neighbors (through step 3) or gets a measurement itself (through step 1) yielding Vi[0]

to be non-zero. In the target tracking application, this situation occurs when a new

48



target is detected by one or more, but not all of the sensors.

In some situations prior information may be present at system startup. If the

priors are known to be equal, then using the standard ICF algorithm as in Algorithm

3, should give optimal results. However, if the priors across the nodes are known to

be uncorrelated at the initial time step (t = 1), the results for the uncorrelated case

(Sec.3.4.2.2) should be used instead in the first time step. To do this, only at t = 1,

instead of Eqns. (3.32) and (3.33) in Algorithm 3, the following initializations should

be used,

Vi[0] = J−i + HT
i R−1

i Hi (3.38)

vi[0] = J−i x̂−i + HT
i R−1

i zi. (3.39)

Thus, at t = 1, with k → ∞, the states would converge to the optimal centralized

estimate. Then for t > 1, using Algorithm 3 would guarantee convergence to the optimal

centralized estimate for the following time steps (i.e. for t > 1).

An example of the estimation results of different methods is shown in Fig. 3.2.

The example includes NC = 15 nodes and a single target. The target state contains

the two dimensional position and velocity. Each line represents the state estimate at

one node after each iteration. For clarity, in each experiment only the first component

of the state vector for the first 3 node’s is shown. State estimation is performed for 3

time steps. At each time step, 30 consensus iterations were performed. The priors were

initially uncorrelated and different at each node. For ICF, at t = 1, the uncorrelated

initializations Eqns. (3.38-3.39) were used. This example shows that the ICF converges

to the centralized estimate at each time step after several iterations. The reason that ICF

performs better than KCF is because KCF’s performance deteriorates in the presence of

naivety and the cross-covariances between the priors are implicitly considered in ICF.

49



 0 10 20 30 10 20 30 10 20 30
210

220

230

240

250

260

270

Consensus Iterations, k

St
at

e

3=t2=t1=t

True
CKF
KCF
GKCF
ICF

Figure 3.2: An example showing the convergence of different algorithms with multiple consensus

iterations at different time steps.

3.5.2 ICF, GKCF and KCF Comparison

The KCF algorithm in [17] was originally presented using a single consensus

step. This section presents the state estimation step of the ICF, GKCF and KCF

algorithm in an equivalent form for a single consensus step (i.e., K = 1) and compares

the differences between the algorithms theoretically. The derivation of the following

results are presented in the appendix.

ICF (Asymptotically optimal with equal initial priors) (see Proposition 1 in Appendix)

x̂+
i = x̂−i +

(
A
(

J−i
NC

)
+A(Ui)

)−1

A(ui)−A(Ui)x̂
−
i + ε

∑
i′∈Ni

J−i′

NC

(
x̂−i′ − x̂−i

) (3.40)

J+
i = NC

(
A
(

J−i
NC

)
+A(Ui)

)
(3.41)

50



GKCF (Suboptimal) (see Proposition 5 in Appendix)

x̂+
i = x̂−i +

(
A(J−i ) + Bi

)−1bi −Bix̂
−
i + ε

∑
i′∈Ni

J−i′
(
x̂−i′ − x̂−i

) (3.42)

J+
i = A(J−i ) + Bi (3.43)

KCF (Suboptimal)

x̂+
i = x̂−i +

(
J−i + Bi

)−1 (
bi −Bix̂

−
i

)
+

ε

1 + ||(J−i )−1||
(J−i )−1

∑
i′∈Ni

(
x̂−i′ − x̂−i

)
(3.44)

J+
i = J−i + Bi (3.45)

The following points of comparison are important:

1) In GKCF and KCF, the terms Bi and bi are the summation of the measurement

information and the weighted measurements in the local neighborhood. This fusion

mechanism, unlike average consensus, does not guarantee a proper global convergence.

However, in ICF, A(Ui) and A(ui) are used which guarantee convergence to the global

average values.

2) In GKCF and KCF, J−i is used instead of
J−i
NC

as in ICF. If the priors are uncorrelated,

using J−i is appropriate for a single time step. But, as the nodes converge, which is the

goal of consensus, the information becomes redundant at each node and thus dividing

the prior information matrices by NC is required to match the centralized solution.

3) In the information matrix update equation of the ICF, there is a multiplication factor

of NC . The total information in an estimate is the sum of the information matrices of

the priors and the measurements. However, as the average consensus scheme gives us

the average information in the priors and measurements, this should be multiplied by

NC to get the exact measure of the total information.

51



4) In the third term of Eqn. (3.44), KCF gives equal weight to all the neighbors’ priors.

In the presence naivety, this has detrimental effect as the information at different nodes

are different and need to be weighted by their information matrices.

5) In Eqn. (3.40), ICF uses

(
1

NC
A(J−i ) +A(Ui)

)−1

to normalize both the innovation

from the measurements and the innovation from the state priors. Whereas, in Eqn.

(3.44), the normalizing terms are not balanced because KCF uses
(
J−i + Bi

)−1
to nor-

malize the measurement innovation and (J−i )−1 to normalize the innovation from the

priors.

6) In Eqn. (3.44), the normalizing term 1 + ||(J−i )−1|| is a design choice [17] to maintain

stability of the algorithm. However, it does not guarantee optimality of KCF.

3.6 Experimental Evaluation

In this section, we evaluate the performance of the proposed ICF algorithm in a

simulated environment and compare it with other methods: the Centralized Kalman Fil-

ter (CKF), the Kalman Consensus Filter (KCF) [17] and the Generalized Kalman Con-

sensus Filter (GKCF) [11]. Comparison in a simulated environment allows an in-depth

analysis of the proposed algorithms as parameters are varied to measure performance

under different conditions.

We simulate a camera network containing NT targets randomly moving (with

a fixed model) within a 500× 500 space. Each target’s initial state vector is random. A

set of NC camera sensors monitor the space (we consider that each communication node

consists of one camera). In each experiment, the cameras are randomly distributed in

the space with random orientations resulting in overlapping field-of-views (FOVs).

52



Target State Parameters

Each target was initialized at the center of the simulation grid. The target’s

state vector was a 4D vector, with the 2D position and 2D velocity components. The

initial speed was set to 2 units per time step and with a random direction uniformly

chosen from 0 to 2π. The targets evolved for 40 time steps using the target dynamical

model of Eqn. (3.29). Only the targets which remained in the simulation grid for the

40 time steps were considered. The process covariance Q is set to diag(10, 10, 1, 1).

For the target state-estimation model, the dynamical model of Eqn. (3.29)

was also used with the same Φ and Q defined above. The initial prior state x̂−i (1) and

prior covariance P−i (1) is set equal at each node. A diagonal matrix is used for P−i (1)

with the main diagonal elements as {100, 100, 10, 10}. The initial prior state x̂−i (1) is

generated by adding zero-mean Gaussian noise of covariance P−i (1) to the ground truth

state.

Sensor Parameters

A total of NC = 15 nodes were generated at uniformly chosen random locations

on the simulation area. The measurement vector length for each sensor is mi = 2. The

FOV was chosen to be equilateral triangles. We define the sensing range, SR, for each

sensor to be the height of this equilateral triangle. SR was chosen to be 300 units

for all the sensors. A sensor can have an observation of a target only if the ground

truth position of the target is within the sensor’s FOV and in that case, a measurement

zi was generated using the linear observation model Eqn. (3.1) with noise covariance

53



Ri = 100I2. The observation matrix Hi and state transition matrix Φ is given below.

Hi =

1 0 0 0

0 1 0 0

, Φ =



1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1


.

Network Topology Parameters

A circulant graph was chosen as the communication topology for the sensor

network to highlight the different issues associated with the sparsity of the communi-

cation network. The circulant graph is ∆-regular where the degree of each node is the

same, say ∆. The adjacency matrix of a circulant graph is a circulant matrix. So, we

denote ∆ to be the degree of the communication graph G. In the experiments, ∆ = 2

was used, unless stated otherwise. Note that, in this scenario, the maximum degree

∆max = ∆ because the degree of all the nodes are same.

Consensus Parameters

At step 3 of Algorithm 3, each sensor communicates its measurement infor-

mation to its neighbors iteratively. The maximum number of consensus iterations K

was set to 5 unless stated otherwise. The consensus speed parameter was chosen to be

ε = 0.65/∆max = 0.65/∆.

Experimental Description

The parameters that were varied in the experiments are, the maximum number

of consensus iterations K, communication bandwidth µ, computation unit τ , degree of

the communication network ∆, sensing range SR and the number of cameras NC . For

54



0 100 200 300 400 500
0

100

200

300

400

500

Figure 3.3: In this image of an example simulation environment, the red arrows indicate the

locations and orientations of the cameras. The camera FOVs are shown in blue triangles. There

are 7 cameras in this example. The green dotted lines represent the network connectivity. Each

black arrows depict the actual trajectory of a target moving on the grid.

each experiment, only one parameter was varied while the others were kept constant. As

a measure of performance, we computed the estimation error, e, defined as the Euclidean

distance between the ground truth position and the estimated posterior position. An

example of the simulation framework is shown in Fig. 3.3.

For each experiment, 20 different simulation environments differing in camera

poses were randomly generated using the method discussed above. For each environ-

ment, 20 different randomly generated target tracks were used. Thus, for each experi-

ment, the estimation errors e, were averaged over 20 × 20 = 400 random scenarios, 40

time steps and over all sensors NC . The mean errors for different methods are shown in

the following graphs as the results of different experiments. In the graphs, each line (of

a unique color) corresponds to the mean error ē for one estimation method.

The KCF algorithm as originally proposed in [17] uses a single consensus step

per measurement update. To compare it with ICF, which supports multiple iterations,

55



2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35

40

Number of Consensus Iterations, K

M
ea

n
Er

ro
r,

ē

CKF
KCF
GKCF
ICF

Figure 3.4: ICF performance comparison varying K (equal priors)

we extend KCF for multiple iterations. For this, at each time step, the measurement

innovation component is set to zero for k > 1 and we consider only the new information

provided by the neighboring nodes’ estimates.

3.6.1 Experiment 1: Varying K

The objective of this experiment is to compare the performance of different

estimation algorithms for different K. Here, K was varied from 1 to 20 at increments

of 1. The other parameters were kept constant at their default values. The priors were

chosen to be equal.

The results of this experiment are shown in Fig. 3.4. The graph shows that for

K = 1, ICF performs much better than KCF and GKCF performs close to ICF. As, the

number of iterations K is increased, the mean error for ICF decreases and approaches

the performance of the centralized method at about K = 10. The main reason for this

difference in performance is that KCF and GKCF do not account for the redundancy

in the prior information across different nodes, but ICF does. In this simulation all the

initial priors were equal, thus the information in the priors were completely redundant.

KCF and GKCF by not taking into account redundancy in priors, gives more weight

to prior information and less weight to the measurement information than the optimal

56



100

150

200

250

300

2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35

Number of Consensus Iterations, K

M
ea

n
Er

ro
r,

ē
KCF
GKCF
ICF
CKF

Figure 3.5: Uncorrelated Priors

100

200

300

400

500

600

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

Number of Consensus Iterations, K

M
ea

n
Er

ro
r,

ē

KCF
GKCF
ICF
CKF

Figure 3.6: Correlated Priors (ρ = .5)

weights.

ICF is guaranteed to converge to the optimal centralized estimated if the initial

priors are equal. However, to show the robustness of the ICF approach, we conducted the

same experiment with unequal and uncorrelated priors (Fig. 3.5) and with unequal and

correlated (with ρ = 0.5 correlation-coefficient between the priors across nodes) (Fig.

