
1-800-843-8733 • LEARNINGTREE.COM

AGILE
THROUGH & THROUGH:

LEARNING TREE EXPERTS TALK
REQUIREMENTS | DESIGN | TRANSFORMATION

An eBook from Learning Tree International

www.LearningTree.com

2 AGILE THROUGH AND THROUGH • eBOOK

TABLE OF CONTENTS

ABOUT THE AUTHORS . 3

INTRODUCTION . 4

HOW DO YOU CONQUER JUST-IN-TIME REQUIREMENTS? . 5

IS AGILE DESIGN AN OXYMORON? . 7

JUST-IN-TIME SCALING AGILE . 10

DON’T LET GOVERNANCE THREATEN YOUR AGILE TRANSFORMATION 12

CONCLUSION . 15

AGILE
THROUGH & THROUGH:

LEARNING TREE EXPERTS TALK
REQUIREMENTS | DESIGN | TRANSFORMATION

31-800-843-8733 • LEARNINGTREE .COM

ALAN O’CALLAGHAN
Alan is an experienced Lean-Agile transformation consultant, Scrum coach, and software
architect who works with large corporations and start-ups alike, helping them to gain fluency
in their Agile approach . As a Certified Scrum Trainer with Scrum Alliance he is qualified to
train and certify Agile leaders in organizations to establish Agile practices and raise the
performance level of their Agile teams and the business value of their Agile projects, drawing
on his own extensive experience in the Product Owner and Scrum Master roles .

Alan is principal product owner at Emerald Hill Limited as well as the instructor and
course author for some of Learning Tree’s most popular Agile training courses,
including the Scrum Master Certification training course .

TIMOTHY GUAY
Tim Guay is a leader in Lean Agile best practices with a proven track record as a
team member, trainer and coach . He is experienced in introducing Agile and Lean into
organizations, providing Agile and Lean training and coaching, as well as both Agile
Engineering and DevOps best practices . Tim is well-versed in migration from traditional
waterfall to Agile software development processes at both the team and enterprise level .

He has delivered Agile training and coaching to a wide-range of organizations from start-ups
to Fortune 50 corporations since 2002 .

MAURICE HAGAR
Maurice has been coaching and training Agile transformations for Fortune 100 companies,
government agencies, and the U .S . military since 2005 . He has trained hundreds of teams
and led multiple enterprise-wide Agile transformations . Mr . Hagar has been a course
instructor at Learning Tree for more than 12 years .

In order to bring you well-rounded Agile insights from a variety of perspectives, the authors
featured in this eBook are experts in a variety of job roles . Alan O’Callaghan is a Business
Analyst, Maurice Hagar is a Project Manager, and Tim Guay is a Software Designer .

ABOUT THE AUTHORS

www.LearningTree.com
https://www.learningtree.com/training-directory/agile-scrum-training/
https://www.learningtree.com/courses/1813/certified-scrummaster/

4 AGILE THROUGH AND THROUGH • eBOOK

Agile is a mindset, applicable to all types of organizations, that enables continued customer
value-focused product delivery in a world of ever-evolving requirements through the collaborative
effort of self-organizing, cross-functional teams . From developers to business stakeholders, everyone
in the organization must work together with an Agile mindset to continually realign the product/service
with customer needs and company goals .

In this eBook, some of Learning Tree’s leading Agile experts and instructors share their thoughts on
several topics related to adopting and “being” Agile in an enterprise setting — from requirements, to
design, to scalability and governance .

INTRODUCTION

51-800-843-8733 • LEARNINGTREE .COM

HOW DO YOU CONQUER
JUST-IN-TIME REQUIREMENTS?

 Alan O’Callaghan

Detailing all requirements up front can be a waste of effort in the development of software products .
The average churn after a document has been signed off is said to be about 35%, although many
software professionals report a much higher figure .

By the time the requirement is reached, there’s a good chance it will have either significantly changed
or disappeared completely from the to-do list . The effort spent in eliciting needs, analyzing them, and
documenting the system requirements that meet those needs has been wasted .

