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a b s t r a c t

Learning human activity models from streaming videos should be a continuous process as new activities ar-

rive over time. However, recent approaches for human activity recognition are usually batch methods, which

assume that all the training instances are labeled and present in advance. Among such methods, the ex-

ploitation of the inter-relationship between the various objects in the scene (termed as context) has proved

extremely promising. Many state-of-the-art approaches learn human activity models continuously but do

not exploit the contextual information. In this paper, we propose a novel framework that continuously learns

both of the appearance and the context models of complex human activities from streaming videos. We

automatically construct a conditional random field (CRF) graphical model to encode the mutual contextual

information among the activities and the related object attributes. In order to reduce the amount of manual

labeling of the incoming instances, we exploit active learning to select the most informative training instances

with respect to both of the appearance and the context models to incrementally update these models. Rigor-

ous experiments on four challenging datasets demonstrate that our framework outperforms state-of-the-art

approaches with significantly less amount of manually labeled data.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Human activity recognition is a challenging and widely studied

problem in computer vision. It has many practical applications such

as video surveillance, video annotation, video indexing, active gam-

ing, human computer interaction, assisted living for elderly, etc. Even

though enormous amount of research has been conducted in this

area, it still remains a hard problem due to large intra-class variance

among the activities, large variability in spatio-temporal scale, vari-

ability of human pose, periodicity of human action, low quality video,

clutter, occlusion, etc.

With few exceptions, most of the state-of-the-art approaches [1]

to human activity recognition in video are based on one or more of

the following four assumptions: (a) It requires an intensive training

phase, where every training example is assumed to be available; (b)

Every training example is assumed to be labeled; (c) At least one ex-

ample of every activity class is assumed to be seen beforehand, i.e., no

new activity type will arrive after training; (d) A video clip contains

only one activity, where the exact spatio-temporal extent of the activ-

ity is known. However, these assumptions are too strong and not real-
✩ This work was supported in part by ONR grant N00014-15-C-5113 and NSF grant

IIS-1316934.
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stic in many real world scenarios such as streaming and surveillance

ideos. In these cases, new unlabeled activities are coming continu-

usly and the spatio-temporal extent of these activities are usually

nknown in advance.

Recent successes in object and activity recognition take the advan-

ages of the fact that, in nature, objects tend to co-exist with other

bjects in a particular environment. This is often termed as context

nd plays an important role in human visual system for object recog-

ition [2]. Similarly, most of the human activities in the real world are

nter-related and the surroundings of these activities can provide sig-

ificant visual clue for their recognition. Several research works [3–8]

onsidered the use of context from different perspectives to recog-

ize complex human activities and showed significant performance

mprovement over the approaches that do not use context. However,

hese approaches are batch methods that require large amount of

anually labeled data and are not able to continuously update their

odels in order to adapt to the dynamic environment. Even though

ew research works such as [9–11] learn human activity models in-

rementally from streaming videos, they do not utilize contextual in-

ormation, which can lead to superior performance.

Motivated by the above, the main goal of this work is twofold: to

lassify new unknown activities in streaming videos, and also lever-

ge upon them to continuously improve the existing activity recogni-

ion models. In order to achieve this goal, we develop an incremental

ctivity learning framework that will use new activities identified in

he incoming video to incrementally improve the existing models by

http://dx.doi.org/10.1016/j.cviu.2015.10.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2015.10.018&domain=pdf
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Fig. 1. This figure shows our proposed incremental activity modeling framework, which is comprised of following stages: activity segmentation, feature extraction, appearance

and context model learning, activity classification, training set selection by active learning, and model updating by incremental learning with the help of the active learning system.
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everaging relevant machine learning techniques, most notably ac-

ive learning. The proposed model not only utilizes the appearance

eatures of the individual activity segments but also takes the ad-

antages of interrelationships among the activities in a sequence and

heir interactions with the objects.