3.6) using Algorithm 3. The results show that ICF achieves near-optimal performance

even when the optimality constraints are not met. This is because ICF is a consensus

based approach and irrespective of the initial condition, after several time steps or

consensus iterations, the priors converge. ICF was proved to be optimal with converged

priors. Thus, after a few time steps it achieves near-optimal performance as the system

approaches the optimality conditions.

3.6.2 Experiment 2: Varying µ and τ

The objective of this experiment is to compare the performance of different

algorithms at different amounts of communication bandwidth and computational re-

sources. We define the bandwidth, µ, of each method to be the total number of

scalars sent at each consensus iteration from a node to each neighbor. As, covari-

57



1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

100

120

140

Number of Consensus Iterations, K

Ba
nd

w
id

th
µ

KCF BW
GKCF BW
ICF BW

Figure 3.7: Bandwidth µ vs. number

of consensus iterations K for different ap-

proaches.

1 1.5 2 2.5 3 3.5 4 4.5 5
55

60

65

70

75

80

85

90

95

100

Number of Consensus Iterations, K

Co
m

pu
ta

tio
n 

un
its

 0
.1

τ

KCF CU
GKCF CU
ICF CU

Figure 3.8: Computation unit τ vs. num-

ber of consensus iterations K for different

approaches.

10 20 30 40 50 60 70 80 90

10

15

20

25

30

35

40

Bandwidth, µ

M
ea

n
Er

ro
r,

ē

CKF
KCF
GKCF
ICF

Figure 3.9: Performance comparison be-

tween different approaches as a function of

the bandwidth µ, showing that the ICF

performs better than other distributed ap-

proaches for each µ.

600 700 800 900 1000 1100

10

15

20

25

30

35

40

Computation units, τ

M
ea

n
Er

ro
r,

ē

CKF
KCF
GKCF
ICF

Figure 3.10: Performance comparison be-

tween different approaches as a function of

the computational unit τ , showing that the

ICF performs better than other distributed

approaches at each τ .

ance/information matrices are symmetric, only sending the upper/lower triangular por-

tion of the matrix suffices. Using standard convention, the approximate communication

data requirement µ and computation cycle requirement τ was computed for p = 4 and

mi = 2.

Figs. 3.7 and 3.8 show the bandwidth and computational requirements for

different algorithms for different numbers of consensus iterations K. For any given K,

58



ICF always requires half the bandwidth of GKCF. The KCF has lower communication

and computational requirements.

Figs. 3.9 and 3.10 show the performance achieved by each method for different

amounts of bandwidth and computational requirements. At any given bandwidth µ or

computation unit τ , the ICF performs better than the other distributed methods and

the performance approaches that of the CKF with increased resources.

3.6.3 Experiment 3: Varying ∆

The objective of this experiment is to compare the performance of different

approaches for different values of the degree ∆ (i.e., vary the sparsity of the network

from sparse connectivity to dense connectivity). For NC = 15, the maximum possible

degree can be ∆ = 14 at full mesh connectivity. In this experiment, ∆ was varied from

2 to 14 at increments of 2.

The results are shown in Fig 3.11, where the total number of consensus iter-

ations K was set to 5. It can be seen that the ICF performs better than the other

distributed algorithms at all ∆ and almost approaches the centralized performance at

∆ = 4. For full connectivity, i.e. ∆ = 14, where G is a complete graph, all the distributed

methods achieve centralized performance.

3.6.4 Experiment 4: Varying SR

The objective of this experiment is to compare the performance of different

approaches as a function of the sensor range SR (i.e., varying the area of coverage of

each sensor.)

Fig. 3.12 shows the performance of each approach as SR is varied and the

59



2 4 6 8 10 12 14
8

10

12

14

16

18

20

22

24

26

28

Degree of Communication Graph, ∆

M
ea

n
Er

ro
r,

ē

CKF
KCF
GKCF
ICF

Figure 3.11: Performance comparison of

different approaches as a function of the de-

gree of communication graph, ∆. Increase

in network connectivity increases the per-

formance of all methods.

150 200 250 300 350 400 450 500 550 600
0

10

20

30

40

50

60

Sensor Range, SR

M
ea

n
Er

ro
r,

ē

CKF
KCF
GKCF
ICF

Figure 3.12: Performance comparison

of different approaches by varying sensor

range, SR. As the sensor range increases,

the network gets more measurement infor-

mation and has fewer naive nodes increas-

ing overall performance of all methods (in-

cluding centralized).

total number of iterations K was set to 5. It can be seen that ICF performed better

than the other distributed algorithms at each sensor range.

3.6.5 Experiment 5: Varying NC

The objective of this experiment is to compare the performance of different

approaches as a function of the total number of sensors, NC , as it was varied from 5 to

31 at increments of 2. Values less than 5 were not used because at such low number of

sensors, even the centralized algorithm cannot perform well due to the high number of

time instants at which the number of measurements is insufficient for the state vector

to be observable, due to the low percentage coverage of the environment.

Fig. 3.13 shows results for variable NC and fixed K = 20. As the number

of sensors is increased, the observability of the targets by the network increases, but

the number of naive nodes also increases. Due to the amount of information about

60



5 10 15 20 25 30
0

10

20

30

40

50

Number of Sensors, N C

M
ea

n
Er

ro
r,

ē
CKF
KCF
GKCF
ICF

Figure 3.13: Performance comparison of

different approaches by varying total num-

ber of sensors, NC .

2 4 6 8 10 12 14 16 18 20

10

15

20

25

30

35

Number of Consensus Iterations, K

M
ea

n
Er

ro
r,

ē

CKF
KCF
GKCF
ICF

Figure 3.14: Performance comparison for

imbalanced communication graph.

the targets increasing, the performance of all the approaches (including centralized)

improves. For a small NC , all the distributed methods performed close to the centralized

method, because the number of naive nodes is small and the network distance from a

naive node to an informed node is small. As the number of nodes increases, the number

of consensus iterations required to reach consensus also increases. Thus we can see that

the performance of ICF deviates from the centralized performance for high number of

sensors. For all NC , ICF outperformed the alternative distributed methods.

3.6.6 Experiment 6: Arbitrary Communication Graph

In the previous experiments, for the ease of varying different parameters, we

assumed the communication graph to be balanced. To show that ICF is applicable for

any connected graph, we conduct experiments on random connected graphs for NC = 15.

Edges were added between five random pairs of nodes on the balanced graph which was

used on the previous examples. The result of this experiment is shown in Fig. 3.14. It

depicts the fact that as K →∞, for any random connected graph, ICF converges to the

centralized solution.

61



5 10 15 20 25 30
2.5

3

3.5

4

4.5

5

5.5

6

Number of Consensus Iterations, K

M
ea

n
Er

ro
r,

ē
CKF
KCF
GKCF
ICF

Figure 3.15: Performance comparison under

unlimited observability.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

20

40

60

80

100

α

M
ea

n
Er

ro
r,

ē

CKF
KCF
GKCF
ICF

Figure 3.16: Stability analysis.

3.6.7 Experiment 7: Full Observability

Limited local observability (i.e., naive nodes) was one of the motivations for

the derivation of the ICF algorithm. To show that ICF is generally applicable even in

scenarios with without locally unobservable states, in this experiment, we assume that

each node can observe all the targets at all times. From the results in Fig. 3.15 it can

be seen that still ICF outperforms the other methods for most cases and achieves the

optimal performance as K →∞.

3.6.8 Experiment 8: Stability Analysis

In this experiment, we experimentally verify the stability of the ICF approach.

In Sec. 2.3, we have mentioned that the average consensus algorithm is stable if the

consensus rate parameter ε is chosen between 0 and 1
∆max

. The stability of the ICF

algorithm is directly related to the stability of the average consensus algorithm. We set

ε = α
∆max

and vary α to perform the stability analysis. From the results in Fig. 3.16,

it can be seen that ICF is stable for 0 < α < 1 (i.e., 0 < ε < 1
∆max

), which is the same

stability conditions for average consensus algorithm.

62



−30 −20 −10 0 10 20 30
4

6

8

10

12

14

16

18

20

22

Deviation from actual N C , ∆ N C

M
ea

n
Er

ro
r,

ē
CKF
KCF
GKCF
ICF

Figure 3.17: Robustness to inaccurate

knowledge of NC .

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

Number of Consensus Iterations, K

M
ea

n
Er

ro
r,

ē

CKF
KCF
GKCF
ICF

Figure 3.18: Robustness to model assump-

tion error.

3.6.9 Experiment 9: Robustness to inaccurate knowledge of NC

Unlike CKF, KCF and GKCF; ICF requires the knowledge of the total number

of nodes NC . Total number of nodes NC , can be computed in a distributed framework

[8]. In case of node failure or inclusion of new nodes to the system, each agent might

have a wrong estimate of NC , say NC + ∆NC . In this experiment, to test the sensitivity

of ICF to the error in the value of NC , ∆NC is varied from −NC + 1 to NC . The actual

value of NC for this experiment is 31. Total number of iterations, K was set to 100.

The results are shown in Fig. 3.17. It shows that ICF is highly tolerant to discrepancies

between the actual NC and the estimated NC and performs better than other methods

for most cases.

3.6.10 Experiment 10: Robustness to non-linear state propagation

Finally, it is natural to ask whether the performance demonstrated in the

previous experiments was highly dependent on the fact that the estimator incorporated

the correct model.

In this final experiment, the ground truth tracks were generated for t = 1 to

63



40 using the following non-linear model of Eqn. (3.46).

x(t) = 200e−λ(t−1)



cos(ωt)

sin(ωt)

−λ cos(ωt)− ω cos(ωt)

−λ cos(ωt) + ω cos(ωt)


+



250

250

0

0


(3.46)

A total of 20 tracks were generated by varying ω = π
80 to 4π

80 with increments of π
80

and λ = 0.02 to 0.1 with increments of 0.02. The rest of the simulation settings were

kept unchanged (similar to that of Experiment 1). Thus, in the estimation step, the

linear dynamical model of Eqn. (3.29) was used. Fig. 3.18 shows the performance of

different algorithms for this simulation. Comparing with Fig. 3.4 it can be seen that the

performance of all the algorithms deteriorated (including CKF) as one would expect.

However, the relative performance of the different algorithms are similar. This shows

that the ICF and the performance comparison results are quite robust, even when the

assumed dynamical model does not match the true state propagation.

3.7 Conclusion

In this chapter we have presented a novel distributed state estimation frame-

work called the Information-weighted Consensus Filter (ICF) which is generally ap-

plicable to almost any connected sensor network, converges to the optimal centralized

estimate under reasonable conditions, does not require target hand-off protocols, and

requires computation and communication resource similar to or less than alternative al-

gorithms. The development of this algorithm was motivated by applications in camera

networks wherein the observability properties of the state by the nodes is distinct across

the nodes. We compared ICF with the state-of-the-art distributed estimation methods

64



such as KCF and GKCF, both theoretically and through simulations. Our simulation

results show that ICF outperforms these methods. The results also indicate that ICF is

robust to situations where optimality conditions are not met. In the next chapters we

will present novel algorithms incorporating data association schemes to ICF to handle

multiple targets.

65



Chapter 4

Multi-Target Information

Consensus

4.1 Introduction

In this chapter, our goal is to design a distributed multi-target tracking scheme

which is suited for sensors with limited field-of-view (FOV), like cameras. A distributed

multi-target tracking problem can be divided into three sub-problems, namely, dis-

tributed information fusion, data association (measurement to track association) and

dynamic state estimation.

The Kalman Consensus Filter (KCF) [17] is a popular distributed dynamic

state estimation framework based on the average consensus algorithm. KCF works well

in situations where each node gets a measurement of the target. However, we have

discussed in the previous chapters that due the issue with naivety, the performance of

KCF deteriorates when there are sensor with limited FOVs. In the previous chapter, the

Information-weighted Consensus Filter (ICF) was proposed which addresses this issue

with naivety and is also guaranteed to converge to the optimal centralized Kalman filter

66



estimate.

