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Abstract

Modern live imaging technique enables us to observe the internal part of a tis-
sue over time by generating serial optical images containing spatio-temporal
slices of hundreds of tightly packed cells. Automated tracking of plant and
animal cells from such time lapse live-imaging datasets of a developing mul-
ticellular tissue is required for quantitative, high throughput analysis of cell
division, migration and cell growth. In this paper, we present a novel cell
tracking method that exploits the tight spatial topology of neighboring cells
in a multicellular field as contextual information and combines it with phys-
ical features of individual cells for generating reliable cell lineages. The
2D image slices of multicellular tissues are modeled as a Conditional Ran-
dom Field and pairwise cell to cell similarities are obtained by estimating
marginal probability distributions through loopy belief propagation on this
CRF. These similarity scores are further used in a spatio-temporal graph
labeling problem to obtain the optimal and feasible set of correspondences
between individual cell slices across the 4D image dataset. We present re-
sults on (3D+t) confocal image stacks of Arabidopsis shoot meristem and
show that the method is capable of handling many visual analysis challenges
associated with such cell tracking problems, viz. poor feature quality of in-
dividual cells, low SNR in parts of images, variable number of cells across
slices and cell division detection.

Keywords: Cell tracking, Conditional random field, Spatio-temporal data
association, Graph labeling, Confocal microscopy, Live-cell imaging.

∗Corresponding author
Email address: amitrc@ee.ucr.edu (Amit K. Roy-Chowdhury)

Preprint submitted to Medical Image Analysis September 28, 2014



1. Introduction

In developmental biology, the causal relationship between cell growth
patterns and gene expression dynamics has been one of the major topics of
interest. A proper quantitative analysis of the cell growth and division pat-
terns in both the plant and the animal tissues has remained mostly elusive so
far. Information such as rates and patterns of cell expansion and cell division
play a critical role in understanding morphogenesis in a tissue. The need for
quantifying the cellular parameters such as average rate of cell divisions, cell
cycle lengths, cell growth rates etc. and observing their time evolution is,
therefore, extremely important.

Towards this goal, with the advancements in microscopy and other imag-
ing techniques, time lapse videos are being collected to quantify the behavior
of hundreds of cells in a tissue over multiple days. For visualizing the cells
over time within a densely packed multilayer tissue, one such in-vivo time-
lapse microscopy technique is confocal laser scanning microscopy (CLSM)
based Live Cell Imaging. With this technique, optical cross sections of the
cells in the tissue are taken over multiple observational time points to gen-
erate spatio-temporal image stacks. For high-throughput analysis of these
large volumes of image data, development of fully automated image analysis
pipelines are becoming necessities, thereby giving rise to many new auto-
mated visual analysis challenges.

Automated cell tracking with cell division detection is one of the major
components of all such pipelines (such as [9]) that analyze the live cell imag-
ing data. A review of current cell tracking imaging methodologies can be
obtained in [15]. The computational challenges related to a robust design of
cell tracker come from multiple sources such as variable number of cells in
the field of view (FoV), deformation of cell shapes, complex topologies of cell
clusters, low SNR in the images, etc. In this paper, we present an automated
visual tracker for cells tightly packed in developing multilayer tissues. This
calls for developing strategies for temporal associations of the cells. More-
over, since at every time point of observation a cell could be imaged across
multiple spatial images, the tracking method must be capable of finding cor-
respondences in the spatial direction as well. Beyond these, the tracker has
to be able to detect cell divisions, detect new cells as the deeper layers of
the tissues are imaged, differentiate between cells in a close neighborhood
sharing similar physical features and generate correct matches in presence of
low SNR. These challenges are evident in the sample CLSM image stack of
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a live Arabidopsis shoot meristem, as shown in Fig. 1.

1.1. Related Work and Our Contributions

There has been some work on automated tracking and segmentation of
cells in time-lapse images, for both plants and animals. One of the well-
known approaches for segmenting and tracking cells is based on evolution of
active contours [8, 19, 18, 26, 7]. However, this method is not suitable for
tracking where all the cells are in close contact with each other and share
very similar physical features, nor is there any reported result on spatial
correspondence. In fact, in spatio-temporal image stacks where the cells are
arranged in compact multilayer structure, slice of a new cell can legitimately
appear at the exact same spatial location as that of a different cell located
in the layer just above it. This characteristic, along with the fact that these
tightly packed cells are mostly stationary, can force the active contour based
tracker to generate false spatial tracks.

The Softassign method uses the information on point location to simul-
taneously solve both the problem of global correspondence as well as the
problem of affine transformation between two time instants iteratively [5, 10].
However, these methods are more suitable for aligning global features than
finding correspondences between non-uniformly growing individual cells. Al-
though [10] present a sample result on SAM shoot meristem without validat-
ing against ground truth, it is not enough to evaluate the accuracy of this
method on a typical 4D confocal data.

Besides the aforementioned approaches, tracking based on association
between detections such as [12, 16] has shown good performance on time-lapse
images. In [2], the authors proposed a cell tracking method on phase contrast
time-lapse images that performs a global association of tracklets generated by
frame-by-frame detection based tracking. Many other algorithms that have
been successfully applied to single molecule localization and 2D movement
tracking have been reviewed in [13]. [6, 14] describe probabilistic framework
for joint detection and tracking of melanosomes. In [20], the authors have
proposed a multiple hypothesis based framework that can be applied to solve
particle tracking and 3D cell segmentation problems, which include splitting
and mergings. In [29], the authors presented a method for tracking large
number of particles undergoing dense motion by integrating motion models
at particle, local and global levels. However, these methods perform well
when the feature quality or the underlying motion model is reliable. In fact,
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Figure 1: A typical 4D (X-Y-Z-T) live-imaging data. A live Arabidopsis shoot meristem
tissue is imaged using a confocal laser scanning microscope at multiple time points. The
plasma membranes of the cells are stained with fluorescent proteins and that is why the cell
walls are the only visible parts. Each of the first three columns of images presents Z stack
of image slices, i.e the cross sections of the tissue imaged at various depths of it. When
such images are collected over time to capture the growth of the tissue along with that
of individual cells in it, it forms a 4D image stack. As can be seen from the figure, there
are various challenges associated with the problem, viz. growth/deformation of the cells
in the tissue, stereotypical cell shapes in the tissue and hence less discriminative physical
features (as an example, 4 cells from a close neighborhood are marked with white and
yellow arrows respectively in two consecutive time points which have very similar shapes
and sizes), minor shifts between images and low SNRs in the central regions of the tissue.
We have zoomed into these low SNR regions in the 4th column of the figure. As seen, it is
really difficult to even manually mark the boundaries of a number of cells in these regions.
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for many applications such as the one presented in this paper, there is no
motion information available and hence it cannot be exploited for tracking.

We are looking at a more challenging problem, where the features ex-
tracted from each cell may not be reliable enough for accurate data associa-
tion. As an example, in this paper the experiments are performed on confocal
time lapse image stacks of plant shoot apical meristem, where hundreds of
cells are tightly clustered in a multi-layered architecture and only the bound-
ary of each cell is visible. Thus the features extracted for each cell could only
be the shape and area, which could often be non-discriminating between
cells even from a local neighborhood. The cell tracking problem is targeted
to obtain association between cell slices along both space and time. One
possible solution approach could be to begin with 3D segmentation (such as
3D watershed) at each time step and then associate them across time. This
approach would fail for the problem at hand, where because of extremely low
z-resolution (3-4 slices/cell) the horizontal cell walls (x-y plane) are invisible
or partially visible. Therefore 3D segmentation method would be unable to
group slices of the same cells and would yield large under-segmented regions.
Moreover, as in most confocal live-imaging datasets, the cells in the deeper
central regions of the tissue have poor image quality because of the light
absorption in the tissue, thereby making the local cell level features even less
reliable for these cells. In Fig. 1, we have tried to bring out these challenges
by showing a small spatio-temporal confocal substack of Arabidopsis SAM.
Examples of stereotype in cell shapes are shown for four cells in a close neigh-
borhood (marked by arrows) and the low SNR in the central regions of the
tissue is highlighted by zooming into these regions in the 4th column of the
figure.