.1. Overview of the proposed approach

The detailed framework of our proposed incremental activity

ecognition algorithm is shown in Fig. 1. Since, we do not have any

rior information about the spatio-temporal extent of the activities

n the continuous video, our approach begins with video segmenta-

ion and localization of the activities using a motion segmentation

lgorithm. Each of the atomic motion segments are considered as the

ctivity segments from which we collect spatio-temporal local fea-

ure STIP [12]. These features are widely used in action recognition

nd achieve satisfactory performance in state-of-the-art challenging

atasets. We construct a single feature vector using these local fea-

ures by exploiting the method described in [13]. Then, we learn a

rior model using few labeled training activities in hand. In this work,

e propose to use an ensemble of linear Support Vector Machine

SVM) classifiers as the prior model. Note that we do not assume that

he prior model is exhaustive in terms of covering all activity classes or

n modeling the variations within the class. It is only used as a starting

oint for the incremental learning framework.

We start incremental learning with the above mentioned prior

odel and update it during each run of incremental training. When

newly segmented activity arrives, we apply the current model to

et a tentative label with a confidence score. However, it is not prac-

ical and rational to use all of the newly segmented activities as the

raining examples for the next run of incremental training. This is be-

ause it is costly to get a label for all of them from a human annotator,

nd not all of them posses distinguishing properties for effective up-

ate of the current model. We only select a subset of them and rectify

he tentative labels by our proposed active learning system. In order

o learn the activity model incrementally, we employ an ensemble

f linear SVMs. When we have sufficient new training examples la-

eled by the active learning system, we train a new set of SVM clas-

ifiers and consequently, update the current model by adding these

ew SVM classifiers to the ensemble with appropriate weights.

For the incremental learning with context features, we use a con-

itional random field (CRF) graphical model in order to represent the

nterrelationships among the activity segments and the associated

bject attributes segmented from a video sequence. The nodes of the

RF represent the activities and the object attributes and the edges

epresent the interrelationships among them. Confidence scores of

he activities from the ensemble of SVM classifiers are used as the ac-

ivity nodes potential, whereas scores obtained from the object detec-

ors are used as the object nodes potentials. Various spatio-temporal

elationships such as co-occurrence of activities and objects are used
s the edge potentials. We run inference on the CRF in order to ob-

ain the posterior activity labeling with confidence scores. These con-

dence scores are used in the active learning system consisting of

trong and weak teachers to rectify the labels. Hence, these labels are

sed to update the edge potentials.

.2. Main contributions

In this work we propose a novel framework to incrementally learn

he activity models from streaming videos, which is achieved through

n active learning system. The main contributions are as follows -

• We incrementally learn the human activity models with the

newly arriving instances using an ensemble of SVM classifiers. It

can retain the already learned information and does not require

the storage of previously seen examples.
• We reduce the expensive manual labeling of the incoming in-

stances from the video stream using active learning. We achieved

similar performances comparing to the state-of-the-arts with less

amount of manually labeled data.
• We propose a framework to incrementally learn the context

model of the activities and the object attributes that we represent

using a CRF.

. Related works

Activity Recognition. We would like to refer to the paper [1] for

comprehensive review on the sate-of-the-art approaches to hu-

an activity recognition. Based on the level of abstraction used to

epresent an activity, state-of-the-art approaches can be classified

nto three general categories such as low-level [12], mid-level [10],

nd high-level [14] feature based methods. However, as discussed in

ection 1, most of these state-of-the-art approaches suffer from the

nability to model activities in continuous streaming video and un-

ble to take advantages of unseen incoming activities.

Incremental Learning. Incrementally learning from streaming

ata is a well studied problem in machine learning and a lot of

pproaches have been proposed in the literature. Among these ap-

roaches, ensemble of classifiers [15,16] based methods are most

ommonly used, where new weak classifiers are trained as new data

s available and added to the ensemble. Their outputs are combined

sing an appropriate combination rule, which is set according to the

ystem’s goal.

Context Modeling. Recently, context has been successfully used

or human activity recognition. Based on the problem of interest, con-

ext may vary. For example, [3] used object and human pose as the

ontext for the activity recognition from single images. Collective or

roup activities were recognized in [5] and [6] using the context in

he group. Spatio-temporal and co-occurrence contexts among the

ctivities and the surrounding objects were used in [7] and [8] for

ecognizing complex human activities. In [4], Markov random field
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Algorithm 1: Incremental Activity Modeling.

Data: V: Continuous Streaming Video.

Result: H: Activity Recognition Model, [(xt0+i, yt0+i)|i = 1, . . .]:

Labeled Activities.

Parameters: Number of SVMs to be trained for batch k, Tk.