The above mentioned methods assume that there is a single target, or for

multiple targets, the measurement-to-track association is provided. For a multi-target

tracking problem, the data association and the tracking steps are highly inter-dependent.

The performance of tracking will affect the performance of data association and vice-

versa. Thus, an integrated distributed tracking and data association solution is required

where the uncertainty from the tracker can be incorporated in the data association

process and vice-versa. Among many single-sensor multi-target data association frame-

works, the Multiple Hypothesis Tracking (MHT) [23] and the Joint Probabilistic Data

Association Filter JPDAF [2] are two popular schemes. MHT usually achieves higher

accuracy at the cost of high computational load. On the other hand, JPDAF achieves

reasonable results at much lower computation cost. As distributed solutions are usually

applied to low-power wireless sensor networks where the computational and communi-

cation power is limited, the JPDAF scheme will be utilized in the proposed distributed

multi-target tracking framework.

The main contribution of this chapter is the tight integration of data asso-

ciation with state-of-the-art distributed single target tracking methods, taking special

care of the issue of naivety, and demonstration of its performance in the case of a camera

network. In Sec. 4.2 the problem formulation is provided, along with a review of differ-

ent consensus-based estimation methods. In Sec. 4.3, the JPDAF approach is reviewed

and extended to a multi-sensor framework. In Sec. 4.5, the Multi Target Information

Consensus (MTIC) tracker is proposed. Finally, in Sec. 4.6, the proposed method is

compared against others experimentally.

67



4.1.1 Related Work

The purely decentralized nature of the fusion algorithm differentiates it from

the majority of multi-camera tracking approaches in the computer vision literature. For

example, in [6], a centralized approach for tracking in a multi-camera setup was proposed

where the cameras were distributed spatially over a large area. In [4], an efficient target

hand-off scheme was proposed but no multi-camera information fusion was involved.

However, in this article, we deal with the distributed multi-target tracking problem

where there is no centralized server, the processing is distributed over all the camera

nodes and no target hand-off strategy is required. Various methods for distributed multi-

target tracking have been proposed in the sensor-networks literature. In [5], a solution

to the distributed data association problem was proposed by means of the message

passing algorithm based on graphical models in which iterative, parallel exchange of

information among the nodes viewing the same target was required. However, in our

proposed framework, no special communication pattern is assumed. In [21, 26, 28], the

distributed multi-target tracking schemes did not account for naivety or the presence of

cross-correlation between the estimates at different nodes. The method proposed herein

is based on the properties of the ICF [13] that was proposed in the previous chapter,

which deals with both these issues.

4.2 Problem Formulation

Consider a sensor network with NC sensors. There are no specific assumptions

on the overlap between the FOVs of the sensors. The communication in the network

can be represented using an undirected connected graph G = (C, E). The set C =

{C1, C2, . . . , CNC
} contains the vertices of the graph and represents the sensor nodes.

68



The set E contains the edges of the graph which represents the available communication

channels between different nodes. The set of nodes having direct communication channel

with node Ci (sharing an edge with Ci) is represented by Ni. There are NT targets

({T 1, T 2, . . . TNT }) in the area viewed by the sensors. It is assumed that NC and NT is

known to each sensor.

The state of the jth target is represented by the vector xj ∈ Rp. For example,

for a tracking application in a camera network, xj might be a vector containing ground

plane position and velocity components. The state dynamics of target T j are modeled

as

xj(t+ 1) = Φxj(t) + γj(t). (4.1)

Here Φ ∈ Rp×p is the state transition matrix and the process noise γj(t) is modeled as

N (0,Qj).

At time t, each sensor Ci, depending on its FOV and the location of the targets,

gets li(t) measurements denoted as {zni }
li(t)
n=1. The sensors do not know a priori, which

measurement was generated from which target. Under the hypothesis that the obser-

vation zni is generated from T j , it is assumed that zni was generated by the following

observation model

zni = Hj
ix
j
i + νji . (4.2)

Here, Hj
i ∈ Rm×p is the observation matrix for node Ci for T j . The noise νji ∈ Rm is

modeled as a zero mean Gaussian random variable with covariance Rj
i ∈ Rm×m.

Each node also maintains a prior/predicted state estimate x̂j−i (t) (and its co-

variance Pj−
i (t)) for each target. The inverse of the state covariance matrix (informa-

tion/precision matrix) will be denoted as Jji = (Pj
i )
−1. We assume that the initial prior

state estimate and information matrix is available to each node for each target upon its

69



detection. Our goal is to track each target at each node, i.e., find the state estimate for

each target at each node by using the prior and measurement information available in

the entire network in a distributed fashion. A critical step in this process is association

of measurements with targets, which is the topic of this chapter.

4.3 Joint Probabilistic Data Association Filter: Review

The KCF, GKCF and ICF algorithms discussed in the previous chapters as-

sume that the data association (which measurement belongs to which target) is known.

For a realistic multi-target state estimation problem, solving data association is itself

a challenging problem even in the centralized case. Here we briefly review the Joint

Probabilistic Data Association Filter (JPDAF) [2] algorithm which is the starting point

of the proposed multi-sensor multi-target distributed tracking algorithm.

The JPDAF is a single sensor algorithm, thus the sensor index i is unnecessary

and will be dropped. A double superscript is required for the hypothesis that measure-

ment zn is associated with target T j . At time t, the measurement innovation z̃jn and

the innovation covariance Sj of measurement zn for target T j is computed as,

z̃jn = zn −Hjx̂j− (4.3)

Sj = HjPj−HjT + Rj (4.4)

The probability that T j is the correct target to associate with zn is βjn and the prob-

ability that none of the measurements belong to T j is βj0. See [2] for details about

computing these probabilities.

The Kalman gain Kj , mean measurement yj and mean measurement innova-

70



tion ỹj for target T j are defined as

Kj = Pj−HjT (Sj)−1, (4.5)

yj =
l∑

n=1

βjnzn, (4.6)

ỹj =

l∑
n=1

βjnz̃jn = yj − (1− βj0)Hjx̂j−. (4.7)

The state and its covariance estimate for JPDAF is given as

x̂j+(t) = x̂j−(t) + Kjỹj (4.8)

Pj+(t) = Pj−(t)− (1− βj0)KjSj
(
Kj
)T

+ KjP̃j
(
Kj
)T

(4.9)

where,

P̃j =

(
l∑

n=1

βjnz̃jn
(
z̃jn
)T)− ỹj

(
ỹj
)T
. (4.10)

4.4 Data Association: Information Form

In the following, we first express the JPDAF algorithm in the information form,

from which we will extend it to the multiple sensor case. This will then be used in the

next section to derive the distributed multi-target tracking algorithm.

The JPDAF estimation Eqns. (4.8-4.9) can be written in the information form

as the following (see Appendix B):

x̂j+ =
(
Jj− + Uj

)−1 (
Jj−x̂j− + uj + βj0Ujx̂j−

)
(4.11)

Jj+ = Jj− + Gj (4.12)

where,

Gj = Jj−Kj
((

Cj
)−1 −KjTJj−Kj

)−1
KjTJj− (4.13)

Cj = (1− βj0)Sj − P̃j (4.14)

uj = HjTRj−1
yj and Uj = HjTRj−1

Hj . (4.15)

71



In Eqn. (4.11), Jj−x̂j− is the weighted prior information and uj + βj0Ujx̂j− is the

weighted measurement information (taking data association uncertainty βj0 into ac-

count). The sum of these two terms represents the total information available to us if

we have a single sensor. To incorporate measurement information from an additional

sensor, the weighted measurement information from that sensor has to be added to this

summation. This is a property of estimators in the information form for combining

measurements from multiple sensors, when noise in those measurements is uncorrelated

with each other, which we assume in this work. In a similar fashion, the information

matrices (Uj
i and Gj

i ) from additional sensors should also be added to the appropriate

terms. This gives us the multi-sensor centralized estimate in the information form as

the following:

x̂j+ =

(
Jj− +

NC∑
i=1

Uj
i

)−1(
Jj−x̂j− +

NC∑
i=1

(
uji + βj0i Uj

i x̂
j−
))

, (4.16)

Jj+ = Jj− +

NC∑
i=1

Gj
i . (4.17)

4.5 Multi-Target Information Consensus

Based on the data association results derived in the previous section and the

ICF, we will now derive a distributed multi-target tracking algorithm. We shall call

this as the Multi Target Information Consensus (MTIC) tracker. As we have multiple

sensors, we will bring back the sensor index in the subscripts.

Now, in a distributed system, each node will have its own prior information

{x̂j−i ,Jj−i }. However, consensus guarantees that the information at all nodes converge

to the same value. This is an important point that was utilized in the ICF framework

and similarly, it will be utilized here. Assuming that consensus was reached at the

72



Algorithm 4 MTIC for target T j at node Ci at time step t

Input: x̂j−
i (t), Jj−

i (t), Hj
i , Rj

i .

1) Get measurements: {zn
i }

li(t)
n=1

2) Compute Sj
i , yj

i , βj0
i , Kj

i and Cj
i

3) Compute information vector and matrices:

uj
i ← HjT

i Rj
i

−1
yj
i (4.18)

Uj
i ← HjT

i Rj
i

−1
Hj

i (4.19)

Gj
i ← Jj−

i Kj
i

(
Cj

i

−1 −Kj
i

T
Jj−
i Kj

i

)−1

Kj
i

T
Jj−
i (4.20)

4) Initialize consensus data

vj
i [0] ← uj

i +

(
Jj−
i

NC
+ βj0

i Uj
i

)
x̂j−
i (4.21)

Vj
i [0] ← Jj−

i

NC
+ Uj

i (4.22)

Wj
i [0] ← Jj−

i

NC
+ Gj

i (4.23)

5) Perform average consensus (Sec. 2.3) on vj
i [0], Vj

i [0] and Wj
i [0] independently for K iterations.

6) Estimate:

x̂j+
i ←

(
Vj

i [K]
)−1

vj
i [K] (4.24)

Jj+
i ← NCWj

i [K] (4.25)

7) Predict:

x̂j−
i (t+ 1) ← Φx̂j+

i (t) (4.26)

Jj−
i (t+ 1) ←

(
Φ
(
Jj+
i (t)

)−1

ΦT + Q

)−1

(4.27)

Output: x̂j+
i (t), Jj+

i (t), x̂j−
i (t+ 1), Jj−

i (t+ 1).

73



previous time step, the prior information at each node will be equal, i.e., Jj−i = Jj−c and

x̂j−i = x̂j−c ∀i, j. From this, we can rewrite Eqns. (4.16) and (4.17) as follows:

x̂j+i =

(
NC∑
i=1

(
Jj−i
NC

+ Uj
i

))−1 NC∑
i=1

(
uji +

(
Jj−i
NC

+ βj0i Uj
i

)
x̂j−i

)

=

(
NC∑
i=1

Vj
i

)−1 NC∑
i=1

vji =

(∑NC
i=1 Vj

i

NC

)−1 ∑NC
i=1 vji
NC

(4.28)

Jj+i =

NC∑
i=1

(
Jj−

NC
+ Gj

i

)
=

NC∑
i=1

Wj
i = NC

∑NC
i=1 Wj

i

NC
(4.29)

where,

Vj
i =

Jj−i
NC

+ Uj
i , Wj

i =
Jj−i
NC

+ Gj
i

and vji = uji +

(
Jj−i
NC

+ βj0i Uj
i

)
x̂j−i (4.30)

The three averaging terms in Eqns. (4.28) and (4.29) can be computed in a distributed

manner using the average consensus algorithm [18]. The algorithm is summarized in

Algorithm 4.