In such cases, for tracking and data associations in absence of very reliable
features one can use the states of objects or points other than the target, that
have strong spatio-temporal correlations with the states of the target. These
correlations are utilized to rectify/estimate the target states in absence of
reliable measurements for the target. Such secondary information are often
termed as the ‘contextual information’ in the visual tracking literature and
have resulted in significant improvements in tracking accuracy. For example,
in [11], feature points from the scene that are not on the target but have
strong motion correlation with the target are used to estimate the target
state under occlusion.

In [22, 21], a spatio-temporal tracking algorithm for Arabidopsis SAM was
proposed, where relative positional information of neighboring cells were used
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to generate unique features for each cell. The best cell pair in two different
image slices across space or time is found based on the computed features
and the correspondence is grown sequentially outwards from these ‘seed cell
points’ using a local search mechanism to find match between the rest of the
cells. However, the location of this spatial search window depends on the
position of the last tracked cell and hence this method tends to accumulate
error that can throw the tracker off for cells spatially distant from the ‘seed’.

In this work, we propose to solve the spatio-temporal tracking problem
as a graph inference problem. All pairs of images which are either spatially
or temporally consecutive are first analyzed to obtain cell slice to cell slice
similarity measures exploiting context information. For every such pair of
images, we build a graph on one of the images with individual cells as the
nodes and neighboring nodes sharing an undirected edge between them. We
further define a Conditional Random Field (CRF) on the graph, the probable
states of each node being the candidate cell correspondences from the next
image. A distance defined on the physical features extracted from a cell
and that of each of its candidate matches is used to constitute the node
potential. The spatial context is modeled on each of the edges based on the
relative location of the cell and its neighbors by utilizing the tight spatial
topology of the cell clusters. The approximate marginals for each node are
obtained by a Loopy Belief Propagation scheme. Treating these marginals as
similarity measures between a cell slice to its spatial/temporal candidates, we
further propose an optimal graph labeling problem for generating complete
4D spatio-temporal correspondences. It is posed as an optimization problem
that minimizes the ‘risk’ of associating pairs of cell slices on the entire data-set
constrained by a set of feasibility criteria that are specific to such problems.
The overall tracking pipeline is shown in Fig. 2.

1.2. Organization

The rest of the paper is organized as follows. An overview of the method
is given in Sec. 2. The mathematical and algorithmic details of the different
components of the proposed method are provided in Sec. 3 and Sec. 4. The
experimental results are presented in Sec. 5 followed by concluding discussion
and future research directions in Sec. 6.
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Figure 2: Proposed cell tracking framework - different sequential components in the pro-
posed method. The input to the method is a Watershed segmented and registered 3D
or 4D image stack. For temporal tracking only, the next stage is detection of possible
cell division events. The tracking is done sequentially on pairs of spatially or temporally
consecutive slices. For any of such pairs, once the cell divisions are detected, we remove
the parent and children cells from the respective segmented images and build a graph
on one of the images of the pair based on neighborhood structure around each cell with
individual cells as nodes in the graph. The candidate matches for each cell is found from
the other image in the pair under consideration (for details, see Sec. 3.1). The graph is
then represented as an CRF. The node and edge potentials are computed using methods
described in Sec. 3.5 and Sec. 3.6 and finally the marginal posteriors on the states of
individual nodes are estimated using loopy belief propagation. These steps are repeated
for every sequential pairs of images in the stack (along ‘z’ and ‘t’). Finally, for a 4D im-
age stack, optimal spatio-temporal correspondences in the entire stack is obtained using
these computed marginals in a graph labeling problem under a set of feasibility constraints
(Sec. 4).
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2. Overview of The Proposed Method

As mentioned earlier, many animal and plant tissues (such as the shoot
meristem of a plant, epithelial tissues in animals) are a collection of tightly
packed small cells arranged in clonally different layers forming a solid 3D
structure. To visualize the internal parts of these 3D structures we employ
imaging techniques such as Confocal Laser Scanning Microscopy (CLSM)
that generates serial optical cross sections of the tissue at various focal planes,
thereby generating a 3D stack of images, each containing tightly packed
2D cross sections of 3D cells. In case of time-lapse ‘live cell imaging’, the
same tissue is imaged at successive time points resulting in a collection of a
number of such 3D stacks. 2D segmentation techniques (such as Watershed)
are employed to segment out individual 2D cell cross sections on each of the
confocal slices. The problem of finding correspondences between such 2D cell
slices along the depth of the tissue is called ‘spatial tracking’, analogous to
the ‘temporal tracking’ problem where such correspondences are estimated
between slices of the same cell at successive observational time points. The
objective of this work is to provide a solution strategy to the general spatio-
temporal tracking problem in a 4D confocal image stack.

The 2D slices of the cells in the tissue are already registered in one 3D
stack. We can also register cell slices across time between any two image
slices (Fig. 1) of the tissue. This ability to register cell slices across space
and time, along with the fact that the relative positions of the centroids of
two neighboring cells in the tissue do not vary substantially across both time
and space motivate us to pose the problems of spatio-temporal cell tracking
as a graphical inference problem.

2.1. Graph Structure

As can be seen in Fig. 3, a graph can be built on top of every slice image
in the tissue. The nodes of the graph would be the cells (or more precisely,
the centres of the cells) and each of the immediately neighboring cells would
share a link/edge between them. In spatial tracking, each of these cells can
either have a correspondence to one of the cell slices in the next z-slice or they
can have no correspondence - in case the cell ends in the present image slice
and not imaged in the deeper slice. Also, in case of temporal tracking, a cell
might be out of Field-of-View (FoV) or not detected because of noise in the
image. Thus, a candidate set of cell slices from the subsequent image can be
estimated for each cell in the image slice on which the current graph is built
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Figure 3: Graph Structure. (A) For tracking cells between two spatially and temporally
consecutive image slices, a graph is built on one of the images, where the nodes of the
graph are the segmented cells and two neighboring cells share an edge between them. For
temporal tracking, the cells undergoing division are aet aside before constructing the graph.
(B) From the next image slice, the candidate matches for each cell in A are estimated.
Again, for temporal tracking, the children cells after division are also removed from the
image and the candidate set of best ‘K’ states for each node in A is estimated through a
search in B in a spatial window around the location of each of the nodes in A. A ‘K+1’th

state is added to each of the candidate sets corresponding to the case that the cell is not
imaged or poorly imaged in B, referred to as the ‘No Match’ state in the figure. Now the
graph is expressed as a CRF, where the node potentials are computed based on feature
distances between each node and its candidates (see Sec. 3.5)and the edge potentials are
computed based on the relative locations of the neighboring nodes in A and the same
between any two cells in B from within their respective candidate sets in B (Sec. 3.6).

and this candidate set can be considered as the set of all possible states/labels
for a certain node in the graph. An additional state, corresponding to the
case that the cell is not imaged in the next confocal plane or next time point
needs to be included in this set. Additionally, for temporal tracking, we first
detect the cell division events across the two images (Fig. 4) and then build
the graph with the rest of the cell slices in the first image as the nodes. The
details on how the graph is formed and the set of states/labels for each node
is ascertained are given in Sec. 3.1.
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2.2. Computation of Potential Functions

As we have mentioned earlier, the relative positions of the centroids of the
neighboring cell slices do not vary a lot in short time intervals or along z and
hence the knowledge of the most probable state for any cell can substantially
aid in estimating the maximum likely state for its neighboring cells. We
consider the graph just formed as a ‘Conditional Random Field’. The node
potentials in the CRF are computed based on the shape similarity between a
cell slice and each of its candidates along with their relative centroid locations.
The edge potentials are obtained based on similarity between the relative
positions of two neighboring nodes and that of their any two candidate cells’
centroids in the successive slice or time point. The details of the node and
edge potential computations are described in Sec. 3.5 and Sec. 3.6.