Active learning parameters δ and ε.

Step 0: Learn the prior model H0 using fewer training data

available.

Step 1: Segment the video V at timestamp (t0 + i)to get an

unlabeled activity segment, xi (Section 6.2).

Step 2: Apply the current model Hk onxi. Based on the

condition met, get a label yi for xi (Section 5) and put (xi, yi)

in the buffer, Bk.

Step 3: If Bk contains m training examples, goto step 4 for next

incremental learning, otherwise goto step 1.

Step 4: Initialize the distribution for selecting training

examples: w1(i) = D(i) = 1
m ,∀i = {1, . . . , m}

Step 5:

for t = 1 to Tk do

1. Normalize distribution: Dt = wt/
∑m

i=1 wt (i)

2. From Bk, randomly choose 2/3 examples according to Dt .

Lets say them Trt .

3. Error: εt = 1

4. while εt > 0.5 do
Train a linear SVM, ht : x → y using Trt .

Error of ht on Bk, εt = ∑
i 1[ht (xi) �= yi]Dt (i).

end

5. Normalized error: βt = εt/(1 − εt )

6. Obtain the composite hypothesis and error:

Ht = arg max
y∈Y

∑
t

1[ht (xi) = y] log(1/βt )

Et =
∑

i:Ht (xi) �=yi

Dt (i) =
m∑
i

Dt (i)1[Ht (xi) �= yi]

7. If Et > 0.5, set t = t − 1, discard Ht and goto line 2.

8. Normalized composite error, Bt = Et/(1 − Et )

9. Update the distribution: wt+1(i) = wt (i) × B
1−|Ht (xi) �=yi|
t

end

Step 6: Final decision on an unlabeled activity,

H(x) = arg max
y∈Y

∑
k

∑
t

1[Ht (x) = y] log
1

Bt

Step 7: Empty the buffer. Goto step 1 for incremental learning

with the next batch.
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were used to predict sports moves and human activities. Apart from

these, spatio-temporal graphs [17], AND-OR grammar [18], and HMM

[19] have also been used for recognizing complex human activities.

Active Learning. Active learning has been successfully used

in speech recognition, information retrieval, and document clas-

sification [20]. Some recent works used two stage active learning

framework in several computer vision applications such as image

segmentation [21], image and object classification [22], unusual

event detection [23], action recognition [24], etc. However, unlike

most of these methods, our framework does not require the storage

of already used training examples and takes the advantage of highly

confident decision provided by the current classification model,

which in turns reduces the amount of manual labeling.

Incremental Activity Modeling. A few methods have considered

incremental activity modeling. A feature tree based incremental ac-

tion recognition method was proposed in [9], where the feature-tree

grows when additional training examples are available. It requires the

storage of all training examples in the form of feature tree, which is

not feasible for continuous streaming videos because the number of

activities could be very large over time. Human track-based incre-

mental activity learning framework was proposed in [10]. It requires

annotation of the human body in the initial frame of an action clip,

which restricts the variety of application domains possible.

This paper has significant differences with our previous work in

[11]. In [11], we proposed a method that incrementally learned hu-

man activity models (only the appearance model) when new train-

ing examples become available. We did not utilize the interrelation-

ships among the activities and the object attributes (context model)

during activity modeling. In this work, we learn both of the appear-

ance and the context model for human activity recognition. We up-

date both of these models incrementally when new training exam-

ples become available. These changes improve the performance of

our framework significantly for recognizing more complex human ac-

tivities over time.

3. Incremental learning of individual activity classes

We now provide a detailed overview of our proposed incremental

activity modeling framework for the appearance model. We assume

that we have a set of activities segmented from a video sequence and

we have extracted a set of features {xi : i = 1, 2, 3, . . . , n} from these

activity segments. Details of activity segmentation and feature ex-

traction are discussed in the experiment section. In this section we

mainly focus on learning activity models without using the contex-

tual information or the interactions with the object attributes.