That, in turn, entails a cost: the salaries of the professionals involved for a start . And now at least part
of that effort and cost must be spent again in understanding the new situation .

THREE RESPONSES
There are broadly three responses to this problem:

} Do nothing. Just take the hit. In today’s commercial environment that’s not
sustainable. The cost is too high.

} “Freeze the requirements.” It is more typical than you might think. I’ve heard that
order given a good few times in my career . And every time it has been about as successful
as King Canute’s instruction to the sea to stop the tide coming in . Why? Because of change
— change in technology and, more importantly, change in business conditions — is our only
constant . Freezing requirements might make a delivery manager’s life easier, but it always
means less business value will be produced .

} The best response is one that utilizes just-in-time requirements engineering:
detailing out only the system requirements that are on the short-term build horizon.
Longer-term requirements-driven “planning” isn’t planning at all really . It produces gross
speculations dressed up as plans . There are too many unknowns at the beginning to really
plan in detail .

See next page to continue article.

www.LearningTree.com

AGILE THROUGH AND THROUGH • eBOOK6

DRIVING JUST-IN-TIME
REQUIREMENTS WITH USER STORIES

The Scrum Guide says that, “Higher
ordered product backlog items are
usually clearer and more detailed than

lower ordered ones.” This implies just-in-time
requirements, but the Scrum framework doesn’t
describe any process or mechanism for achieving
this . This is entirely in line with the philosophy of
Scrum . It is for self-organizing teams to figure out
what is best for their own context .

Undeniably, the popular choice is User Stories .
These originated from XP and, in particular, from
Ward Cunningham and Kent Beck . Maybe nine
in every ten Agile teams use stories as Product
Backlog Items (PBIs) . Used properly, they are very
effective in driving just-in-time requirements . But in
my experience, they are rarely used properly .

STORIES ARE NOT
SYSTEM REQUIREMENTS

One of the biggest mistakes teams make
is to confuse User Stories with System
Requirements documentation. This either

leads to stories that themselves are long documents,
or to there being no documentation at all other than
the first versions of the stories — often just three-line
statements of what a user wants .

PBIs are not requirements themselves; they
represent requirements . They are items in a list
ordered by the Product Owner . So, when stories
are used as PBIs they are not requirements either .
Actually, it is more accurate to say that they are not
system requirements .

They are short statements of user needs (the IIBA
calls these stakeholder requirements) for which the
development organization is charged with providing
a solution . This requires intense collaboration and
multiple conversations between customers and
developers to decide which solutions fit those
needs best .

Stories are designed to trigger those conversations,
while system requirements documentation should
be their outcome . How much documentation and
what form it should take is again a decision for the
development team itself .

TIMELY CONVERSATIONS
Once it is properly understood that stories
are there to trigger conversations, the team
can decide how and when is the best time

to have them . Of course, when a story is about to
be pulled into a Sprint for development, it must be
“ready .” In other words, the development team must
understand it well enough to start work on it straight
away . Most high-performing Scrum teams will
have enough “ready” stories at the top of the
Backlog to occupy them for between 1 and 3
Sprints. This basically means that all the necessary
conversations will already have taken place .

The remaining stories in the Backlog are often
called epics . This just means they are too big and
vague to be considered ready for development .
There are more conversations to be had .

VISION
The Product Owner decides which epics
to decompose first for more detailed
conversations . Ultimately, it is the Product

Owner’s responsibility to get stories or PBIs
to “ready .” Their judgments about the relative
importance of the items are reflected in her ordering
of the Product Backlog . These are themselves
made in the context of the understanding of
the Product Vision . One of the most difficult
aspects of the Product Owner role is to keep
the big picture of the vision in the minds of the
development team even while they are focused
on the short-term Sprint Goal. That’s a skill that
must be learned — but it’s a lot easier than creating
the up-front requirements document .