2.3. Computation of Marginal Posteriors: Pairwise Similarities Between Cell
Slices

Once the graph is formed and the necessary potential functions computed,
the next step is to design a strategy on this graph to estimate the marginal
posteriors for each of the nodes - how likely it is for a node to associated to
each of its candidates. We employ a ‘Loopy Belief Propagation’ (LBP) based
on the well known ‘Sum-Product’ algorithm [17] for this purpose. In Sec.
3.7, we show the iterative parallel inter-node message updation strategy in
the traditional sum-product scheme and compute the marginals.

2.4. Complete Spatio-temporal Cell Tracking: the Optimal Graph Labeling
Problem

Once the marginal for each node (cell) is estimated between every pair
of spatially/temporally consecutive images in the stack, the next problem
is to generate spatio-temporal associations between all these 2D cell slices.
Similarity measure between any two such 2D cell slices is obtained from
the computed marginals. A 4D graph is built by combining all the pairwise
graphs (as discussed in Sec. 3.1) and removing links between cells in the same
image slice. The spatio-temporal tracking problem is now posed as the prob-
lem of optimally putting labels (1 - correspondence, 0 - no correspondence)
on the edges of this graph so that the risk of labeling an edge is minimized
and simultaneously satisfying a set of feasibility constraints (Sec. 4.1). An
integer program is formed for this purpose and a greedy gradient descent
strategy (Sec. 4.2) is proposed as a solution to the labeling problem. The
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final set of labels, thus obtained, is the spatio-temporal tracking result in the
4D stack.

3. Graphical Model Design and Inference

3.1. Graph Formation on 2D Segmentations

Let us define the problem to be to find correspondences between the
cells in two segmented confocal image slices IG and IM . The Watershed
segmentation of IG and IM produces two sets of cell segments ΩG and ΩM

respectively. Thus, the set of observations is given as

O = ΩG ∪ ΩM , (1)

which comprises of 2D Watershed segmentations of both IG and IM . How-
ever, for temporal tracking, we first detect if some cells form IG have divided
into pairs of cells in IM following the method described in Sec. 3.3 and re-
move the parent cells that has undergone division from ΩG and the divided
children from ΩM . The graph and the candidate states of each node of the
graph are thereafter formed using the remaining subsets of cells VG and VM
containing NG and NM cells respectively, i.e. the remaining cells

v1G, v
2
G, · · · v

NG
G ∈ VG ⊆ ΩG

v1M , v
2
M , · · · v

NM
M ∈ VM ⊆ ΩM (2)

The graph is built on IG and the set of nodes VG is same as the set of
segmented cells. Any two nodes viG and vjG will have an edge between them
if viG and vjG are spatial neighbors. For tightly packed cluster of cells, viG and
vjG are neighbors if they share a common boundary and thus the set of all
neighbors of a cell viG would be

N(viG) = {vjG s.t. viG and vjG share common boundary}. (3)

Thus, we can represent the graph gG on IG as an adjacency matrix AG

between the nodes,

AG (i, j) = 1 iff vjG ∈ N
(
viG
)
,

= 0, otherwise (4)
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3.2. Determination of Candidate States For Every Node

For finding correspondences between cells across two segmented slices IG
and IM , the graph is built on the slice IG following Sec. 3.1. Each node in
the graph, corresponding to each cell slice viG represents a random variable xi

that can take a label from the set Si
G which is the set of K closest segments

in the slice IM around the point ciG, the centroid of viG on IG. Therefore,

Si
G = {si1, si2, · · · siK} (5)

where, sik ∈ VM ∀k = 1, 2, · · ·K and

||cs
i
1
M − ciG||≤ ||c

si2
M − ciG||· · · ||c

siK
M − ciG||

≤ ||cs
i
j

M − ciG|| ∀ j ∈ {1, 2, · · ·NM}, j /∈ Si
G (6)

We can safely assume that the actual tracked cell slice in IM would be
amongst the K closest cells, as IG and IM are already registered.

Now, we add an additional label si0 to the candidate set Si
G that represents

the case where the cell slice viG is not imaged in the slice IM . Thus, the
complete set of candidate states becomes

Si
G = {si0, si1, · · · siK}. (7)

Set of Neighboring Cells for Tissues Where Cells Are Not Tightly Packed
For the datasets under study in this paper, cells are tightly packed and the
neighboring cells share common boundaries. However, for experimentation
with other datasets, where the cells are generally not compactly arranged,
this set can be represented as

N(viG) = {vjG s.t. ||ciG − cjG||2≤ th}, (8)

where ciG and cjG are the centroids of viG and vjG respectively. th is a dis-
placement threshold that can be learned from a set of training images as
a constant (say 1.5) times the maximum displacement observed between a
cell and its match in pairs of images. Note that this value can vary across
different datasets.

3.3. Cell Division Detection

To detect cell divisions before forming the graph gG in temporal tracking,
we first compute the candidate sets Ci

G in IM for a segmented cell slice
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Figure 4: Cell Division Detection. (A) Two segmented image slices one time point apart.
(B) The ellipses in image at T mark the parent cell that have undergone divisions between
time points T and T+1 and those at time point T+1 mark the children cells after division.

ωi
G ∈ ΩG following similar method as in Eqn. 6. Next we form all possible

pairs of the candidate cells from Ci
G that share a boundary as in

Di
G =

{
(cdip, cd

i
q) s.t. cd

i
p ∈ N(cdiq) and cdip, cd

i
q ∈ Ci

G

}
. (9)

Now, if the cell ωi
G has divided into two children cells cdip and cdiq, then ideally

the shape of ωi
G should be very similar to the combined shape of cdip and cdiq,

taken together (i.e. to the shape of cdip ∪ cdiq) and each of cdip and cdiq would
be approximately half the size of ωi

G. Motivated by this physical property
associated with cell division, we compute a Modified Hausdorff Distance
(MHD) metric to estimate the shape similarity between b(ωi

G) and b(cdip∪cdiq),
where b is the set of boundary points on a shape, when the point coordinates
are recomputed with respect to the shape centroid. With these, we compute
a set of distances as

(10)
d(ωi

G, D
i
G) =

1

t1
MHD(b(ωi

G), b(cdip ∪ cdiq))

+
1

t2

[∣∣∣∣12 − area(cdip)

area(ωi
G)

∣∣∣∣ +

∣∣∣∣12 − area(cdiq)

area(ωi
G)

∣∣∣∣] .

If min d(ωi
G, D

i
G) ≤ 1, then it is inferred that the cell ωi

G has divided
into a pair of cells (cdip, cd

i
q) for which this minimum is obtained. The values
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Figure 5: Shape descriptor for individual cells. Cell 41 at time point T has cells 26, 39
and 44 as candidates for correspondence at time T+1. The correct correspondence for 41
at T is 39 at T+1. In the left column of figure, the correct correspondence is shown in
green arrow whereas the the incorrect ones are shown in red. Shape histogram descriptors
are computed for each cell following the method described in Sec. 3.5. As expected, the
histogram for 41 at T is very similar to that of 39 at T+1 and the descriptors for the other
two candidate cells are very different.

of the parameters t1 and t2 are learnt from a training image set and the
details of parameter learning is described in Sec. 5.4.