3.1. Activity model

We use an ensemble of multi-class linear Support Vector Ma-

chines (SVM) for activity modeling, which can be defined as follows:

H(x) = ∑
t log 1

βt
ht (x), where ht is the tth classifier in the ensemble,

βt = εt/(1 − εt ) is the corresponding weight, and εt is the normal-

ized error of ht on the training set. We select this model because it

has the ability to learn incrementally without storing the training in-

stances. It can propagate information in terms of learned weak SVM

classifiers in the ensemble. Moreover, it can learn new activity classes

too. Above mentioned properties are absent in most of the classifi-

cation frameworks. A detailed mathematical analysis of ensemble of

SVM classifiers can be found in [25].

3.2. Incremental activity modeling

We present the detailed incremental activity modeling approach

in Algorithm 1, while each of the steps is described in the following

subsections.
Learning Prior Model. At first, we learn a prior model H0 using

ery few labeled training examples. In this work, we use an ensemble

f SVM classifiers as described in Section 3.1 as the prior model. Prior

odel learning stage is neither intensive like other state-of-the-art

pproaches, nor exhaustive in terms of covering all activity classes or

n modeling the variation within the class. It is used as the starting

oint for the incremental learning.

Activity Segmentation and Active Learning. Let us consider that

e have a video stream V, starting at timestep t0. As time progress,

ew activities are arriving from the streaming video. We segment an

ctivity xi at time t0 + i and collect features using the methods de-

cribed in Section 6.2. We apply the current model Hk on the unla-

eled activity xi to get a label yi using the active learning system de-

cribed in Section 5. We store the labeled activity (xi, yi) temporarily

n a buffer Bk, where k stands for kth incremental training step.

Incremental Learning. As in [15], our incremental learning ap-

roach is based on the following intuition: each new classifier added

o the ensemble is trained using a set of examples drawn according

o a distribution, which ensures that examples that are misclassified

y the current ensemble have a high probability of being sampled in

(Section 6.2)
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he next round. Weight update mechanism of the individual SVMs re-

ains same as in [15], which we describe below. Let us consider that

nputs to the kth incremental learning stage are a sequence of train-

ng examples, Bk = {(x1, y1), . . . , (xm, ym)}, where xis are the train-

ng instances and yis are the corresponding labels. Let us assume that

weak baseline SVM classifier model is known, and let Tk be the num-

er of classifiers to be learned at the kth stage.

• At first, we initialize the distribution D1 of the training instances

in Bk by assigning equal probability to all of them so that each of

the instances has equal chance to be selected to train a weak SVM.

We obtain this by diving one by the number of training instances.
• We now train tth weak SVM ht. We call them weak because they

are not required to be highly efficient. But they have to perform

more than the average. We use parameterless linear SVM as the

weak SVM classifier. In order to train a weak SVM, we select a sub-

set of the training instances Trt from Bk according to the current

distribution Dt .
• We train ht using these randomly selected subset of the training

instances. If the error (εt) associated with this new classifier on

the training set is higher than a threshold 0.5, we reject the classi-

fier, otherwise we add it to the ensemble Ht . In case of rejection,

we start training ht again with a newly selected random subset of

the training instances.
• After the inclusion of ht to the ensemble, we compute the error

Et of the ensemble Ht on the training data. If the error associated

with this updated ensemble Ht is higher than a threshold 0.5, the

new update will be rejected and training of ht starts all over again

with new Trt.
• If everything goes fine up to this point and we have a new weak

SVM in the ensemble, we update the training data distribution

so that in the next round examples for which errors occurred get

higher priority to be selected as the training instance.

. Incremental learning of contextual relationships

We model the inter-relationships among the activity instances

nd the object attributes using a CRF graphical model. An illustrative

xample of the CRF with four activity nodes is shown in Fig. 2. It is an

ndirected graph G = (V, E), with a set of nodes V = {A,C, X, Z}, and

set of edges E = {A − A, A − C, A − X,C − Z}, where As are the activ-

ty nodes, Cs are the object attributes, (i.e. context features), P and D
re the activity classifier and the objects detectors respectively, and X

nd Z are the observed visual features. P is used for computing prior

ode potentials and D is used to construct context features. As are the

idden nodes, whereas Cs, Xs, and Zs are the observed nodes (shad-

wed). We are interested in computing the posterior of the A nodes.

ed edges among the A and C nodes represent spatio-temporal rela-

ionship. The connections between As and Cs are fixed but we au-

omatically determine the connectivity among the As online along

ith their potentials. The overall potential function (�) of the CRF

s shown in Eqn. (1), where, φs and ψs are node and edge potentials.
ig. 2. Illustrative example of a CRF for encoding the contextual information. Please

ee the text in Section 4 for details.
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e define the potential functions in the following subsections.