If you’d like to know more about just-in-time
requirements, these courses/products can
help you:

} Effective User Stories • Course 4598

} User Stories: Getting to Ready • Course 3653

} Certified Scrum Product Owner • Course 1814

NEXT STEPS

HOW DO YOU CONQUER JUST-IN-TIME REQUIREMENTS? (CONTINUED)

https://www.learningtree.com/courses/4598/effective-user-stories-training/
https://www.learningtree.com/courses/3653/user-stories-getting-to-ready/
https://www.learningtree.com/courses/1814/certified-scrum-product-owner/

71-800-843-8733 • LEARNINGTREE .COM

 Timothy Guay

There is a persistent myth that Agile Design is an oxymoron, as there is no place for design
in Agile; that our design and architecture will magically emerge as we code. This opinion is a
natural reaction against the waterfall Big Design Up Front (BDUF) mentality, but it is a false and even
dangerous opinion .

Coding without doing any design work is not Agile; it is hacking pure and simple and you will end
up with an instant legacy system .

IS AGILE DESIGN AN OXYMORON?

DANGEROUS IN THAT THE AD HOC “DESIGN” THAT COMES
FROM DOING NO DESIGN RESULTS IN CODE THAT IS:

} Hard To Reuse } Hard To Integrate

} Hard To Understand } Riddled With Technical Debt

} Hard To Maintain

See next page to continue article.

www.LearningTree.com

AGILE THROUGH AND THROUGH • eBOOK8

IS AGILE DESIGN AN OXYMORON? (CONTINUED)

Firstly, we maintain our focus on business value as the key driver for our design. A Fit-For-Purpose,
business-value-driven design results from an ongoing collaboration between the team, the customers,
and other relevant stakeholders .

Secondly, the design is owned collectively by the team, and the code is co-owned by the designer via
their design. The developers will own certain design aspects at the unit and user story level . The designers and
architects serve as design SMEs to the developers, as well as facilitate collaborative design workshops .

It is important to avoid the dangers of over-designing and over-documenting, so it is key to do only
just-enough design that will ensure a coherent Fit-For-Purpose design. Documentation should be
low-fidelity, so put Visio away as it is far easier to collaborate around a whiteboard than a computer screen .
It is also quicker to sketch on a virtual whiteboard than to create a diagram in Visio, then just snap a picture and
attach it to the user story .

SO HOW DO WE APPROACH AGILE DESIGN?

TRUE TO THE AGILE PRINCIPLE THAT TECHNICAL EXCELLENCE
ENHANCES AGILITY, AGILE DESIGN EMPHASIZES EXCELLENCE

IN DESIGN. THIS RESULTS IN:

} A robust, scalable, and modifiable architecture and design

} A design that results in testable, maintainable, and reusable code

} A design that results in code and tests that are amiable to
Continuous Integration (CI) and Continuous Deployment (CD)

91-800-843-8733 • LEARNINGTREE .COM

AGILE DESIGN CONCEPTS AND TECHNIQUES
The goal is to do just enough design and architecture up front, with detailed design being done as needed
during backlog grooming. Key design concepts and techniques are summarized in the table below.

CONCEPT / TECHNIQUE DESCRIPTION

SHEARING
LAYERS

Each architectural layer changes/evolves at different speeds.
Keep them loosely coupled as tight coupling results in rigid, hard to
modify and hard to understand design .

MODEL
STORMING

Collaborative brainstorming designed to quickly develop high-level
architectures and designs using techniques such as CRC Cards or
Domain-Driven Design .

INTENTIONAL
ARCHITECTURE

Leverage common architectural patterns, constraints, and
implementation technologies to optimize usability, extensibility,
performance and maintenance. Addresses both business and
technical requirements . Prove out by creating a Minimum Viable
Architecture .

ARCHITECTURAL
RUNWAY

Provides sufficient architecture to support the incorporation
of near-term product backlog items without needing architectural
refactorings .