Once the cell division events are detected for one or more cells in IG, the
graph gG is constructed using the methods described in Sec. 3.1 and Sec. 3.2
after eliminating the parents undergoing division and the divided children
cells from ΩG and ΩM respectively and forming VG and VM .

3.4. Conditional Random Field Modeling

Let the set of random variables associated with viG beX = {x1, x2, · · ·xNG},
which are to be estimated given the observation IM . These random variables
correspond to the state of each node in the graph and the support for each
of these variables is the candidate set as discussed in Sec. 3.2.

Then the overall CRF is expressed as

P (X;O) = exp (−E(X;O))/Z

= exp

− ∑
c∈clq(X)

Ec(X;O)

/Z, (11)

where Z is the partition function and E is the energy function defined on all
the cliques of the graph, which can be further split into individual nodes and
edges as
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(12)E(X;O) =

NG∑
i=1

Ei (xi;O) +

NG∑
i=1

∑
j:vjG∈N(viG)

Eij(xi, xj;O).

Then,

P (X;O) =
1

Z

NG∏
i=1

exp (−Ei(xi;O)) ·∏
(i,j)

: vjG∈N(viG)

exp (−Ei,j(xi, xj;O))

=
1

Z

NG∏
i=1

φi(xi;O) ·∏
(i,j)

: vjG∈N(viG)

ψi,j(xi, xj;O) (13)

Here φi represents the node potential of any node viG in gG, and ψij is
the edge potential from node viG to node vjG. If we are only interested in
tracking cells between any two image slices, we have to maximize P (X;O)
to estimate the optimal states for every node. Towards that objective, we
first estimate the approximate marginal distributions P (xi;O) at each node
using belief-propagation scheme as described later. The optimal states that
maximize the posterior distribution could be then estimated by maximizing
the marginals independently.

3.5. Computation of Observation/Node Potential:

The node potential is defined on every node of the graph, which is the
likelihood on the label taken by a node belonging to VG, given the observa-
tion O. It is analogous to the probability distribution of any node viG being
assigned to each of its candidate states. This distribution is computed in-
dependently for each node based on its shape similarities and proximities in
location of its centroid from each of its candidates.

For measuring similarities between cell shapes, we generate a shape his-
togram descriptor for each of the cells, which is very similar to one of the
methods described in [1]. First we recompute co-ordinates of a cell’s periph-
eral points by shifting the origin to the cell’s centroid. Next, we partition
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the x-y plane into 8 angular sectors centred at the origin and compute the
mean Euclidean distances of the peripheral points falling into each of these
partitions from the origin. The set of this distances forms a 8 bin histogram
descriptor for the shape of a cell, the angular sectors being sorted counter
clockwise from x-axis. Note that, unlike the classical shape histograms of this
sort [1], we compute mean distances from each sector instead of counting the
number of points, as the latter gives us scale invariance and may lead to a
high match score between a legitimate cell and a small region generated by
over-segmentation on noisy images. Some sample descriptors of a cell and
its candidates for correspondence are given in Fig. 5.

Let the shape histogram associated with the cell slice viG be hiG and that
with the candidate slice sij be hjM (as sij ∈ VM). We computed the K-L

divergence (KLD) between hiG and hjM which gives us a distance measure
between these two cell slices and suppose it is represented as di1

(
viG, s

i
j

)
,

di1
(
viG, s

i
j

)
= KLD

(
hiG, h

j
M

)
. (14)

We also compute the distances between the centroids of a cell slice in IG
and each of its candidates in IM and the distance is given by,

di2
(
viG, s

i
j

)
= ‖cs

i
j

M − ciG‖2 . (15)

Hence, the overall distance between a cell slice viG and one of its candidates

v
sij
M is expressed as a combination of normalized d1 and d2 as

di
(
viG, s

i
j

)
= w

di1
λ1

+ (1− w)
di2
λ2
, 0 ≤ w ≤ 1 . (16)

The corresponding node potential for each node is

φi

(
xi = sij;O

)
= exp

(
−di(viG, sij)

)
∀j = 1, 2 · · ·K (17)

and

φi

(
xi = si0;O

)
= 1−max

j

{
φi

(
xi = sij;O

)
, j = 1, 2, · · ·K

}
(18)

The normalization parameters λ1 and λ2 (in Eqn. 16) are learnt from a
training dataset. See Sec. 5.4 for details on parameter estimation.
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3.6. Computation of Spatial Context/Edge Potential:

This potential function is defined on edges connecting pairs of neighbor-
ing nodes and is representative of the conditional distribution P (xj|xi,O).
The computation of the potential function depends on the fact that if two
neighboring cells viG and vjG are tracked to two cell slices vpM and vqM , then
the relative position of vjG with respect to viG should be very similar to that
of vqM and vpM . As a result, if viG is tracked to vpM then the probability that
vjG corresponds to vqM gets boosted if

cjG − ciG ≈ cqM − cpM , (19)

where ciG, c
j
G, c

p
M , c

q
M be the centroids of viG, v

j
G, v

p
M , v

q
M respectively. Clearly,

the additional evidences for matching two cell slices in IG and IM comes in
the form of local neighbourhood structure based contextual information.

Thus, the contextual transition potentials between any two nodes viG and
vjG taking non-zero states can be expressed as a function of the shift between
the relative positions of those nodes

(20)
ψi,j

(
xi = sip, xj = sjq;O

)
= exp

{
−γ‖(cjG − ciG)− (c

sjq
M − c

sip
M)‖2

}
∀p, q = 1, 2, · · ·K, where sip ∈ Si

G, s
j
q ∈ S

j
G and i, j 6= 0.

Now, in both spatial and temporal tracking, there is one more state si0
for every node i that corresponds to the case that the particular cell is not
imaged in the successive slice (spatial or temporal). Thus, the transition
potentials must also incorporate the case where one of the cells is not tracked
and its neighboring cell is matched to one of the cells in the next slice or not
matched to any cell and vice versa. Incorporating these values, the complete
edge potential function between any two neighboring nodes viG and vjG would
be

ψi,j

(
xi = si0, xj = sjq;O

)
=

1

K + 1
∀q = 0, 1, · · ·K . (21)

This corresponds to the case when viG is not matched to any cell in IM . When
both the cells viG and vjG have correspondences in the subsequent spatial or
temporal image IM ,

(22)
ψi,j

(
xi = sip, xj = sjq;O

)
= exp

{
−γ‖(cjG − ciG) − (c

sjq
M − c

sip
M)‖2

}
,
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for p, q 6= 0.
Finally, when viG has a match in the next spatial or temporal image slice

IM , but its neighbour vjG does not, then the corresponding edge potential
entries become

ψi,j

(
xi = sip, xj = sj0;O

)
= 1−max

q

{
ψi,j

(
xi = sip, xj = sjq;O

)
, q = 1, 2, · · ·K

}
(23)

for p 6= 0.

3.7. Loopy Belief Propagation: Estimation of Marginals

The next step involves the computation of the marginal probability dis-
tributions for the states xi of each node viG ∈ VG, given the observations
O. For computation of the marginals at each node, we choose to use a very
popular local message-passing algorithm known as Belief Propagation (BP)
[27]. Since there are many loops or cycles in our graph, the algorithm is
called a Loopy Belief Propagation (LBP). This is an iterative algorithm and
at lth iteration, each node viG computes a message to be sent to each of its
neighbors and the message sent to vjG ∈ N(viG), according to the popular
Sum-Product algorithm [17], is,

m
(l)
i,j(xj) = α

∑
xi

ψi,j(xi, xj;O)φi(xi;O)
∏

xk:v
k
G∈N(viG)\vjG

m
(l−1)
k,i (xi)


where α is a normalizing constant. Note that the updation strategy employed
here is parallel, i.e. all the edges in the CRF are updated simultaneously in
each iteration.