Note that if a sensor does not get any measurement for T j , i.e., βj0i = 1, uji ,

Uj
i and Gj

i are set to zero vectors and matrices (due to no measurement information

content).

4.6 Experiments

In this section, first we evaluate the performance of the proposed MTIC al-

gorithm in a simulated environment and compare it with other methods: JPDA-KCF,

ICF with ground truth data association (ICF-GT) and centralized Kalman Filter with

ground truth data association (CKF-GT). ICF-GT converges to CKF-GT in several

iterations, thus ICF-GT will provide a performance bound for the other iterative ap-

proaches. Note that ICF-GT and CKF-GT requires the knowledge of the ground truth

74



data association, whereas MTIC and JPDA-KCF do not.

We simulate a camera network with NC = 15 cameras monitoring an area

containing NT = 3 targets roaming randomly in a 500 × 500 area. Each camera has a

rectangular FOV of 200×200 and they are randomly placed in such a way that together

they cover the entire area. A circulant network topology with a degree of 2 (at each

node) was chosen for the network connectivity. Each target was randomly initialized at

a different location with random velocity. The target’s state vector was a 4D vector,

with the 2D position and 2D velocity components. The targets evolved for 40 time steps

using the target dynamical model of Eqn. (4.1). The state transition matrix (used both

in track generation and estimation) Φ and process covariance Q were chosen as

Φ =



1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1


, Q =



10 0 0 0

0 10 0 0

0 0 1 0

0 0 0 1


.

The initial prior covariance Pj−
i (1) = diag(100, 100, 10, 10) was used at each node for

each target. The initial prior state x̂j−i (1) was generated by adding zero-mean Gaussian

noise of covariance P−i (1) to initial the ground truth state. The observations were

generated using Eqn. (4.2). The observation matrix Hj
i was set as

Hj
i =

1 0 0 0

0 1 0 0

.
If the ground truth state was within the FOV of a sensor, a measurement was generated

from the ground truth track using the measurement model Eqn. (4.2) with Ri = 100I2.

The consensus rate parameter ε was set to 0.65/∆max where ∆max = 2, as each node was

connected to two other nodes. Total number of consensus iterations per measurement

step, K, was set to 20. The parameters for computing the association probabilities,

75



βjni ’s, were set as follows (see [2] for details). False measurements (clutter) were gen-

erated at each node at each measurement step using a Poisson process with λ = 1
32 .

Here, λ is the average number of false measurements per sensor per measurement step.

Gate probability PG was set to 0.99. The probability of detecting a target in each cam-

era, PD was computed by integrating the probability density function of the predicted

measurement, (i.e., N (Hj
i x̂
j−
i ,Sji )) over the area visible to the camera.

To measure the performance of different approaches, one of the parameters

was varied while keeping the others to their aforementioned values. As a measure of

performance, we computed the estimation error, e, defined as the Euclidean distance

between the ground truth position and the estimated posterior position. The simulation

results were averaged over multiple simulation runs with 100 randomly generated sets

of tracks. The mean (µe) of the errors for different methods are shown in the following

graphs as the results of different experiments.

First, the amount of clutter was varied and the results are shown in Fig. 4.1.

The average amount of clutter per sensor per measurement step, λ, was varied from 1
256

to 8. From the figure it can be seen that both MTIC and JPDA-KCF is very robust

even to a very high amount of clutter. The amount of clutter was kept at λ = 1
32 for

the other experiments.

Fig. 4.2a shows the performance of different approaches where the proximity of

the tracks were varied. The proximity was defined in terms of average number of overlaps

across all pairs of tracks present in a simulation run. Two tracks were assumed to be

overlapping if the Euclidean distance between their ground truth states was below 50

units at the same time step. From Fig. 4.2a, it can be seen that as the overlap increases,

the performance of different approaches deteriorated. However, MTIC performs better

than JPDA-KCF. It can be seen that for a high overlap, the error did not increase.

76



This is mainly due to the reason that most of the tracks with high overlap were close to

each other after they separated. Thus, although the data association failed, the tracking

error did not grow much.

1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2 1 2 4 8
0

10

20

30

40

50

60

70

80

90

100

λ

M
ea

n 
Er

ro
r, 

µ e

MTIC
JPDA−KCF
ICF−GT

Figure 4.1: Performance comparison by varying amount of clutter.

To show the convergence of the different methods, the total number of iterations

per measurement step, K was varied. It can be seen from Fig. 4.2b that with an

increased number of iteration, ICF-GT approached the centralized method CKF-GT. It

can also be seen that MTIC outperforms JPDA-KCF for any given K.

Next, the total number of sensors NC and total number of targets NT were

varied and the results are shown in Figs. 4.2c and 4.2d. With more sensors, the total

number of available measurements increases which should increase estimation perfor-

mance. However, with an increase in the number of sensors, the total number of false

measurements also increases which can adversely affect the performance. Due to these

two contradictory issues, the performance remained almost constant with different num-

ber of sensors. With the increase in the number of targets, the problem of data associ-

ation became more challenging which had an adverse effect in the performance of the

77



different algorithms as can be seen in Fig. 4.2d.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Average overlap

M
ea

n 
Er

ro
r, 

µ e

MTIC
JPDA−KCF
ICF−GT

(a) Varying proximity of tracks

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

K

M
ea

n 
Er

ro
r, 

µ e

MTIC
JPDAF
JPDA−KCF
ICF−GT
CKF−GT

(b) Varying K

10 12 14 16 18 20 22 24 26 28 30
0

10

20

30

40

50

60

70

80

90

N
C

M
ea

n 
Er

ro
r, 

µ e

MTIC
JPDA−KCF
ICF−GT

(c) Varying NC

2 4 6 8 10 12 14
0

20

40

60

80

100

120

N
T

M
ea

n 
Er

ro
r, 

µ e
MTIC
JPDA−KCF
ICF−GT

(d) Varying NT

Figure 4.2: MTIC Performance comparison by varying different parameters.

4.7 Conclusion

In this chapter, we have proposed the Multi Target Information Consensus

(MTIC) algorithm, which is a generalized consensus-based distributed multi-target track-

ing scheme applicable to a wide-variety of sensor networks. MTIC handles the issues

with naivety which makes it applicable to sensor networks where the sensors may have

limited FOV (which is the case for a camera network). The estimation errors in tracking

and data association, as well as the effect of naivety, are integrated into a single efficient

algorithm. This makes MTIC very robust to false measurements/clutter. Experimental

78



analysis shows the strength of the proposed method over existing ones. In the next

chapter we will extend this algorithm to handle non-linearity in the observation model.

79



Chapter 5

Information-weighted Consensus

with non-linear models

5.1 Introduction

In the previous chapters, we assumed a linear relationship between the observa-

tion and the target state. In many application scenarios, the observation is a non-linear

function of the target state. This is especially true for cameras because in the perspec-

tive camera observation model, the position of a point in the camera’s pixel coordinate

system is non-linearly related to the position of the point in the world coordinate system.

Thus, for the algorithms derived in the previous sections to be applicable in

such scenarios, we need to re-derive them to support non-linearity in the observation

model. In this chapter, we propose non-linear extensions to the ICF and the MTIC

algorithms proposed in the previous chapters. We call these algorithms, the Extended

ICF (EICF) and the Extended MTIC (EMTIC). We will also show comparisons of these

in a simulated framework along with real-life experiments.

80



5.2 Camera Observation Model (Non-linear )

Let us denote the orientation and position of the camera Ci w.r.t. the world

coordinate system as Riw and piw . The number of pixels per unit length is k and fi is

the focal length of Ci. The center of the image plane in the pixel coordinate system

is {ox, oy}. Say, in world and camera coordinate the system, the position of a point

j is pjw = [xw, yw, zw]T and pji = [xi, yi, zi]
T respectively. Note that for ground plane

tracking, zw = 0. The target state can be xj = [xw, yw, uw, vw]T i.e., it may consist of

the position and velocity components of a target in the ground plane. Now, pjw and xj

are related as,

pjw =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

xj (5.1)

From pjw , we can compute pji as,

pji = Riw ( pjw − piw ) (5.2)

Finally, from From pji the position of that point in Ci’s pixel coordinate system zji can

be written using the camera perspective projection model as,

zji =

kfi
xi
zi

+ ox

kfi
yi
zi

+ oy

 (5.3)

Using the above three equations, we can see that zji is a non-linear function of xj which

can be represented as zji = hi(x
j). Using first-order Taylor series approximation, the

linearized observation matrix can be written as,

Hj
i = ∇xjhi(x

j)|
xj=x̂j−

i
(5.4)

Next, we will extend the ICF and MTIC algorithm for non-linear observation models

where both Hj
i and hi() will be utilized.

81



5.3 Extended Information-weighted Consensus Filter

In this section, we will derive the Extended Information Consensus Filter

(EICF) which we will prove to converge to the centralized Extended Kalman Filter

(EKF) results. Considering the data association is given, the measurement in each

sensor can be expressed using the non-linear relation as,

zi = hi(x) + νi. (5.5)

The collection of all measurements from all sensors can be expressed as,

Z = hc(x) + ν. (5.6)

Here, Z = [zT1 , z
T
2 , . . . z

T
N ]T ∈ Rm is the concatenation of all measurements in the net-

work where m =
∑N

i=1mi. The central non-linear observation function hc() is a stack of

all the functions from individual sensors such that hc(x) = {h1(x)T ,h2(x)T , . . .hNC
(x)T }T .

We will represent the stack of linearized observation matrices as H = [HT
1 ,H

T
2 , . . .H

T
N ]T ∈

Rm×p. For the measurement noise vector, ν = [νT1 ,ν
T
2 , . . .ν

T
N ]T ∈ Rm, we denote

its covariance as R ∈ Rm×m. We assume the measurement noise to be uncorrelated

across nodes. Thus, the measurement covariance matrix is R = diag(R1,R2, . . .RN ).

Let us denote Uc = HTR−1H and uc = HTR−1Z. The subscript c stands for

“centralized”. Let us also denote the centralized predicted measurement, hc(x̂
−
c ) =

{h1(x̂−c )T ,h2(x̂−c )T , . . .hNC
(x̂−c )T }T .

The state estimation equations from the centralized Extended Kalman Filter

(EKF) algorithm can be written as (see Appendix A),

x̂+
c =

(
J−c + Uc

)−1 (
J−c x̂−c + uc + HTR−1(Hx̂−c − hc(x̂

−
c ))
)

(5.7)

J+
c =

(
J−c + Uc

)
(5.8)

82



Given that all the nodes have reached consensus on the previous time step,

we have, x̂−i = x̂−c and J−i = J−c for all i. This implies, J−c =

NC∑
i=1

J−i
NC

and J−c x̂−c =

NC∑
i=1

J−i
NC

x̂−i . Also, as Rc is block diagonal, we have, Uc =

NC∑
i=1

Ui, uc =

NC∑
i=1

ui and

HTR−1(Hx̂−c − hc(x̂
−
c )) =

NC∑
i=1

HT
i R−1

i (Hix̂
−
i − hi(x̂

−
i )).

Thus, from Eqns. (5.7) and (5.8) we get,

x̂+
c =

(
NC∑
i=1

(
J−i
NC

+ Ui

))−1 NC∑
i=1

(
J−i x̂−i + ui + HT

i R−1
i

(
Hix̂i

− − hi(x̂
−
i )
))

(5.9)

J+
c =

NC∑
i=1

(
J−i
NC

+ Ui

)
(5.10)

We will call the above equations the Extended Joint Probabilistic Data Asso-

ciation Filter (EJPDAF). This can be computed in a distributed manner by initializing

vi[0] and Vi[0] as the following at each node and running average consensus algorithm

on them.

vi[0] =
J−i
NC

x̂−i + ui + HT
i R−1

i (Hix̂
−
i − hi(x̂

−
i )) (5.11)

Vi[0] =
J−i
NC

+ Ui (5.12)

Note that for linear observation model, hi(x̂
−
i ) = Hix̂

−
i . Using this relation,

the EICF equations reduce to the original ICF (derived for linear model) equations as

the following,

vi[0] =
J−i
NC

x̂−i + ui (5.13)

Vi[0] =
J−i
NC

+ Ui (5.14)

83



Algorithm 5 EICF at node Ci at time step t

Input: prior state estimate x̂−i (t), prior information matrix J−i (t), consensus speed factor ε and total

number of consensus iterations K.