MINIMUM VIABLE
ARCHITECTURE

The minimum architectural implementation required to prove out
an end-to-end architectural design.

DESIGN
PATTERNS

Provide proven, reusable design building blocks. Developed by
looking at the common characteristics of solutions to related problems .

DESIGN
PRINCIPLES

Describe Object Oriented design best practices.

DESIGN
FOR TESTING

Design principles focusing on designing code that is optimized
for automated testing.

ACCEPTANCE
TEST-DRIVEN

DEVELOPMENT

Use to do behavior-focused design at the user story level.
The Given-When-Then structure:

• Guides the design of the application flow and state changes

• Helps identify the inputs, processing, and outputs

• Refines the low-level design prior to coding

If you are interested in a more in-depth look at
Agile Design, check out Learning Tree’s Agile
software design course, which also qualifies
participants for the ICAgile Certified Professional in
Agile Software Design certification .

If you’d like to know more about incorporating
Agile in the early stages of software design,
these courses/products can help you:

} Agile Software Design Professional • Course 944

} Agile Test Automation • Course 1820

} Impact Mapping: Focusing on Business Value
in Agile Development • Course 3654

NEXT STEPS

www.LearningTree.com
https://www.learningtree.com/courses/944/agile-software-design-training/
https://www.learningtree.com/courses/944/agile-software-design-training/
https://www.learningtree.com/courses/944/agile-software-design-training/
https://www.learningtree.com/courses/1820/agile-test-automation/
https://www.learningtree.com/courses/3654/impact-mapping-focusing-on-business-value-in-agile-development/
https://www.learningtree.com/courses/3654/impact-mapping-focusing-on-business-value-in-agile-development/

AGILE THROUGH AND THROUGH • eBOOK10

A RESTAURANT ANALOGY
Let me begin by introducing a
restaurant analogy . Recently for the
birthday celebration of an extended
family member, my wife and I, together

with a mob of relatives and friends, ate at a chain
eatery in Coventry, England near where we live . It
is one of those places where you pay a single price
and then eat as much as you like from an enormous
buffet . Indian, Chinese and Italian specialties are
included . There is also a grill, a roast meats station,
and a dessert counter . Each station has its own
specialist crew of kitchen staff . They make sure that
there is a constant supply of food items to keep the
counters fully stocked .

In order to do this, they employ many cooks in the
kitchen .

Now compare this to a much more up-market Indian
restaurant that, as a couple, we more regularly
favour with our custom . It has a small kitchen and a
correspondingly small kitchen staff .

In either place we might eat a starter, a main and
a dessert, but in our Indian restaurant the chef is
cooking to-order and can start on the mains even
while we are eating our starter . The other place has
to have all the potential elements of the meal on offer
at the same time .

INCREMENTAL VALUE DELIVERY
The point is that whether or not
organizational scaling is necessary is
a judgement call that depends on the
timeliness of required features . The big

eatery has no option but to scale its kitchen teams

because all the “features” are required at the same
time . Most master planned development projects
have a similar constraint . ‘Big bang’ delivery means
shipping all the required features simultaneously .
Low value items and big value items — they all have
to be delivered together . This is usually much more
than a single development team of ten or fewer
people (the size recommended by The Scrum Guide)
can handle .

Multiple teams are required . Scaling is necessary .

We need to be careful that this old muscle
memory of our pre-Agile history does not go
unchallenged. Agile in general, and Scrum, uses
the motto, “deliver early, deliver often”. And we
don’t just deliver any old thing . We deliver the highest
business-valued features first . Our customers can
munch on those even while we are developing the
next set of features .

Think about the difference . If the customers can
only get everything at once, then there is likely to be
high pressure for the earliest date for that “big bang”
delivery . Until they get delivery they can extract
no value . Every day they wait adds cost . From the
development side, the features that take the longest
to develop hold back the delivery of everything in the
product . Scaling is possibly the only option .