Also, at each iteration l, each node viG produces an approximate marginal
distribution

P (l)(xi;O) = αφi(xi;O)
∏

xj :v
j
G∈N(viG)

m
(l)
j,i(xi) (24)

For a tree type graph, these approximate marginal distributions are guaran-
teed to converge to the true marginals, but for a graph as ours that contains
multiple loops there is no guarantee of convergence of the LBP [28]. However,
in literature, such as [25], LBP has shown very good empirical performance
and in most of our experiments the method converged very quickly.
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4. Optimal Data Association: Combining Spatial and Temporal
Cell Tracking and Resolving Association Ambiguities

Once the marginal posterior distribution for every cell is computed via
LBP, the next step is to infer the optimal states for individual cells (candi-
dates) from these computed marginals. If tracking is performed along either
of the two dimensions ‘z’ or ‘t’, the MAP estimates on these marginals would
give us the optimal correspondences, i.e.

x̂i = argxi
max P (L)(xi;O) (25)

where ‘L’ being the iteration when LBP converges and this optimum state
corresponds to either the ‘no-match’ case or a specific cell in IM .

However, when the tracking problem is multidimensional in nature, op-
timal or unambiguous tracking result may not be attained by simply max-
imizing the marginals between every spatially/temporally consecutive im-
age slices. Spatial and temporal correspondences obtained by choosing the
most similar candidate for each cell independently between every pair of im-
ages might not conform to one another and in turn, can lead to infeasible
spatio-temporal mappings. It can be noted that in spatio-temporal tracking,
multiple paths of correspondences may exist between cells from any two im-
age slices and all these paths must point to the same correspondence maps
between individual cells.

To achieve a feasible and optimal spatio-temporal tracking result, we pose
the problem of combined data association as a graph labeling problem. A
4D graph is formed by combining all graphs formed for the pairwise tracking
problem (along both ‘z’ and ‘t’), only the edges between nodes (cells) from
the same image slices being removed. A schematic of an example of the 4D
graph structure is shown in Fig. 6(A).

Further, the graph labeling problem is posed as an optimization problem
designed on the marginal distributions obtained as a result of belief propaga-
tion in Sec. 3.7, constrained by a number of feasibility criteria. We first define
the terminologies associated to this problem that would be used throughout
the rest of the section, before delving deeper into the problem formulation.

1. Label: A 0/1 binary value assigned to each of the edges in the 4D
graph. Label ‘1’ is assigned to the edge between two nodes/cells in the
graph when those two cell slices have a spatial/temporal correspondence (‘0’
otherwise). The optimization problem that targets to estimate these labels
on the 4D graph is the aforementioned ‘graph labeling problem’.
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Figure 6: (A) A schematic showing the structure of the 4D graph for final spatio-temporal
association problem. Each of the square blocks are analogous to a confocal image slice
and the colored circles represent individual 2D cell-slices that have spatio-temporal corre-
spondences across ‘z’ and ‘t’. The colored circles represent 2D cell slices and circles with
same color across slices have correspondences (such as ni and nj). Every cell (circle) is
connected to its candidate matches across slice via an edge (all possible edges are not
shown for clarity). It can be noticed that a cell can have correspondence across both ‘z’
and ‘t’. Each edge can have a label (l(ni, nj)) of 0 or 1 following certain feasibility and
optimality conditions and finding the optimal set of labels is the target of the graph la-
beling problem. (B) Some examples of anomalous/infeasible association results are shown
on a subset of edges. The label of the edge (R1, R4) is 0 (no association) and (R4, B1)
is labeled 1 (association). Now, l(R1, R4) has to be 1 to preserve constraint 2 (Eq. 30)
and then (R4, B1) would be labeled 0 to satisfy constraint 1 (Eq. 29). Similarly, (G4, B3)
and (G4, G3) - both cannot be 1 (associated) simultaneously as one-to-many association
is prohibited between cells of any two image slices. So, following constraints 1 and 2, label
of (G4, B3) must be changed to 0.
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2. Path: A ‘path’ in a graph between two nodes (ni and nj) is a set
of edges that connect ni and nj, without traveling through the same node
twice. A path between ni and nj can be represented as the set of edges
p (ni, nj) = {(ni, i1), (i1, i2), · · · (ik, nj)} where {i1, i2, · · · ik} is the set of
intermediate nodes on the path between ni and nj. Note that, for the present
purpose, we do not consider the direct link connecting two nodes a path
between these two nodes.

An undirected edge connecting the nodes ni and nj is represented as the
pair (ni, nj) and the set of all such edges on the graph is E , i.e. (ni, nj) ∈ E .
Label on the edge (ni, nj) is represented as l(ni, nj) and the set of labels on
all the edges in the graph is L, i.e. l(ni, nj) ∈ L. Finally, the set of all paths
between any two nodes ni and nj is represented as P(ni, nj) and any path
p(k)(ni, nj) ∈ P(ni, nj).

4.1. The Graph Labeling Problem

For any node (cell slice) ni, the computed marginal posterior over the
candidate set is P (L)(xi;O). Now, in the constructed 4D graph, the candidate
nodes are connected to ni via edges. A similarity measure between node ni

and one of its neighboring candidate node nj can be defined on the edge
(ni, nj) as

π(ni, nj) = P (L)(xi = nj;O) (26)

The risk of assigning a label l(ni, nj) ∈ {0, 1} on the edge (ni, nj) can be
defined as

r(ni, nj) = | l(ni, nj)− π(ni, nj) | (27)

Therefore, we can write a loss function Rl on the entire graph as

Rl =
∑

(ni,nj)∈E

| l(ni, nj)− π(ni, nj) |, l(ni, nj) ∈ {0, 1} (28)

which we have to minimize with respect to the edge labels to obtain the op-
timal label set Lopt, under a set of problem specific feasibility constraints. A
schematic containing some example associations that violate such feasibility
constraints is presented in Fig. 6(B). The constrains are, as follows.

Constraint 1: A cell from any confocal image slice in the 4D stack can
have at most one correspondence from another spatially/temporally neigh-
boring image slice. Mathematically, if V t1

z1
and V t2

z2
are the sets of nodes on
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two segmented image slices that are spatially/temporally adjacent in the 4D
stack and contain cellular correspondences, then∑

nj∈V
t2
z2

l(ni, nj) ≤ 1 ∀ni ∈ V t1
z1
, l(ni, nj) ∈ {0, 1} (29)

This relationship holds true for the problem at hand as the cell division events
are pre-detected and the graph is formed on the cells as nodes that do not
contain the parent and children cells after division.