1) Linearize hi at x̂−i (t) to compute Hi

2) Get measurement zi with covariance Ri

3) Compute consensus proposals,

Vi[0] ← 1

NC
J−i (t) + Ui (5.15)

vi[0] ← 1

NC
J−i (t)x̂−i (t) + ui + HT

i R−1
i (Hix̂

−
i − hi(x̂

−
i )) (5.16)

4) Perform average consensus (Sec. 2.3) on vi[0], Vi[0] independently for K iterations.

5) Compute a posteriori state estimate and information matrix for time t

x̂+
i (t) ← (Vi[K])−1vi[K] (5.17)

J+
i (t) ← NCVi[K] (5.18)

6) Predict for next time step (t+ 1)

J−i (t+ 1) ←
(
Φ(J+

i (t))−1ΦT + Q
)−1

(5.19)

x̂−i (t+ 1) ← Φx̂+
i (t) (5.20)

Output: EICF estimate x̂+
i (t), J+

i (t), x̂−i (t+ 1), J−i (t+ 1).

The EICF algorithm is summarized in Algorithm 5. To highlight the simi-

lar type of difference between ICF and EICF; the centralized Kalman filter and EKF

estimate (see appendix) in information form is given in below,

Kalman filter:

x̂+
c =

(
J−c + Uc

)−1 (
J−c x̂−c + uc

)
(5.21)

84



EKF:

x̂+
c =

(
J−c + Uc

)−1 (
J−c x̂−c + uc + HTR−1

(
Hx̂−c − hc

(
x̂−c
)))

(5.22)

Note that the EKF has the additional term HTR−1 (Hx̂−c − hc (x̂−c )) which is due to

the non-linearity in the observation model. The same difference is observed in ICF Eqn.

(3.33) and EICF Eqn. (5.11).

5.4 Extended Multi-target Information Consensus

In this section, we will extend the MTIC algorithm to handle non-linear sensing

models. For the linear case, the measurement innovation in the JPDAF algorithm is as

the following,

ỹj = yj − (1− βj0)Hjx̂j− (5.23)

However, for the non-linear sensing model, h(), the measurement innovation term be-

comes,

ỹj = yj − (1− βj0)h(x̂j−) (5.24)

Using this, the state estimation equations can be written as the following (see

Appendix C)

x̂j+c =

(
Jj−c +

NC∑
i=1

Uj
i

)−1

(
Jj−i x̂j−i +

NC∑
i=1

(
uji + Hj

i

T
Rj
i

−1
(Hj

i x̂
j−
i − (1− βj0i )hi(x̂

j−
i ))

))
(5.25)

Jj+c = Jj−i +

NC∑
i=1

Gj
i (5.26)

85



Given that all the nodes have reached consensus on the previous time step, we

have, x̂j−i = x̂j−c and Jj−i = Jj−c for all i. This implies, Jj−c =

NC∑
i=1

Jj−i
NC

and Jj−c x̂j−c =

NC∑
i=1

Jj−i
NC

x̂j−i . Thus we can write,

x̂j+c =

(
NC∑
i=1

(
Jj−i
NC

+ Uj
i

))−1

NC∑
i=1

(
Jj−i
NC

x̂j−i + uji + Hj
i

T
Rj
i

−1
(Hj

i x̂
j−
i − (1− βj0i )hi(x̂

j−
i ))

)
(5.27)

Jj+c =

NC∑
i=1

(
Jj−i
NC

+ Gj
i

)
(5.28)

Thus, for EMTIC, the consensus variables are initialized as,

vji [0] =
Jj−i
NC

x̂j−i + uji + Hj
i

T
Rj
i

−1
(
Hj
i x̂
j−
i − (1− βj0i )hi(x̂

j−
i )
)

(5.29)

Vj
i [0] =

Jj−i
NC

+ Uj
i (5.30)

Wj
i [0] =

Jj−i
NC

+ Gj
i (5.31)

Note that for linear observation model, hi(x̂
j−
i ) = Hj

i x̂
j−
i . Using this relation,

the non-linear MTIC equations become the original MTIC (derived for linear model)

equations,

vji [0] =
Jj−i
NC

x̂j−i + uji + βj0i Uj
i x̂
j−
i (5.32)

Vj
i [0] =

Jj−i
NC

+ Uj
i (5.33)

Wj
i [0] =

Jj−i
NC

+ Gj
i (5.34)

The EMTIC algorithm is summarized is Algorithm 6.

86



Algorithm 6 EMTIC for target T j at node Ci at time step t

Input: x̂j−
i (t), Jj−

i (t), hi, Rj
i .

1) Linearize hi at x̂j−
i (t) to compute Hj

i

2) Get measurements: {zn
i }

li(t)
n=1

3) Compute Sj
i , yj

i , βj0
i , Kj

i and Cj
i

4) Compute information vector and matrices:

uj
i ← HjT

i Rj
i

−1
yj
i (5.35)

Uj
i ← HjT

i Rj
i

−1
Hj

i (5.36)

Gj
i ← Jj−

i Kj
i

(
Cj

i

−1 −Kj
i

T
Jj−
i Kj

i

)−1

Kj
i

T
Jj−
i (5.37)

5) Initialize consensus data

vj
i [0] ← Jj−

i

NC
x̂j−
i + uj

i + Hj
i

T
Rj

i

−1
(
Hj

i x̂
j−
i − (1− βj0

i )hi(x̂
j−
i )
)

(5.38)

Vj
i [0] ← Jj−

i

NC
+ Uj

i (5.39)

Wj
i [0] ← Jj−

i

NC
+ Gj

i (5.40)

6) Perform average consensus (Sec. 2.3) on vj
i [0], Vj

i [0] and Wj
i [0] independently for K iterations.

7) Estimate:

x̂j+
i ←

(
Vj

i [K]
)−1

vj
i [K] (5.41)

Jj+
i ← NCWj

i [K] (5.42)

8) Predict:

x̂j−
i (t+ 1) ← Φx̂j+

i (t) (5.43)

Jj−
i (t+ 1) ←

(
Φ
(
Jj+
i (t)

)−1

ΦT + Qj

)−1

(5.44)

Output: x̂j+
i (t), Jj+

i (t), x̂j−
i (t+ 1), Jj−

i (t+ 1).

87



5.5 Comparison of KCF, ICF, MTIC, EKCF, EICF and

EMTIC

We now compare the state estimation equations of KCF, ICF, MTIC, EKCF,

EICF and EMTIC for one particular target and a single consensus iteration step. The

derivation of these particular forms are shown in Appendix D.

KCF: (see [17])

x̂+
i = x̂−i +

(
J−i + Bi

)−1 (
bi −Bix̂

−
i

)
+

ε

1 + ||(J−i )−1||
(J−i )−1

∑
i′∈Ni

(
x̂−i′ − x̂−i

)
(5.45)

J+
i = J−i + Bi (5.46)

ICF: (see Proposition 1 in Appendix D)

x̂+
i = x̂−i +

(
A
(

J−i
NC

)
+A(Ui)

)−1

(
A(ui)−A(Ui)x̂

−
i + ε

∑
i′∈Ni

J−i′

NC

(
x̂−i′ − x̂−i

) )
(5.47)

J+
i = NC

(
A
(

J−i
NC

)
+A(Ui)

)
(5.48)

MTIC: (see Proposition 2 in Appendix D)

x̂+
i = x̂−i +

(
A(

J−i
NC

) +A(Ui)

)−1 (
A(ui)−A(Ui)x̂

−
i

+A(Uix̂
−
i − (1− βi0)Uix̂

−
i ) + ε

∑
i′∈Ni

J−i′

NC

(
x̂−i′ − x̂−i

) )
(5.49)

J+
i = NC

(
A
(

J−i
NC

)
+A(Gi)

)
(5.50)

88



EKCF: (see [25])

x̂+
i = x̂−i +

(
J−i + Bi

)−1(
bi −HT

i R−1
i hi(x̂

−
i ) + γ

∑
i′∈Ni

(
x̂−i′ − x̂−i

))
(5.51)

J+
i = J−i + Bi (5.52)

where γ =
ε

1 + ||(J−i + Bi)−1||

EICF: (see Proposition 3 in Appendix D)

x̂+
i = x̂−i +

(
A
(

J−i
NC

)
+A(Ui)

)−1(
A(ui)−A(Ui)x̂

−
i

+A(Uix̂
−
i −HT

i R−1
i hi(x̂

−
i )) + ε

∑
i′∈Ni

J−i′

NC

(
x̂−i′ − x̂−i

))
(5.53)

J+
i = NC

(
A
(

J−i
NC

)
+A(Ui)

)
(5.54)

EMTIC: (see Proposition 4 in Appendix D)

x̂+
i = x̂−i +

(
A
(

J−i
NC

)
+A(Ui)

)−1(
A(ui)−A(Ui)x̂

−
i

+A
(
Uix̂

−
i − (1− β0

i )HT
i R−1

i hi(x̂
−
i )
)

+ ε
∑
i′∈Ni

J−i′

NC

(
x̂−i′ − x̂−i

))
(5.55)

J+
i = NC

(
A
(

J−i
NC

)
+A(Gi)

)
(5.56)

Note that the differences in the prior states between the neighboring nodes,

x̂−i′ − x̂−i are weighted by the corresponding neighbor’s prior information matrix J−i′

in ICF, MTIC, EICF and EMTIC. This handles the issue with naivety as the innova-

tion from a naive neighbor’s prior state will be given less weight. However, in KCF

and EKCF, the innovation from each neighbor’s prior is given equal weight which may

deteriorate the performance of KCF and EKCF in the presence of naive nodes.

The term ui, in Eqns. (5.47) and (5.49) are not exactly the same, as ICF

assumes perfect data association and computes ui from the appropriate measurement

89



zji . Whereas, in MTIC, ui is computed from the mean measurement yji . The same

argument holds for EICF Eqn. (5.53) and EMTIC Eqn. (5.55).

In MTIC Eqn. (5.49), the A(Uix̂
−
i −(1−βi0)Uix̂

−
i ) term comes due to the data

association error. In EICF Eqn. (5.53) the A(Uix̂
−
i −HT

i R−1
i hi(x̂

−
i )) term comes from

non-linearity in the observation model. In a similar fashion, in EMTIC Eqn. (5.55), the

A
(
Uix̂

−
i − (1− β0

i )HT
i R−1

i hi(x̂
−
i )
)

term is a result of both data association error and

non-linearity in the observation model. It can be seen that, with perfect data association

and linear observation model, this term equals to zero as it is not present in the ICF

Eqn. (5.47) equation.

The information matrix update equations, i.e., Eqns. (5.48) and (5.50), are

different for ICF and MTIC as the data association uncertainty is incorporated in Gi

for MTIC. This shows the tight integration of the data association and tracking steps

in MTIC, as the uncertainty of one step is considered in the other. The same argument

holds for EICF Eqn. (5.54) and EMTIC Eqn. (5.56).