On the other hand, if the customers are getting
hold of slices of functionality incrementally, and are
extracting value from using those early delivered
features then they can afford to wait for the
lesser-valued ones . Now perhaps the same team
can deliver all the product . At the very least we
can say that scaling (the use of multiple teams) is
now optional .

JUST-IN-TIME SCALING AGILE
 Alan O’Callaghan

Scaling agile is a hot topic. Courses on SAFe (Scaled Agile Framework], DAD (Disciplined Agile
Development - from PMI) and LeSS (Large Scale Scrum) are becoming more popular . As large
organizations move into the Agile space they want to know how to run big projects which, traditionally
at least, have required multiple skillsets scattered across multiple working groups or even departments .
Hence the attraction of these, and other, frameworks .

However, I have a sneaking suspicion that many scaling efforts are misguided, and often generate more
waste than value .

111-800-843-8733 • LEARNINGTREE .COM

SCALE THE MINDSET
BEFORE THE FOOTPRINT

What I’m suggesting is that deciding
how many teams will be needed in
advance of development is not a great
idea . Big projects should, in any

case, be started with just one development
team. The early technical decisions tend to be
architectural ones . They will tend to impact on
and constrain later choices . It is better for the
architectural integrity of the product that they be
taken by a single, cohesive team even as they are
developing the highest valued features . It is not
uncommon for a so-called ‘Beach-head Team’
(composed of the best programmer-architects
available) to take responsibility in this way for the
first release .

Judgements about whether to bring other teams to
bear on the product can then be made just-in-time:
in the usual spirit of Agile . Scale the mindset first .
Apply the values and principles of Scrum . Decide
empirically whether additional teams are needed to
deliver the remaining features in a timely fashion .
Of course, the decision-making process will require
intense collaboration between the Scrum team and
all the stakeholders of the project, but that’s just as it
should be . The extra scaffolding of any given scaling
framework should never substitute for that .

Downsizing the numbers needed to deliver a product
is as much a possibility as scaling as it is traditionally
thought of . At J.P. Morgan, moving from

“scrum-but” to Scrum in full required removal
of a whole layer of functional departments,
component teams and associated level-1
managers in order to create development teams
that could deliver end-to-end functionality to
their customers.1

There is, of course, one important factor that must
be present for a single development team to be able
to deliver a large, feature-rich product on its own,
without involving multiple teams: it must be truly
cross-functional . All the skills necessary to develop
the product must be present in the team . It takes
time and effort to grow such teams . The routines
and practices of the team and the individuals within
it have to change as they increasingly become a
self-managing group . Once achieved, this level of
capability opens up the options to scale or descale .

If you’d like to know more about scaling Agile,
these courses/products can help you:

} Scaling Agile: A Guide to Meeting
the Challenge • Course 3655

} Leading SAFe with SAFe 4
Agilist Certification • Course 1817

} Large Scale Scrum: More with LeSS
(Private Training Only)

NEXT STEPS

1 See the report by Craig Larman and Matt Winn at www.infoq.com/articles/large-scale-scrum-jomorgan

www.LearningTree.com
https://www.learningtree.com/courses/3655/scaling-agile-a-guide-to-meeting-the-challenge/
https://www.learningtree.com/courses/3655/scaling-agile-a-guide-to-meeting-the-challenge/
https://www.learningtree.com/courses/1817/safe-agilist-sa-certification-exam-prep-training/
https://www.learningtree.com/courses/1817/safe-agilist-sa-certification-exam-prep-training/
http://www.infoq.com/articles/large-scale-scrum-jomorgan

AGILE THROUGH AND THROUGH • eBOOK12

DON’T LET GOVERNANCE THREATEN
YOUR AGILE TRANSFORMATION

 Alan O’Callaghan

Governance seems to be one of those frightening words that threatens to stop an Agile transformation effort
dead in its tracks . I’ve been hearing it whispered, and even screamed once or twice, quite a lot recently . There’s
no big surprise here . As the big corporations and government agencies get increasingly fascinated by
frameworks like Scrum, they are mandating their IT departments to, “go Agile” and then, sooner or
later…governance!