Constraint 2: Between the nodes ni and nj that share an edge in the
graph, if there exists at least one path p(k)(ni, nj) ∈ P(ni, nj) which has
all the component edges labeled as 1, then the label on the edge (ni, nj)
must also be 1. This constraint can be mathematically expressed as a linear
inequality

l(ni, nj) ≥

 ∑
(i1,i2)∈p(k)(ni,nj)

l(i1, i2)

 − #
(
p(k)(ni, nj)

)
+ 1 (30)

∀p(k)(ni, nj) ∈ P(ni, nj) and l(ni, nj) ∈ {0, 1}, where #
(
p(k)(ni, nj)

)
is the

cardinality of p(k)(ni, nj), i.e., the number of edges in the path.
Thus, by combining the objective function in Eqn. 28 with the feasibility

constraints in Eqn. 29 and Eqn. 30 we pose the overall optimization problem
as,

argLmin
∑

(ni,nj)∈E

| l(ni, nj)− π(ni, nj) |

subject to
∑

nj∈V
t2
z2

l(ni, nj) ≤ 1 ∀ni ∈ V t1
z1
,

l(ni, nj) ≥

 ∑
(i1,i2)∈p(k)(ni,nj)

l(i1, i2)

 − #
(
p(k)(ni, nj)

)
+ 1

∀p(k)(ni, nj) ∈ P(ni, nj) and l(ni, nj) ∈ {0, 1}
(31)
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Algorithm 1 A gradient descent algorithm for the graph labeling problem
Input: The 4D graph G = (V, E), similarity scores π(ni, nj) for every edge
(ni, nj) ∈ E
Output: The optimum and feasible set of labels Lopt = {l(ni, nj) ∀(ni, nj) ∈ E}
Initialization: L = {l(ni, nj) ∀(ni, nj) ∈ E} ← {0, 0, · · · 0}, Eopen ← E
while Eopen is not empty do

for all (ni, nj) in Eopen do
∆r(ni, nj)← 1− 2 ∗ π(ni, nj)

S
(ni,nj)
l ← {(np, nq) ∈ Eopen s.t. if l(ni, nj) is set to 1 then l(np, nq) must

also be 1 to satisfy Eq. 30, (i, j) 6= (p, q)}
if S

(ni,nj)
l is not empty then

∆r
′
l(ni, nj)←

∑
(np,nq)∈S

(ni,nj)

l

(1− 2 ∗ π(np, nq))

end if
∆RT (ni, nj)← ∆r(ni, nj) + ∆r

′
l(ni, nj)

end for
(nk1 , nk2)← arg(ni,nj) min ∆RT (ni, nj) ∀(ni, nj) ∈ Eopen
if ∆RT (nk1 , nk2) < 0 then
l(nk1 , nk2)← 1
Sk1
0 ← {(nk1 , nr) ∈ Eopen ∀nr belonging to the same image slice as nk2}
Sk2
0 ← {(nt, nk2) ∈ Eopen ∀nt belonging to the same image slice as nk1}
Eopen ← Eopen \

[
Sk1
0 ∪ S

k2
0

]
if S

(nk1
,nk2

)

l is not empty then

for all (np, nq) in S
(nk1

,nk2
)

l do
l(np, nq)← 1
Sp
0 ← {(np, nr) ∈ Eopen ∀nr belonging to the same image slice as nq}
Sq
0 ← {(nt, nq) ∈ Eopen ∀nt belonging to the same image slice as np}
Eopen ← Eopen \[Sp

0 ∪ S
q
0 ]

end for
end if

else
break

end if
end while
Lopt ← {l(ni, nj) ∀(ni, nj) ∈ E}
return Lopt
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4.2. Proposed Solution Strategy

The graph labeling problem presented above is a non-linear binary integer
program. In this section, we propose a greedy gradient descent method for
finding a solution to the problem (see Algorithm 1). The algorithm starts
with an initial label set Linit = {0, 0, · · · 0} and a small number of labels
are changed at every step following the feasibility constraints so that there
is maximum reduction in the reduction of loss function from the previous
step. Once the label of an edge is changed from its initial value 0 to 1, it is
fixed and cannot be changed further. This process is continued until either
of the stopping criteria is reached - 1. There is no further reduction in the
loss function if label of any remaining edges is changed to 1, 2. Labels of
any remaining edges cannot be changed to 1 without violating the feasibility
constraints. The final set of labels (Lopt), thus obtained, is the solution to
the graph labeling problem (Eqn. 31) and the final spatio-temporal tracking
result.

5. Experimental Results

5.1. Data Collection and Preprocessing

For the experiments performed in the present study, the 3D structure of
the tissues are imaged using single-photon confocal laser scanning microscope
and we have specially dealt with the ‘Shoot Apical Meristem’ (SAM) of the
plants that showcase all the challenges associated with any spatio-temporal
cell tracking problem in a tightly packed multilayer tissue. The SAM of
Arabidopsis Thaliana consists of approximately 500 cells and they are orga-
nized into multiple cell layers that are clonally distinct from one another. By
changing the depth of the focal plane, CLSM can provide in-focus images
from various depths of the specimen. To make the cells visible under laser,
fluorescent dyes are used. The set of images, thus obtained at each time
point, constitute a 3-D stack, also known as the ‘Z-stack’. Each Z-stack is
imaged at a certain time interval (e.g. 3-6 hours between successive observa-
tions) and it is comprised of a series of optical cross sections of SAMs that
are separated by approx. 1.5-2 µm. A standard shoot apical meristematic
cell has a diameter of about 5 - 6 µm and hence in most cases, a single cell is
not visible in more than 3-4 slices when the tissue is sparsely imaged at the
aforementioned z-resolution to avoid photodynamic damage to the cells.

Each 2D image slice in the 4D confocal image stack is further segmented
into individual cell slices. The choice of the 2D segmentation algorithm is
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largely data-specific. For our experiments on the SAM tissues, we use an
adaptive Watershed segmentation method [24] that learns the ‘h-minima’
threshold directly from the image data so that a uniformity in cell sizes is
maintained as a result of the segmentation. This method works satisfac-
torily for SAM cells as, in general, all SAM cells on a 2D confocal slice
have similar sizes. This 2D segmentation method is also robust to over and
under-segmentation errors to a large extent. Some examples showing the
performance of the segmentation method on good and bad quality confocal
images can be found in the supplementary materials.

The image slices in one single 3D confocal stack is already registered be-
cause of minimal movement of the tissue specimen during imaging at any
given time point of observation. However, during successive observations the
specimen is moved in and out of the imaging setup which causes rotation and
shift of the imaged 3D stack from that at the previous time point. Thus, the
image slices in successive time points have to be registered prior to the cell-
tracking. The dataset-1 was given to us preregistered and for experimental
dataset-2, we register the cell slices across time between any two confocal im-
ages of the tissue using a ‘local graph’ based registration technique [23]. This
is a fully automated landmark based registration method that finds out cor-
respondences between the two image slices and utilizes these correspondences
(landmarks) to register one image to the other.

5.2. Tracking Results and Analysis

We have tested our proposed cell tracking method 1 on two 4D confocal
stacks of Arabidopsis SAM. The details of CLSM imaging for generating the
raw data is described in Sec. 5.1. The first dataset contains 3D stacks of
Images observed every 3 hours and in the second dataset, the 3D image-
stacks are taken every 6 hours. In both the datasets, the z-resolution in each
3D stack is 1.5µm.

5.2.1. Temporal Tracking on Dataset 1

Fig. 7 shows a typically obtained result for temporal tracking in the
Dataset 1. Fig. 7(A) shows raw confocal image slices at a depth of 3 µm
from the tip of SAM through 6 consecutive time points (3rd to 18th hours).
Although the images are registered, because of the growth of the cells in the

1The cell tracking source code is available for download from the authors’ website at
http://www.ee.ucr.edu/~amitrc/bioimageanalysis.php.
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Figure 7: Results on the temporal tracking on Arabidopsis SAM live imaging dataset with
time resolution of 3 hours. (A) Raw confocal image slices at 3 µm deep into the tissue
imaged every 3 hours from 3rd hour of observation to 18th hour. (B) Temporal tracking
result shown by color coding the cells. The same cells are marked with the same color.
After cell division, the children cells are marked with the same color as their parent, also
a red dot is put at the center of each of the children.

tissue there are local shifts in the cells’ positions, which makes the task of
temporal tracking more challenging. The segmentation and tracking results
for these slices are shown in Fig. 7(B), where the slices of one cell across
different time points are marked with the same color. We have also marked
the 12 cell division events detected by the tracker on the same images. The
children cells are marked with red dots and they share the same color with
their parent cell. The result portrays the typical high value of accuracy we
obtain through our tracker to generate temporal cell lineages.