5.6 Experiments

In this section, first we evaluate the performance of the proposed EICF algo-

rithm and compare it with the Extended Kalman Consensus Filter (EKCF) (distributed)

[25] and the Extended Kalman Filter (EKF) (centralized) algorithms. Next, we evaluate

the performance of the proposed EMTIC algorithm and compare it with the Extended

Joint Probabilistic Data Association Filter (EJPDAF) (centralized) (see Eqns. (5.9)-

(5.10)), the EICF (with ground truth data association) algorithm and the EKF (with

ground truth data association) algorithm. Finally we provide real-life experiments to

show the performance of the EMTIC algorithm and compare it with the EICF (with

90



−200
−100

0
100

200
300

400
500

600
700

−200

−100

0

100

200

300

400

500

600

700

0

50

100

C
3

C
4

C
5

C
2

C
6

C
1

C
8

C
7

Figure 5.1: EICF and EMTIC Simulation setup

ground truth data association) algorithm.

5.6.1 Simulation Experiments

We simulate a camera network with NC = 8 cameras monitoring an area with

targets randomly roaming in its 500 × 500 area. The simulation setup is shown in

Fig. 5.1. Each of the cameras can view approximately 20% of the entire area with

some overlap with other cameras. The FOV of three cameras are shown in the figure.

Together they cover the entire area. A circulant network topology with a degree of

2 (at each node) was chosen for the network connectivity. Each target was randomly

initialized at a different location with random velocity. The target’s state vector was

a 4D vector, with the 2D position and 2D velocity components. The targets evolved

for 40 time steps using the target dynamical model of Eqn. (4.1). The state transition

matrix (used both in track generation and estimation) Φ and process covariance Q were

91



chosen as

Φ =



1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1


, Q =



10 0 0 0

0 10 0 0

0 0 1 0

0 0 0 1


.

The initial prior covariance Pj−
i (1) = diag(100, 100, 10, 10) was used at each node for

each target. The initial prior state x̂j−i (1) was generated by adding zero-mean Gaussian

noise of covariance P−i (1) to initial the ground truth state. The observations were

generated using Eqn. (5.5). The linearized observation matrix Hj
i was computed for

each target at each camera at each time step using the prior state estimate x̂ji (t) in Eqn.

(5.4).

If the ground truth state was within the FOV of a sensor, a measurement was

generated from the ground truth track using the measurement model Eqn. (5.5) with

Ri = 100I2. The consensus rate parameter ε was set to 0.65/∆max where ∆max = 2,

as each node was connected to two other nodes. Total number of consensus iterations

per measurement step, K, was varied in the different simulations. The parameters for

computing the association probabilities, βjni ’s, were set as follows (see [2] for details).

False measurements (clutter) were generated at each node at each measurement step

using a Poisson process with λ = 1
32 . Here, λ is the average number of false measure-

ments per sensor per measurement step. Gate probability PG was set to 0.99. The

probability of detecting a target in each camera, PD was computed by integrating the

probability density function of the predicted measurement, (i.e., N (hi(x̂
j−
i ),Sji )) over

the area visible to the camera.

As a measure of performance, we computed the estimation error, e, defined as

the Euclidean distance between the ground truth position and the estimated posterior

92



2 4 6 8 10 12 14 16 18 20
3

4

5

6

7

8

9

K

M
ea

n 
Er

ro
r, 

µ e

EKF
EKCF
EICF

Figure 5.2: EICF performance comparison varying K

position. The simulation results were averaged over multiple simulation runs with 100

randomly generated sets of tracks. The mean (µe) of the errors for different methods

are shown in the following graphs as the results of different experiments.

The performance of the EICF algorithm is shown in Fig. 5.2. Here, the total

number of iterations, K was varied from 1 to 20. The simulation was run on 100 ran-

domly generated tracks. It can be seen that EICF performed better than EKCF for any

K. The performance of the EICF algorithm also matched the centralized performance

(i.e., of EKF) as K was increased. The reason that the performance of EKCF was

deteriorated was mainly due to the naivety issue as discussed earlier.

Next, the performance of the EMTIC algorithm is shown in Fig. 5.3. Here the

total number of iterations K, was varied from 1 to 10. It was run over 100 randomly

generated sets of tracks. At each time a set of 3 tracks were generated. As shown

theoretically in this chapter, as K increased, the performance of the EMTIC algorithm

matched its centralized counter-part i.e., the EJPDAF algorithm’s performance. In the

93



1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

K

M
ea

n 
Er

ro
r, 

µ e

EJPDAF
EMTIC
EICFGT
EKFGT

Figure 5.3: EMTIC performance comparison varying K

same figure, we also show the performance of the EICF and EKF algorithms where the

ground truth data association was provided. It can be seen that the EMTIC algorithm

compares well with the other algorithms, where the other algorithm (EJPDAF, EICF,

EKF) either are centralized or require the knowledge of the data association where

the EMTIC solves both the tracking and data association in a completely distributed

manner.

5.6.2 Real-life Experiments

Next, we show the performance of the EMTIC algorithm on real-life data. Six

cameras with partially overlapping FOV were chosen for the experiment. The FOV

of the cameras are shown in Fig. 5.4. As the cameras were not programmable, the

algorithms were run on a post-processing basis on a collected data-set. The camera

network topology was simulated in the experiment. The topology used in the experiment

is shown in Fig. 5.4. The cameras were calibrated w.r.t. the ground plane. There were

4 persons roaming in the area. A parts-based (utilizing PHOG features) person detector

94



C1

C5

C3C2 C4

C6

Figure 5.4: In this figure, there are six sensing nodes, C1, C2, . . . , C6 observing an area (black

rectangle) consisting of four targets. The solid blue lines show the communication channels

between different nodes. This figure also depicts the presence of “naive” nodes. For example,

C3, C5, C6 get direct measurements about the black target which it shares with its immediate

network neighbors. However, C1 does not have direct access to measurements of that target and

thus is naive w.r.t. that target’s state.

95



was used to detect the persons in each frame. Figs. 5.5 and 5.6 shows a snapshot of the

real-life experiment (after 145 time-steps).

In Fig. 5.5, the detections are shown in magenta bounding boxes. The center

point of the bottom of the bounding boxes were used as observations. There are many

false measurements and also missing detections.

Fig. 5.6 shows the ground plane tracking results in C1 for the four targets. The

total number of consensus iterations, K was set to 2. In Fig. 5.6a the tracking results of

the EMTIC algorithm is shown. In Fig. 5.6b, the tracking results of the EICF algorithm

using the ground truth data association and in Fig. 5.6c, the tracking results of the EKF

algorithm using ground truth data association information are shown. It can be seen

that the EMTIC algorithm performed well compared to the EICF and EKF algorithm.

It can be seen that the EMTIC tracking results are excellent although as opposed to

the other methods, it is not a centralized solution or it does not require ground truth

data association information. The ground plane tracks of the EMTIC algorithm are also

projected and plotted on each camera’s image plane for viewing purpose in Fig 5.5. In

Fig. 5.7, the error from the EKF estimates for the EMTIC and the EICF algorithms

are shown. It can be seen that the errors are very close to the EICF algorithm for which

the ground truth data association was provided.

5.7 Conclusion

In this chapter we have extended the ICF and the MTIC algorithms to handle

non-linearity in the observation model. In this chapter, we also theoretically compared

all the algorithms derived in this article. Next, we showed simulation results of the EICF

96



(a) C1 (b) C2

(c) C3 (d) C4

(e) C5 (f) C6

Figure 5.5: EMTIC Real-life experiments.

and EMTIC algorithm and compared them with other algorithms. We also showed real-

life applications of the EICF and EMTIC algorithm.

97



−300 300
−300

300

(a) EMTIC tracking results

−300 300
−300

300

(b) EICF-GT tracking results

−300 300
−300

300

(c) EKF tracking results

Figure 5.6: EMTIC, EICF (with ground truth data association) and EKF (with ground truth

data association) tracking results in the ground plane.

0 50 100 150
0

2

4

6

8

10

12

14

16

time−step, t

M
ea

n 
er

ro
r f

ro
m

 E
KF

 e
st

im
at

es
,

µ e

EMTIC
EICF−GT

Figure 5.7: Comparing mean error from EKF

98



Chapter 6

Conclusions and Future Work

In this thesis, we have proposed novel algorithms for distributed state estima-

tion in sensor networks. The core idea is in the proper information-weighting of the

states which enables the very simple and well-understood distributed averaging algo-

rithm known as the Average consensus algorithm to carry out complex state estimation

and data association tasks in a sensor network. The contributions can be broken down

in the following manner.

Generalized Kalman Consensus Filter

In chapter 2, we introduced a novel method for distributed state estimation

algorithm, the Generalized Kalman Consensus Filter (GKCF). We discussed under what

circumstances the assumptions of KCF are not valid and hence modifications are nec-

essary. This is especially true in camera networks where each sensor has a limited FOV

and they are geographically separated by distances that do not allow full communica-

tion. Then we proposed a generalized framework, Generalized KCF, which outperformed

the KCF approach under such conditions. We showed the theoretical derivation of our

framework and also showed simulation results to compare the performance of our algo-

99



rithm with other approaches.

Information-weighted Consensus Filter

In chapter 3, we presented a novel distributed state estimation framework

called the Information-weighted Consensus Filter (ICF) which is generally applicable

to almost any connected sensor network, converges to the optimal centralized estimate

under reasonable conditions, does not require target hand-off protocols, and requires

computation and communication resource similar to or less than alternative algorithms.

The development of this algorithm was motivated by applications in camera networks

wherein the observability properties of the state by the nodes is distinct across the

nodes. We compared ICF with the state-of-the-art distributed estimation methods such

as KCF and GKCF, both theoretically and through simulations. Our simulation results

show that ICF outperforms these methods. The results also indicate that ICF is robust

to situations where optimality conditions are not met.

Multi-Target Information Consensus

In chapter 4, we proposed the Multi Target Information Consensus (MTIC) al-

gorithm, which is a generalized consensus-based distributed multi-target tracking scheme

applicable to a wide-variety of sensor networks. MTIC handles the issues with naivety

which makes it applicable to sensor networks where the sensors may have limited FOV

(which is the case for a camera network). The estimation errors in tracking and data as-

sociation, as well as the effect of naivety, are integrated into a single efficient algorithm.

This makes MTIC very robust to false measurements/clutter. Experimental analysis

shows the strength of the proposed method over existing ones.

100



Extension to Non-linear Models

In chapter 5, we have extended the ICF and the MTIC algorithms to handle

non-linearity in the observation model of the camera. In that chapter, we also theoret-

ically compared all the algorithms derived in this article. Next, we showed simulation

results of the EICF and EMTIC algorithm and compared them with other algorithms.

We also showed real-life applications of the EICF and EMTIC algorithm.

6.1 Future Work

Some of the possible future directions are discussed below.

Generalization to non-Gaussian Bayesian Estimation

The proposed algorithms currently are based on the first and second order

statistics of the states by assuming that the noise and estimation errors follow Gaussian

distribution. It would be interesting to derive the algorithms to be applicable to non-

Gaussian Bayesian estimation frameworks. This will enable the utilization of a particle-

filter-based framework without requiring an assumption on the statistical behavior of

the target or the observation.

Utilization of Communication and Vision Graph Information

In many situations, one might have the knowledge of the communication and/or

the vision graph of sensor network. It will be interesting to derive approaches which can

utilize that information in the proposed algorithms to minimize the communication and

computation resource consumption. That will be very useful for sensor networks with

low-powered devices.

101



6.1.1 Mobile Platforms

Extending the proposed algorithms to perform distributed tracking and path

planning in a network of mobile platforms would be another really interesting prob-

lem. The proposed distributed tracking algorithms work under the assumption that the

camera calibration is available. For dynamic cameras, one might need to dynamically

update the calibration information.