131-800-843-8733 • LEARNINGTREE .COM

TYPES OF GOVERNANCE

There is operational governance
represented in the defined processes
that organizations and teams are
expected to follow when software

is in production . There is project management
governance, perhaps dictated by PRINCE2 or
similar, while the product is in development .
PRINCE, by the way, is an acronym standing for
‘PRojects In a Controlled Environment’ .

Project management governance is often a
subset of a wider IT governance . According to the
TOGAF version 9 .1, IT governance supposedly
provides the framework and structure
that links IT resources and information to
enterprise goals and strategies. “IT governance
institutionalized best practices for planning,
acquiring, implementing and monitoring IT
performance…” Standards like COBIT, which
stands for Control OBjectives for Information
and related Technology, might be in place .
And then, of course, there is a range of issues
to do with compliance to the requirements of
external regulators in all public bodies, as well
as commercial institutions in sectors such as
insurance and banking . So, is this a case of an
irresistible force (Agile) meeting an unmovable
object (governance)?

WHAT IS GOVERNANCE?

Let’s go back to first principles.
What is governance? Here’s a
definition I came across recently
in the TOGAF 9.1: “The discipline of

monitoring, managing and steering a business
to deliver the business outcomes required.”
As an Agilist, I have no problem with governance
described in this way . An obstinate focus on the
delivery of business outcomes is the very stuff of
Agile . The problem is how governance is applied .
Typically, specialist governance bodies are set up
in a hierarchy at each level of which procedures are
mandated, documents are required for sign-off, and
auditing procedures abound . The Agile principle of
trusting professionals to get the job done is about
as welcome as a trap door in a canoe . Fear of
non-compliance drives very different behaviors from
those we are trying to grow with Agile .

When these kinds of bodies and procedures are
imposed on software development teams there is
one guaranteed result: a delay in the delivery of value
to the customer (often a protracted delay at that) .
Phase-gates block the development path . Waiting for
sign-offs builds queues of work items . Sometimes
the development ‘track’ is idle, like a train sitting at a
signal waiting for it to turn green .

SOFTWARE DEVELOPMENT
IS DESIGNFUL

The scenarios I have just described
are in no way conducive to the
achievement of business outcomes .
In fact, very often, it is the governance

procedures which are the major obstacle to their
delivery . Why is this?

Business value is much more likely to be
delivered in the Agile Model because of its fast
feedback cycles. These are necessary because
software development is inherently unpredictable .
Its practical processes are more like what goes on
in the design rooms of product development than it
is like the assembly lines of mass manufacture .

“Design is not passive. It is wise for designers
to harmonize with the ways of nature. But the
ways of nature follow context and change.”2
Mass manufacture is predictable . The uncertainties
have been ironed out and removed in the design
“phase” . But software development is not .

While not everything in software development
is design (problem analysis should shape
design, after all), its ‘implementation’ is creative .
Even when we are crafting code we are only
designing the instructions that the computer will
run . Design is dominated by uncertainty . New
information emerges during the process itself and
is incorporated as quickly as possible . Feedback
cycles surface that information, allowing the
development team to converge on a solution that
delivers business value to the customer .

“ IT governance institutionalizes
best practices for planning,
acquiring, implementing and
monitoring IT performance…”

www.LearningTree.com
http://www.opengroup.org/public/member/proceedings/q312/togaf_intro_weisman.pdf
http://www.opengroup.org/public/member/proceedings/q312/togaf_intro_weisman.pdf

AGILE THROUGH AND THROUGH • eBOOK14

A NEW MODEL OF GOVERNANCE?
Traditional governance procedures follow the motto
“plan the work;
work the plan” . They assume predictability . There

are many corporate procedures
where governance for predictability is
appropriate . Software development
is not one of them . Governance for

feedback; governance for responsiveness is what is
required . In many Agile-adopting organizations,
a “two-speed” solution is evident. Where
predictability reigns, traditional governance
procedures are maintained . Where feedback drives
success, different approaches operate .