=
∏

ai∈A,ci∈C
xi∈X,zi∈Z

φ(ai, xi)φ(ci, zi)
∏

ai,aj∈A
ci∈C

ψ(ai, aj)ψ(ai, ci) (1)

(ai, xi) = p(ai|xi,P) (2)

(ci, zi) = φ(c1
i , zi) � φ(c2

i , zi) (3)

(c1
i , zi) = p(c1

i |zi,D) (4)

(c2
i , zi) = bin(c2

i )N (c2
i ,μc2 , σc2 ) (5)

(ai, aj) = Fa(ai, aj)N (‖tai
− taj

‖2,μt , σt )N(‖sai
− saj

‖2,μs, σs)

(6)

(ai, ci) = ψ(ai, c1
i ) ⊗ ψ(ai, c2

i ) (7)

(ai, c1
i ) = Fc1 (ai, c1

i )N (‖sai
− sc1

i
‖2,μc1 , σc1 ) (8)

(ai, c2
i ) =

∑
a∈A

bin(c2
i )I(a = ai)

T N (c2
i ,μc2 , σc2 ) (9)

.1. Node potentials

Activity potentials, φ(ai, xi). These potentials correspond to the A

odes of the CRF in Fig. 2. They are related to the low level motion

eatures that describe inherent characteristics of the activities. We

xtract low level features xi from the activity segments ai and train

baseline multi-class classifier H (Section 3.1). Classification scores

f the candidate activity segments ais generated by H are then used

s the node potentials as defined in Eq. (2). It is a vector of length c

Number of activity classes).

Context potential, φ(ci, zi). These potentials correspond to the C

odes of the CRF in Fig. 2, which are scene level features and object

ttributes related to the activity of interest. They are not associated

ith motion features of the activities but may provide important and

istinctive visual clues. For example, presence of a car may distin-

uish unloading a vehicle activity from entering a facility activity. These

ontext features can be learned automatically or assembled in an ad

oc basis. In this work, we employ a semi-automatic technique. We

se a number of detectors on the image observation Zs in the activity

egment in order to construct the context feature. Number and na-

ure of such features may vary for different application domains. We

oncatenate them as in Eq. (3), where � is the concatenation opera-

ion and k is the number of context feature. We use two context fea-

ures - objects (φ(c1
i
, zi)) and person (φ(c2

i
, zi)) attributes as defined

n Eqs. (4) and (5), where oi is the object class vector, ‖L1 − L2‖ is the

istance covered by a person in the activity region, bin(·) is a binning

unction as in [26], and μc2 and σc2 are the mean and variance of the

overed distances.

.2. Edge potentials

Activity-Activity potential, ψ(ai, aj). This potential models the

onnectivity among the activities of a sequence. We assume that

ctivities which are within a spatio-temporal distance are related

o each other. This potential has three components - association,

patial, and temporal components. The association component is the

o-occurrence frequencies of the activities. The spatial (temporal)

omponent models the probability of an activity belonging to a

articular category given its spatial (temporal) distance from its

eighbors. ψ(ai, aj) is defined in Eq. (6), where ai, aj ∈ A, Fa(ai, aj) is

he co-occurrence frequency between the activities ai and aj, sai
, sa j

,

ai
, and ta j

are the spatial and temporal locations of the activities, and
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μc1 , σc1 , μc2 , and σc2 are the parameters of the Gaussian distribution

of relative spatial and temporal positions of the activities, given their

categories.

Activity-Context potential, ψ(ai, cj). This potential function mod-

els the relationship among the activities and the context features

(Eq. (3)). It corresponds to A − C link in Fig. 2. This potential is de-

fined in Eqs. (7)–(9). ψ(ai, c1
i
) models the relationship between the

activity and the object attribute and ψ(ai, c2
i
) models the relationship

between the activity and the person attribute. Operator ⊗ performs

horizontal concatenation of matrices.

More details on the context features can be found in the experi-

ment section. We also illustrate a simplified CRF with node and edge

potentials in Fig. 5 for the better understanding of the model.