6.1.2 Hardware Implementation

In the real-life experiments presented in this article, real-life data was collected

and processed offline where the communication network was simulated. Implementing

the algorithms on actual smart cameras while using actual camera network for communi-

cation would be another interesting research problem. Issues related to communication

such as packet loss, latency, changes in network topology will pose interesting additional

challenges to the problem.

All the algorithms discussed in this thesis, at their current state require the

knowledge of the total number of targets and a reasonable initialization and termination

of the tracks (in case of the arrival or departure of targets from the scene). Fusion of a

distributed approach to perform these tasks automatically could be another interesting

problem from an implementation perspective.

102



Bibliography

[1] M. Alighanbari and J. P. How. An unbiased Kalman consensus algorithm. In
American Control Conference, 2006. 16

[2] Y. Bar-Shalom, F. Daum, and J. Huang. The probabilistic data association filter.
IEEE Control Systems, 29(6):82 –100, Dec. 2009. 6, 67, 70, 76, 92

[3] D. Borra, E. Lovisari, R. Carli, F. Fagnani, and S. Zampieri. Autonomous calibra-
tion algorithms for networks of cameras. In American Control Conference, pages
5126 –5131, June 2012. 36

[4] Q. Cai and J. K. Aggarwal. Tracking human motion in structured environments
using a distributed-camera system. IEEE Trans. Pattern Anal. Mach. Intell.,
21(11):1241–1247, Nov. 1999. 7, 68

[5] M. Cetin, L. Chen, J. W. F. Iii, E. T. Ihler, O. L. Moses, M. J. Wainwright, and A. S.
Willsky. Distributed fusion in sensor networks. IEEE Signal Processing Magazine,
23:42–55, July 2006. 7, 68

[6] R.T. Collins, A.J. Lipton, H. Fujiyoshi, and T. Kanade. Algorithms for cooperative
multisensor surveillance. Proceedings of the IEEE, 89(10):1456–1477, 2001. 7, 68

[7] C. Ding, B. Song, A. A. Morye, J. A. Farrell, and A. K. Roy-Chowdhury. Col-
laborative sensing in a distributed PTZ camera network. IEEE Trans. on Image
Processing, 21(7):3282–3295, 2012. 36

[8] F. Garin and L. Schenato. A survey on distributed estimation and control appli-
cations using linear consensus algorithms. In Networked Control Systems, volume
406 of Lecture Notes in Control and Information Sciences, pages 75–107. Springer,
2011. 36, 63

[9] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collection tree
protocol. In ACM Conference on Embedded Networked Sensor Systems, 2009. 4, 34

[10] R. Kalman. A new approach to linear filtering and prediction problems. Transaction
of the ASME - Journal of Basic Engineering, 82(Series D):35–45, 1960. 5

[11] A. T. Kamal, C. Ding, B. Song, J. A. Farrell, and A. K. Roy-Chowdhury. A
generalized Kalman consensus filter for wide-area video networks. In IEEE Conf.
on Decision and Control, 2011. 5, 33, 36, 52

103



[12] A. T. Kamal, J. A. Farrell, and A. K. Roy-Chowdhury. Information weighted
consensus filters and their application in distributed camera networks. IEEE Trans.
Automatic Control. 5

[13] A. T. Kamal, J. A. Farrell, and A. K. Roy-Chowdhury. Information weighted
consensus. In IEEE Conf. on Decision and Control, 2012. 5, 36, 68

[14] A. T. Kamal, J. A. Farrell, and A. K. Roy-Chowdhury. Information consensus for
distributed multi-target tracking. In IEEE Conf. on Computer Vision and Pattern
Recognition, 2013. 6

[15] A. T. Kamal, B. Song, and A. K. Roy-Chowdhury. Belief consensus for distributed
action recognition. In Intl. Conf. on Image Processing, pages 141 –144, Sept. 2011.
36

[16] S. M. Kay. Fundamentals of statistical signal processing: estimation theory.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993. 39, 47

[17] R. Olfati-Saber. Kalman-consensus filter: Optimality, stability, and performance.
In IEEE Conf. on Decision and Control, 2009. 4, 9, 14, 16, 21, 22, 23, 25, 31, 36,
50, 52, 55, 66, 88

[18] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in
networked multi-agent systems. Proceedings of the IEEE, 95(1):215–233, Jan. 2007.
2, 3, 13, 18, 31, 35, 74

[19] R. Olfati-Saber, E. Franco, E. Frazzoli, and J. S. Shamma. Belief consensus and
distributed hypothesis testing in sensor networks. In Network Embedded Sensing
and Control, pages 169–182. Springer Verlag, 2006. 35

[20] R. Olfati-Saber and N. F. Sandell. Distributed tracking in sensor networks with
limited sensing range. In Proceedings of the American Control Conference, pages
3157 – 3162, Seattle, WA, USA, June 2008. 14

[21] T. Onel, C. Ersoy, and H. Delic. On collaboration in a distributed multi-target
tracking framework. In IEEE Intl. Conf. on Communications, June 2007. 8, 68

[22] L. L. Presti, S. Sclaroff, and M. L. Cascia. Path modeling and retrieval in distributed
video surveillance databases. IEEE Trans. on Multimedia, 14(2):346–360, 2012. 7

[23] D. Reid. An algorithm for tracking multiple targets. IEEE Trans. Automatic
Control, 24(6):843–854, 1979. 6, 67

[24] W. Ren, A. W. Beard, and D. B. Kingston. Multi-agent Kalman consensus with
relative uncertainty. In American Control Conference, 2005. 16

[25] A. K. Roy-Chowdhury and B. Song. Camera Networks: The Acquisition and Anal-
ysis of Videos over Wide Areas. Synthesis Lectures on Computer Vision. Morgan
& Claypool Publishers, 2012. 89, 90

[26] N. F. Sandell and R. Olfati-Saber. Distributed data association for multi-target
tracking in sensor networks. In IEEE Conf. on Decision and Control, 2008. 8, 68

104



[27] B. Song, C. Ding, A. T. Kamal, J. A. Farrell, and A. K. Roy-Chowdhury. Dis-
tributed camera networks: Integrated sensing and analysis for wide area scene
understanding. IEEE Signal Processing Magazine, 3:20–31, May 2011. 9, 11, 36

[28] B. Song, A. T. Kamal, C. Soto, C. Ding, J. A. Farrell, and A. K. Roy-Chowdhury.
Tracking and activity recognition through consensus in distributed camera net-
works. IEEE Trans. on Image Processing, 19(10):2564–2579, Oct. 2010. 3, 8, 9, 11,
14, 36, 68

[29] R. Tron and R. Vidal. Distributed image-based 3-D localization of camera sensor
networks. In IEEE Conf. on Decision and Control, pages 901 –908, Dec. 2009. 36

[30] R. Tron and R. Vidal. Distributed computer vision algorithms. IEEE Signal Pro-
cessing Magazine, 28(3):32–45, May 2011. 3, 14, 34, 36

[31] R. Tron and R. Vidal. Distributed computer vision algorithms through distributed
averaging. In IEEE Conf. on Computer Vision and Pattern Recognition, 2011. 3,
14

105



Appendix A

EKF: Information Form

Here we will derive the centralized Extended Kalman Filter (EKF) in infor-

mation form, which is required to derive the distributed EICF algorithm. We have,

measurement residual,

Z̃ = Z − hc(x̂
−
c ). (A.1)

Kalman gain,

Kc = Pc
−HT

(
HP−c HT + R

)−1

= P−c HT
(
R−1 −R−1H

(
(P−c )−1 + HTR−1H

)−1 HTR−1
)

(using Matrix Inversion Lemma)

=
(
P−c −P−c HTR−1H

(
(P−c )−1 + HTR−1H

)−1
)
HTR−1

=
(
P−c

(
(P−c )−1 + HTR−1H

)
−P−c HTR−1H

) (
(P−c )−1 + HTR−1H

)−1 HTR−1

=
(
Ip + P−c HTR−1H−P−c HTR−1H

) (
(P−c )−1 + HTR−1H

)−1 HTR−1

=
(
(P−c )−1 + HTR−1H

)−1 HTR−1. (A.2)

106



State estimate,

x̂+
c = x̂−c + KcZ̃

= x̂−c +
(
(P−c )−1 + HTR−1H

)−1 HTR−1
(
Z − hc(x̂

−
c )
)

= x̂−c +
(
J−c + Uc

)−1 (
uc −HTR−1hc(x̂

−
c )
)

=
(
J−c + Uc

)−1 (
J−c x̂−c + Ucx̂

−
c + uc −HTR−1hc(x̂

−
c )
)

=
(
J−c + Uc

)−1 (
J−c x̂−c + uc + HTR−1

(
Hx̂−c − hc

(
x̂−c
)))

(A.3)

P+
c =

(
(P−c )−1 + HTR−1H

)−1
(A.4)

J+
c = (P+

c )−1

= J−c + Uc (A.5)

107



Appendix B

JPDAF: Information Form

The JPDAF estimation and covariance update equation are given in the fol-

lowing which are then converted to the equivalent information form below. The time

index t has been dropped for simplicity. Now, Kalman gain,

Kj = Pj−HjTSj
−1

= Pj−HjT
(
HjPj−HjT + Rj

)−1

= Pj−HjT
(

Rj−1 −Rj−1
Hj
(

(Pj−)−1 + HjTRj−1
Hj
)−1

HjTRj−1
)

(using Matrix Inversion Lemma)

=

(
Pj− −Pj−HjTRj−1

Hj
(

(Pj−)−1 + HjTRj−1
Hj
)−1

)
HjTRj−1

=

(
Pj−

(
(Pj−)−1 + HjTRj−1

Hj
)
−Pj−HjTRj−1

Hj

)
(

(Pj−)−1 + HjTRj−1
Hj
)−1

HjTRj−1

=
(
Ip + Pj−HjTRj−1

Hj −Pj−HjTRj−1
Hj
)

(
(Pj−)−1 + HjTRj−1

Hj
)−1

HjTRj−1

=
(

(Pj−)−1 + HjTRj−1
Hj
)−1

HjTRj−1
(B.1)

ỹj = yj − (1− βj0)Hjx̂j− (B.2)

108



x̂j+ = x̂j− + Kjỹj

= x̂j− +
(

(Pj−)−1 + HjTRj−1
Hj
)−1

HjTRj−1 (
yj − (1− βj0)Hjx̂j−

)
= x̂j− +

(
Jj− + Uj

)−1 (
uj − (1− βj0)Ujx̂j−

)
=

(
Jj− + Uj

)−1 (
Jj−x̂j− + Ujx̂j− + uj − (1− βj0)Ujx̂j−

)
=

(
Jj− + Uj

)−1 (
Jj−x̂j− + uj + βj0Ujx̂j−

)
(B.3)

Pj+ = Pj− − (1− βj0)KjSjKjT + KjP̃jKjT

= Pj− −Kj
(

(1− βj0)Sj − P̃j
)

KjT (B.4)

where,

P̃j =

(
l∑

n=1

βjnz̃jn
(
z̃jn
)T)− ỹj

(
ỹj
)T

(B.5)

Let,

Cj = (1− βj0)Sj − P̃j (B.6)

Thus, using matrix inversion lemma and by definition of Jj+ = (Pj+)−1 and Jj− =

(Pj−)−1 we get,

Jj+ = Jj− + Jj−Kj
((

Cj
)−1 −KjTJj−Kj

)−1
KjTJj−

= Jj− + Gj (B.7)

where

Gj = Jj−Kj
((

Cj
)−1 −KjTJj−Kj

)−1
KjTJj−. (B.8)

Thus, Equ. (B.3) and (B.7) are the JPDAF estimation equations in the information

form.