In Scrum, the Product Owner is responsible for
achieving the business outcomes inherent in the
product development . The Product Owner owns
the product for the business, and is accountable
for, amongst other things, its alignment with the
strategic goals of the business . They are also a peer
member of the Scrum team . One of the reasons you
rarely see formal, outlined business cases, followed
by detailed business cases and post-project audits
against them in Scrum is because it is unnecessary .
The Product Owner role and the Sprints’ inspect-
and-adapt cycle takes care of that stuff in a more
‘light touch’ way .

Similarly, the quality of the product is best ensured
by embedding testers as developers in the Scrum
team . The goal of testing then itself becomes

feedback . The ‘Whack-The-Mole’ pattern means
defects can be removed by the Development
team before the increment gets to the Sprint
Review, let alone Release . The ping-pong between
programmers and testers that so characterizes
(and delays) waterfall development is eliminated by
making the Scrum team responsible for quality .

While any overall solution to the governance issue
will be situational, and may yet require some external
oversight, the general line of approach seems
obvious to me . Business stewardship and quality
assurance are, in my opinion, stronger in Scrum than
they are in waterfall precisely because the specialist
skills needed have been brought into the Scrum
team, and the team is accountable for them . The
Scrum Development team is supposedly fully cross-
functional: it should contain all the skills necessary
to deliver the product . If that requires specialists in
governance, then include them in the team .

Let the team figure out, through conversation
and collaboration with whoever it needs –
external regulators included – the best
way to ensure the proper delivery of
business outcomes.

If you’re in the early stages of getting to know
more about Agile, these courses/products
can help you:

} Agile Fundamentals: Scrum Kanban,
Lean and XP • Course 918

} Business Agility Accelerator • Course 3647

} Embed our Agile Coach to help guide you through
training options best for your organization

NEXT STEPS

DON’T LET GOVERNANCE THREATEN
YOUR AGILE TRANSFORMATION (CONTINUED)

“ Design is not passive.
It is wise for designers to
harmonize with the ways of
nature. But the ways of nature
follow context and change.”2

2 J.O. Coplien and L.Zhao Towards a General Formal Foundation of Design: Symmetry and Broken Symmetry. Monograph

https://sites.google.com/a/scrumplop.org/published-patterns/value-stream/whack-the-mole
https://www.learningtree.com/courses/918/agile-fundamentals-training-scrum-kanban-lean-and-xp/
https://www.learningtree.com/courses/918/agile-fundamentals-training-scrum-kanban-lean-and-xp/
https://www.learningtree.com/courses/3647/business-agility-accelerator/

151-800-843-8733 • LEARNINGTREE .COM

The wide world of Agile can seem like a
confusing maze, but we can help you make
sense of it, and work with you through the
adoption of this mindset — organization-wide.
Wherever you are on your journey, we can meet
you there and help you run a better company,
generating value at a higher rate .

Learning Tree has developed a guide to outline the
most popular Agile methodologies and frameworks
available today .

VIEW THE GUIDE:
LearningTree .com/AgileCertGuide

The Guide and this eBook should
not take the place of a one-on-one
consultation to discuss your
specific goals and challenges
surrounding Agile . We invite you to
reach out to Learning Tree’s Client
Solutions Consultants so that we

can better assist you in finding the Agile solution
that’s right for you and your team .

LEARNING TREE’S AGILE CURRICULUM FEATURES
ACCREDITED CERTIFICATION TRAINING FROM THESE AGILE INDUSTRY EXPERTS:

CONCLUSION

LEARN MORE AT: LEARNINGTREE.COM/AGILE
OR CALL 1-800-843-8733

www.LearningTree.com
https://issuu.com/learningtreeintl/docs/agile_20guide_learning_20tree?e=20913079/55164277&redirect=1&v_url=agilecertguide
mailto:LEARNINGTREE.COM/AGILE?subject=