5.2.2. Combined Spatio-Temporal Tracking on Dataset-1

The effect of the 4D graph labeling stage towards improvement of spatio-
temporal tracking results is shown in Fig. 8. A sample 2X2 block of images
are shown, which contains two spatially neighboring image slices at each of
two consecutive time points of observation. Pairs of image slices are chosen
and CRFs are formed for each of the pairs (I11 − I12, I12 − I22, I21 − I22 and
I11−I21). Now, marginal posteriors are estimated using LBP and MAP infer-
ences are drawn to generate pairwise correspondences. When these pairwise
associations are combined together, spatio-temporally infeasible associations
are observed for a number of cells. For example, correct associations are
found between cell 15 in I11 and cell 20 in I12, cell 20 in I12 and cell 25 in
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Figure 8: Effect of the 4D graph labeling stage towards improvement of spatio-temporal
tracking results. The figure shows a spatio-temporal 2X2 block of confocal images. Pair-
wise assignments between cells in spatial or temporal pairs of images are obtained by per-
forming MAP inference on graphs formed on every image slice. Infeasible 4D assignments
are observed when these pairwise associations are combined over the stack. Examples of
such infeasibilities are shown for some cell slices. The solid arrows represent correct asso-
ciations between cell slices and the dotted arrows depict no association which is incorrect
and cause the infeasibility. Our proposed optimal graph labeling approach corrects these
infeasibilities by establishing the associations.
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Table 1: Tracking Result Summary: Dataset 1

TP FP TN FN

Spatial 86.5% 0.25% 12.13% 1.12%
Temporal 83.9% 0% 14.66% 1.44%

Division (L1) 31/33 0 - 2/33

I22, cell 25 in I22 and cell 18 in I21. Therefore, for spatio-temporal feasi-
bility, cell 15 in I11 and cell 18 in I21 must also be associated. However,
according to the aforementioned MAP inference, no associations for cell cell
15 from I11 is found in I21. Similar infeasibilities are observed for cell 44
in I11. The spatio-temporal graph labeling problem (Sec. 4), when applied
on the previously computed marginal posteriors for pairs of images, corrects
these infeasibilities and establishes the associations.

We perform spatial cell tracking across the depth of the 3D confocal
image stacks and combine them with temporal tracking of the same cells
across time in Fig. 9 using the strategy described in Sec. 4. We sample three
consecutive spatial slices from confocal stacks at 4 different time points (at
12th, 15th, 18th and 21st hours of observation) and the tracking result for them
are shown. The 2D slices coming from the same 3D cell are correctly tracked
for all the cells across 4 different time instants and are marked with the same
color. It can be observed that slices of new cells appear as we go deeper
into the tissue and as expected, they are not matched to any cell from the
slice above. Again, because of the growth in tissue over time, some new
cells become visible in the chosen focal planes and the tracks are initialized.
In such cases, these cell slices or tracks are initialized with a new label (a
random color as in this figure) and each of their correspondences are shown
in the next deeper slice and in the next observational time points.

The complete tracking result on dataset 1 (7 slices and 12 time points) is
summarized quantitatively in Table 1. We split the results in four different
classes, True Positive (TP), False Positive (FP), True Negative (TN) and
False Negative (FN). TP corresponds to the cases where two cell slices are
correctly matched either in space or time. When cell slices from two different
cells are incorrectly matched together, it falls under FP. When the tracker
fails to pick up a correct correspondence, it is represented by FN and its
opposite case is tabulated under TN. From Table 1, it can be seen that for
spatial tracking, the correctly tracked cases (TP and TN combined) is as
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Figure 9: Results showing combined spatio-temporal tracking on Arabidopsis SAM dataset
1. A number of cells are tracked across four time points of observation (12th, 15th, 18th and
21st hours). Three image slices (raw images can be found in the supplementary materials)
are sampled from the 3D stack at each time point (at 3 µm, 4.5 µm and 6 µm respectively).
Cell slices corresponding to the same cell across space and time are marked with the same
color. Cell divisions are also detected and the children cells having the same colors as their
parents are marked with red dots. The optimal spatio-temporal data association strategy
(described in Sec. 4) is employed as the final step to obtain the 4D correspondences.
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Figure 10: Results on the temporal tracking on Arabidopsis SAM live imaging dataset
where the images are collected through three days with time resolution of 6 hours between
successive observations. Tracking result is shown by color coding the cells. The cell division
events are also detected with perfect accuracy and are displayed on this figure the same
way as Fig. 7.

high as 98.63% whereas FP and FN cases are merely around 1.37%. Similar
accuracy is observed for temporal tracking too, where the accuracy of the
tracker is around 98.56%. The tracker can successfully detect cell divisions
as out of 33 cell division events in 36 hours, 31 events ere correctly picked
up by the tracker and there is no False Positive.

5.2.3. Tracking With Larger Time Gaps - Dataset 2

To evaluate the accuracy of the tracker in the situations where the tem-
poral resolution is small, i.e., the 3D stacks are imaged after large time gaps,
we tested the proposed tracker on a second dataset. In this dataset (dataset
2), the imaging is done every 6 hours (compared to 3 hours for dataset 1).
With a longer gap between observations, the deformation of the cells in the
tissue is even more visible, which results in larger shifts between centroid lo-
cations of the same cell in successive time points. Moreover, there are more
number of cell division events which makes the temporal tracking problem
even more challenging.

Because of the robustness of the proposed method, we obtain highly ac-
curate temporal tracking results on dataset-2 as seen in Fig. 10 with the
same set of CRF parameters that was used for dataset-1. We also show that
our method is capable of maintaining tracks for long duration (66 hours as
shown in the figure) and it detected all legitimate cell division events. The
image results on spatial tracking are not presented here as each 3D stack is
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Table 2: Tracking Result Summary: Dataset 2

Correct (TP+TN) Incorrect (FP+FN)

Spatial 97.2% 2.8%
Temporal 98.46% 1.54%
Division 44/48 4/48

structurally and visually very similar to that of dataset 1. A summary of
tracking results on dataset-2 is given in Table 2.

5.3. Comparison of the Proposed Method with the State-of-the-Art

We have compared our proposed tracking method with the ‘local-graph’
based cell tracker [22] and also with a baseline tracker. In order to show the
improvements in tracking accuracy using contextual information, we designed
the baseline tracker on the same local cell shape features as used to compute
the node potentials in Sec. 3.5 and the tracker associates cell slices across
images using ‘Hungarian algorithm’. Also, if any associated pair of cells have
a feature distance larger than a predefined threshold, the track is terminated
and re-initialized. Fig. 11(A) shows the tracking result by using this baseline
tracker on four spatially sampled image slices from a 3D image stack. A
number of wrong associations are marked by white arrows. Fig. 11(B)
and Fig. 11(C) shows tracking results on the same images for [22] and the
proposed method respectively. The baseline tracker generates many wrong
associations because the cell shapes are often very similar even in a close
neighborhood. The tracker proposed in [22] performs much better than the
baseline tracker and the errors comprise of both false-positives and false-
negatives along with a number of switched tracks. The proposed method,
however, performs the best as the errors obtained are much fewer in numbers
than both [22] and the baseline and therefore validates the fact that the local
contextual information indeed aids spatio-temporal cell tracking for tightly
packed multilayer tissues.