109



Appendix C

EMTIC: Derivation

For a single sensor, the JPDAF equations can be rewritten for the non-linear

case as the following,

Kj =
(

(Pj−)−1 + HjTRj−1
Hj
)−1

HjTRj−1
(C.1)

ỹj = yj − (1− βj0)h(x̂j−) (C.2)

The state estimate,

x̂j+ = x̂j− + Kjỹj

= x̂j− +
(

(Pj−)−1 + HjTRj−1
Hj
)−1

HjTRj−1 (
yj − (1− βj0)h(x̂j−)

)
= x̂j− +

(
Jj− + Uj

)−1
(
uj − (1− βj0)HjTRj−1

h(x̂j−)
)

=
(
Jj− + Uj

)−1
(

Jj−x̂j− + Ujx̂j− + uj − (1− βj0)HjTRj−1
h(x̂j−)

)
=

(
Jj− + Uj

)−1
(

Jj−x̂j− + uj + HjTRj−1
(Hjx̂j− − (1− βj0)h(x̂j−))

)
(C.3)

Pj+ = Pj− − (1− βj0)KjSjKjT + KjP̃jKjT

= Pj− −Kj
(

(1− βj0)Sj − P̃j
)

KjT (C.4)

110



where,

P̃j =

(
l∑

n=1

βjnz̃jn
(
z̃jn
)T)− ỹj

(
ỹj
)T

(C.5)

Let,

Cj = (1− βj0)Sj − P̃j (C.6)

Thus, using matrix inversion lemma and by definition of Jj+ = (Pj+)−1 and Jj− =

(Pj−)−1 we get,

Jj+ = Jj− + Jj−Kj
((

Cj
)−1 −KjTJj−Kj

)−1
KjTJj−

= Jj− + Gj (C.7)

where

Gj = Jj−Kj
((

Cj
)−1 −KjTJj−Kj

)−1
KjTJj−. (C.8)

As, this is in the information form, for multiple sensor, under the assumption that the

additional measurement information are uncorrelated, they have to be added as the

following,

x̂j+c =

(
Jj−c +

NC∑
i=1

Uj
i

)−1

(
Jj−i x̂j−i +

NC∑
i=1

(
uji + Hj

i

T
Rj
i

−1
(Hj

i x̂
j−
i − (1− βj0i )hi(x̂

j−
i ))

))
(C.9)

Jj+c = Jj−i +

NC∑
i=1

Gj
i (C.10)

111



Appendix D

Single step consensus comparison:

Proposition 1 The state estimate of ICF using a single step of consensus iteration can

be expressed as

x̂+
i = x̂−i +

(
A
(

J−i
NC

)
+A(Ui)

)−1

A(ui)−A(Ui)x̂
−
i + ε

∑
i′∈Ni

J−i′

NC

(
x̂−i′ − x̂−i

) (D.1)

J+
i = NC

(
A
(

J−i
NC

)
+A(Ui)

)
(D.2)

Proof. Using the shorthand notation A() for a single step of consensus in (3.34), for a

single step we can write,

x̂+
i =

(
A
(

J−i
NC

)
+A(Ui)

)−1(
A
(

J−i
NC

x̂−i

)
+A(ui)

)
(D.3)

By adding and subtracting x̂−i in RHS of (D.3), we get,

x̂+
i = x̂−i +

(
A
(

J−i
NC

)
+A (Ui)

)−1

(
A
(

J−i
NC

x̂−i

)
+A(ui)−

(
A
(

J−i
NC

)
+A(Ui)

)
x̂−i

)
= x̂−i +

(
A
(

J−i
NC

)
+A(Ui)

)−1

(
A(ui)−A(Ui)x̂

−
i +A

(
J−i
NC

x̂−i

)
−A

(
J−i
NC

)
x̂−i

)
(D.4)

112



Now, A
(

J−i
NC

x̂−i

)
−A

(
J−i
NC

)
x̂−i

=
J−i
NC

x̂−i + ε
∑
i′∈Ni

(
J−i′

NC
x̂−i′ −

J−i
NC

x̂−i

)
−

J−i
NC

x̂−i − ε
∑
i′∈Ni

(
J−i′

NC
x̂−i −

J−i
NC

x̂−i

)

= ε
∑
i′∈Ni

J−i′

NC

(
x̂−i′ − x̂−i

)
(D.5)

Using this result in (D.4), we get,

x̂+
i = x̂−i +

(
A
(

J−i
NC

)
+A(Ui)

)−1
A(ui)−A(Ui)x̂

−
i + ε

∑
i′∈Ni

J−i′

NC

(
x̂−i′ − x̂−i

)
(D.6)

Similarly, J+
i can be written as

J+
i = NC

(
A
(

J−i
NC

)
+A(Ui)

)
(D.7)

Proposition 2 The state estimate of MTIC using a single step of consensus iteration

can be expressed as

x̂+
i = x̂−i +

(
A(

J−i
NC

) +A(Ui)

)−1

(
A(ui)−A(Ui)x̂

−
i +A(Uix̂

−
i − (1− βi0)Uix̂

−
i ) + ε

∑
i′∈Ni

J−i′

NC

(
x̂−i′ − x̂−i

) )
(D.8)

J+
i = NC

(
A
(

J−i
NC

)
+A(Gi)

)
(D.9)

Proof. MTIC estimate equations (4.24) for a single consensus step, can be written with

the A() notation as (dropping the target superscript j),

x̂+
i =

(
A(

J−i
NC

) +A(Ui)

)−1(
A(

Ji
NC

x̂−i ) +A(β0Uix̂
−
i ) +A(ui)

)
(D.10)

By adding and subtracting x̂−i in RHS we get,

x̂+
i = x̂−i +

(
A(

J−i
NC

) +A(Ui)

)−1

(
A(ui)−A(Ui)x̂

−
i +A(

Ji
NC

x̂−i )−A(
Ji
NC

)x̂−i +A(β0Uix̂
−
i )

)
(D.11)

113



Using (D.5) and writing βi0 = 1− (1− βi0) we have,

x̂+
i = x̂−i +

(
A(

J−i
NC

) +A(Ui)

)−1

(
A(ui)−A(Ui)x̂

−
i +A(Uix̂

−
i − (1− βi0)Uix̂

−
i ) + ε

∑
i′∈Ni

J−i′

NC

(
x̂−i′ − x̂−i

) )
(D.12)

Similarly, J+
i can be written as

J+
i = NC

(
A
(

J−i
NC

)
+A(Gi)

)
(D.13)

Proposition 3 The state estimate of EICF using a single step of consensus iteration

can be expressed as

x̂+
i = x̂−i +

(
A
(

J−i
NC

)
+A(Ui)

)−1

(
A(ui)−A(Ui)x̂

−
i +A(Uix̂

−
i −HT

i R−1
i hi(x̂

−
i )) + ε

∑
i′∈Ni

J−i′

NC

(
x̂−i′ − x̂−i

))
(D.14)

J+
i = NC

(
A
(

J−i
NC

)
+A(Ui)

)
(D.15)

Proof. Using the shorthand notation A() for a single step of consensus in (5.17), for a

single step we can write,

x̂+
i =

(
A
(

J−i
NC

)
+A(Ui)

)−1

(
A
(

J−i
NC

x̂−i

)
+A(ui) +A(Uix̂i)−A(HT

i R−1
i hi(x̂i))

)
(D.16)

By adding and subtracting x̂−i in RHS we get,

x̂+
i = x̂−i +

(
A
(

J−i
NC

)
+A(Ui)

)−1
(
A
(

J−i
NC

x̂−i

)
−A

(
J−i
NC

)
x̂−i

+A(Uix̂
−
i )−A(Ui)x̂

−
i +A(ui)−A(HT

i R−1
i hi(x̂i))

)
(D.17)

Using (D.5), we have,

x̂+
i = x̂−i +

(
A
(

J−i
NC

)
+A(Ui)

)−1(
A(ui)−A(Ui)x̂

−
i

+A(Uix̂
−
i −HT

i R−1
i hi(x̂

−
i )) + ε

∑
i′∈Ni

J−i′

NC

(
x̂−i′ − x̂−i

))
(D.18)

114



Similarly, J+
i can be written as

J+
i = NC

(
A
(

J−i
NC

)
+A(Ui)

)
(D.19)

Proposition 4 The state estimate of EMTIC using a single step of consensus iteration

can be expressed as

x̂+
i = x̂−i +

(
A
(

J−i
NC

)
+A(Ui)

)−1(
A(ui)−A(Ui)x̂

−
i

+A
(
Uix̂

−
i − (1− β0

i )HT
i R−1

i hi(x̂
−
i )
)

+ ε
∑
i′∈Ni

J−i′

NC

(
x̂−i′ − x̂−i

))
(D.20)

J+
i = NC

(
A
(

J−i
NC

)
+A(Gi)

)
(D.21)

Proof. Using the shorthand notation A() for a single step of consensus in (5.41), for a

single step we can write,

x̂+
i =

(
A
(

J−i
NC

)
+A(Ui)

)−1

(
A
(

J−i
NC

x̂−i

)
+A(ui) +A(Uix̂i)−A((1− β0

i )HT
i R−1

i hi(x̂i))

)
(D.22)

By adding and subtracting x̂−i in RHS we get,

x̂+
i = x̂−i +

(
A
(

J−i
NC

)
+A(Ui)

)−1
(
A
(

J−i
NC

x̂−i

)
−A

(
J−i
NC

)
x̂−i

+A(Uix̂
−
i )−A(Ui)x̂

−
i +A(ui)−A((1− β0

i )HT
i R−1

i hi(x̂i))

)
(D.23)

Using (D.5), we have,

x̂+
i = x̂−i +

(
A
(

J−i
NC

)
+A(Ui)

)−1(
A(ui)−A(Ui)x̂

−
i

+A
(
Uix̂

−
i − (1− β0

i )HT
i R−1

i hi(x̂
−
i )
)

+ ε
∑
i′∈Ni

J−i′

NC

(
x̂−i′ − x̂−i

))
(D.24)

Similarly, J+
i can be written as

J+
i = NC

(
A
(

J−i
NC

)
+A(Gi)

)
(D.25)

115



Proposition 5 The state estimate of GKCF using a single step of consensus iteration

can be expressed as

x̂+
i = x̂−i +

(
A(J−i ) + Bi

)−1

bi −Bix̂
−
i + ε

∑
i′∈Ni

J−i′
(
x̂−i′ − x̂−i

) (D.26)

J+
i = A(J−i ) + Bi (D.27)

Proof. In the GKCF algorithm, after incorporating neighbors priors with a single step

consensus we get,

x̄−i =
(
A(J−i )

)−1A(J−i x̂−i ) (D.28)

After incorporating measurement information and adding and subtracting x̂−i (bi and

Bi are defined in (2.6-2.7)):

x̂+
i = x̂−i − x̂−i + x̄−i +

(
A(J−i ) + Bi

)−1 (
bi −Bix̄

−
i

)
(D.29)

= x̂−i +
(
A(J−i ) + Bi

)−1 (
bi +A(J−i )x̄−i −A(J−i )x̂−i −Bix̂

−
i

)
= x̂−i +

(
A(J−i ) + Bi

)−1 (
bi −Bix̂

−
i +A(J−i x̂−i )−A(J−i )x̂−i

)
(D.30)

= x̂−i +
(
A(J−i ) + Bi

)−1

bi −Bix̂
−
i + ε

∑
i′∈Ni

J−i′
(
x̂−i′ − x̂−i

) (D.31)

To get (D.30), the relation in (D.28) was used. To get (D.31), the relation

A(J−i x̂−i )−A(J−i )x̂−i = ε
∑
i′∈Ni

J−i′
(
x̂−i′ − x̂−i

)
. (D.32)

was used which can be derived in a similar way (D.5) was derived. Similarly, J+
i can be

written as

J+
i = A(J−i ) + Bi. (D.33)

116