A full quantitative comparison of tracking accuracies obtained by pro-
posed method, method in [22] and the baseline tracker on dataset-1 is pre-
sented in Fig. 12. As none of [22] and the baseline tracker contains a strategy
to ensure feasibility while combining the pairwise spatial and temporal as-
sociation results, we only perform the comparison separately on spatial and
temporal tracking results. It can be observed from Fig. 12 that our proposed
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Figure 11: Comparison of the spatial tracking results as obtained from the proposed
method with the results from [22] and a baseline tracker. The results are shown on a set
of four spatially sampled image slices from a 3D image stack of Arabidopsis SAM. The
tracking results are shown using similar color-coding as in the previous figures and the
locations of errors in tracking are marked by white arrows. (A) The results obtained by
using the baseline tracker contain many errors as it is designed on local cell shape features
and the cell shapes even from a close neighborhood can be very stereotypical. (B) Results
obtained by using [22] are much better in accuracy but still contain a number of FP, FN
and switched tracks. (C) The proposed method performs the best out of these three with
very few errors and no track switching.
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Figure 12: Quantitative comparison of tracking accuracies obtained by proposed CRF
based method, method in [22] and the baseline tracker on the entire dataset-1. The
accuracy is measured as the number of correct associations expressed as a percentage of
the total number of cell slices. The proposed CRF based method substantially outperforms
both [22] and the baseline tracker in either of spatial and temporal cell tracking. The cell
division detection results are largely similar between the proposed method and [22].

method substantially outperforms both [22] and the baseline tracker, espe-
cially in spatial tracking. We have also compared the results obtained by
the proposed method and the method in [22] in detecting cell divisions and
observed that the proposed method marginally outperforms [22].

5.4. Learning the Model Parameters

We use manually ground-truthed correspondences in a subset of the dataset-
1 as our training set to learn the best set of values for different parameters
and the same set of learnt parameter values are used for all the experimen-
tal results shown in this paper. The parameters used in the cell division
detection method (see Sec. 3.3) are learned independently from the CRF
parameters. For each of the parameters, we first choose a range for the pa-
rameter value and then uniformly sample a number of values from within
that range. Now, we generate combined sets of parameter values using every
possible combination. Finally, on the training dataset, the best set of param-
eters out of all such candidates is selected using a 5-fold cross validation. The
aforementioned ranges of different parameter values are fixed by observing
the variation in cell division detection and tracking errors when each of these
individual parameters are changed and then obtaining an optimal range for
each parameter.

Fig. 13 shows the variations of cell division detection error with the pa-
rameters t1 and t2 (Eqn. 10) on a training image set. In Fig. 13(A) the cell
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Figure 13: Variation of cell division detection error with the parameters t1 and t2 (Eqn. 10)
on a training image set. (A) The cell division area parameter (t2 in Eqn. 10) is varied
with the shape parameter t1 is kept constant at a large value (106). The optimal region
corresponding to the lowest cell division detection error is within the two vertical lines.
(B) With the parameter t2 being fixed at a large value 106, the shape parameter t1 (see
Eqn. 10) is varied independently over a range. As before, the optimal range is within the
two vertical lines on the figure.

division area parameter (t2 in Eqn. 10) is varied when the shape parameter
t1 is kept constant at a large value (106) to minimize the effect of the cell
shape distance measure over cell division detection accuracy. There are 8
legitimate cell division events in this training dataset. The optimal region
corresponding to the lowest cell division detection error is within the two
vertical lines shown in the figure and any value within this region would
yield the lowest cell division detection error. If the parameter t2 is decreased
below this optimal range, the number of detected cell divisions decreases.
This leads to increase in false negatives. For choice of parameters greater
than those in the optimal region, false positive cell division detection error
increases. Similarly, with the parameter t2 being fixed at a large value 106

(to minimize the effect of the cell area based distance measure), the shape
parameter t1 (see Eqn. 10) is varied independently over a range and the dy-
namics of cell division detection errors is observed in Fig. 13(B). As before,
the optimal range is within the two vertical lines on the figure. The variation
of cell division detection error with t1 shows a very similar trend to that
of t2, as with decrease in t1 below the optimal region, the number of false
negatives increases and with increase in t1 above the optimal values, more
and more false cell division events are detected, thereby rapidly increasing
the cell division detection error.
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Figure 14: Variation of tracking errors with edge and node potential parameters on a
training dataset. (A) Tracking error rate is plotted against log10γ (edge potential) and
an optimal choice of γ can be 1

8 . (B) Variation of tracking error with node potential
parameter λ2 is shown. The optimal range of λ2 can be chosen as [0.01 10]. (C) Variation
of tracking error with node potential parameter λ1 is observed when λ2 is fixed at 0.01.

Fig. 14(A) shows the variation in cell tracking error in a training image
stack with change in the edge potential parameter γ. As γ is varied over
a very large range, the tracking error is plotted against log10γ. As γ is
decreased rapidly (in the range of 0.01 to 0.001), edge potential values get
closer to 1 uniformly for both true and false associations (Eqn. 20), as well as
the edge potential value for the no-match case becomes close to 0 (Eqn. 23).
This results in a large increase in false positives (both ID switches and forced
matching different cells). For large values of γ, the potential function value
for the no-match case can get close to 1, even when there are legal matches
available and this results in an increase in false negatives. Between these two
extremes, the optimal range of values for γ can be found (around 0.1, as seen
in Fig. 14(A)).

Variation in tracking error with change in the node potential parameters
is shown in Fig. 14(B-C). λ2 is varied over a wide range and the variation in
tracking error is observed in Fig. 14(B). For a very low value(in the range of
10−3 to 10−4) of λ2, the node potential for the no-match state can be as high
as 1 and resultingly, most of the cells will not have any association to the
target image slice. This will rapidly increase the number of false negatives.
Again, with a large value of λ2, the number of false positives will be large.
The optimal range of λ2, therefore, lies within these extreme values (such as
0.01 to 10 in Fig. 14(B)). If λ2 is fixed at an optimal value (0.01), then the
variation of tracking error with λ1 can be observed in Fig. 14(C). Note that,
now the node potential weight w (Eqn. 16) is chosen as 0.5. The optimal
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range for λ1 can be chosen in the range of ten (say, 10 to 40).
Once the optimal ranges for the parameters are estimated, the best pa-

rameter values can be obtained via cross validation over multiple sets of
parameters sampled from these optimal ranges.

5.5. Discussion on the Limitations of the Proposed Method

The accuracy of the proposed cell tracking method depends on spatio-
temporal registration of the image slices in the 4D stack. The parameters of
the tracker can be tuned in order to account for some error in registration
but for major transformations across image slices, the tracker would not work
satisfactorily. As we have shown in our experiments, the tracker can handle
moderate deformations of the growing cells. However, if the deformation
changes both the nominal shape of individual cells as well as the topology
of their local neighborhood, it becomes more challenging and in some cases
leads to failure of the tracker. Likewise, this present tracking algorithm is
not designed to handle large displacements or motions of individual cells, but
it can still provide good tracking accuracy as long as the local neighborhood
structure around a cell is not jeopardized.

6. Conclusion and Future Work

We have presented a method for automatically tracking individual cells in
closely packed developing multilayer tissues. We observed that cells in a close
cluster in the tissue can have very similar image features and hence we lever-
aged upon the local spatial geometric structure and topology of the relative
positions of the neighboring cells to robustly track growing cells in the tissue
in presence of imaging noise. We have also shown how to detect cell divisions
prior to temporal tracking in order to find out the proper terminating point
of individual cell lineages. We have provided a strategy to optimally and
feasibly combine the spatial and temporal associations between cell slices to
generate a complete 4D spatio-temporal tracking result. Experiments were
conducted on two 4D confocal stacks Arabidopsis SAM having different tem-
poral resolutions and the results indicate the high accuracy obtained through
the proposed method for both spatial and temporal tracking.

Future work would include the integration of this spatio-temporal track-
ing method with our image analysis components such as segmentation [24],
registration [23] and the cell resolution 3D reconstruction methods [3, 4]
to design a complete 4D image analysis pipeline. This pipeline could be
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effective for generating cell division and cell growth statistics in a fully au-
tomated, high-throughput manner. These statistics can help us model the
spatio-temporal interplay between cell growth and cell division in a complex
multi-layered tissue.
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