4.3. Structure learning

A part of the structure of our proposed graphical model (Fig. 2)

is predefined. For example, we assume links among the nodes A and

C if the involved person or the objects are detected by the detector

D. However, we learn the connections among the nodes in A online

because it is hard to predict the number of activities and all the activ-

ities might not be related to each other. Recent approaches for learn-

ing the structure are hill climbing structure search [3] and iterative

approach [7]. However, these approaches are not designed for learn-

ing continuously from the streaming video. In this work, we utilize

a max-margin learning framework to determine the links among the

nodes in A. We start with all the nodes in A to be connected to each

other. Then we apply two thresholds - spatial and temporal - on the

links. We keep the links whose spatial and temporal distances are be-

low these thresholds, otherwise we delete the links. We learn these

two thresholds as follows.

Suppose, we have a set of training activities {(ai, ti, si) : i =
1 . . . m} and we know the pairwise relatedness of these activities. The

goal is to learn a function fr(d) = wT d, that satisfies following con-

straints,

fr(di j) = +1, ∀ related ai and aj, (10)

fr(di j) = −1, Otherwise.

di j = [abs(ti − t j),‖si − s j‖]. We can formulate this problem as a tra-

ditional max-margin learning problem [3]. Solution to this problem

will provide us a function to determine the existence of link between

two unknown activities.

4.4. Inference

Inference in a graphical model is the process of computing the

marginal probabilities of the hidden variables given the observed

variables. We choose belief propagation (BP) message passing algo-

rithm for performing inference on CRF. BP does not provide guaran-

tee to convergence to true marginals for a graph with loops but it has

proven excellent empirical performance [27]. Its local message pass-

ing is consistent with the contextual relationship we model among

the nodes.

At each iteration, belief of the nodes are updated based on the

messages received from their neighbors. Consider a node ai ∈ V with

a neighborhood N(ai). The message sent by ai to its neighbors can be

written as,

mai,aj
(aj) = α

∫
ai

ψ(ai, aj)φ(ai, xi)
∏

ak∈N(ai)

mak,ai
(ai)dai.

The marginal distribution of each node ai is estimated as,

p′(ai) = αφ(ai, xi)
∏

aj∈N(ai)

maj ,ai
(ai).

The class label which has the highest marginal probability is the ac-

tual class label.
.5. Updating context model

Updating the context model is actually recomputing the param-

ters of the Eqs. (4)–(5)–(6)–(8), and (9). The parameters are mainly

o-occurrence frequencies and means and variances of the Gaussian

istributions. The parameters of the Gaussians can be updated us-

ng the method in [28], wheres the co-occurance frequency matrices

an be updated as follows, Fi j = Fi j + sum([(L = i).(L = j)T ]. ∗ Adj),

here, i, j = {1, . . . , c}, L is the set of labels of the instances obtained

rom the active learning system, Adj is the adjacency matrix of the

RF G of size |L| × |L|, sum(.) is the sum of the elements in the matrix,

nd .∗ is the element wise matrix multiplication.

. Active learning and teacher selection

Previously, we described the appearance and the context models

nd the approach we use to update them incrementally with an as-

umption that we have the labels of the incoming instances. However,

n a streaming video scenario incoming instances are unlabeled. Now,

e describe our active learning system where we carefully select the

ost useful instances to be labeled by a human annotator. The main

oal is to reduce the amount of expensive manual labeling while re-

aining the same level of performance similar to the state-of-the-arts.

According to [20], active learning can achieve greater learning ac-

uracy with fewer training labels if the learner is allowed to choose

he training data from which it learns. An active learner usually poses

ueries in the form of unlabeled training data instances to be labeled

y an oracle. However, based on the type of teacher (oracle) available,

he active learning system can be classified into two broad categories:

trong teacher and weak teacher. Strong teachers are assumed to give

orrect and unambiguous class labels. Most, but not all, strong teach-

rs are humans, which are assumed to have a significant cost. On the

ther hand, weak teachers generally provide more tentative labels.

ost, but not all, weak teachers are assumed to be classification al-

orithms that make errors but perform above the accuracy of random

uess [29]. Our proposed framework provides the opportunity to take

dvantages of both kind of teachers.

Active learning works within two common schemes: pool-based

ampling and stream-based sampling [20]. In our proposed frame-

ork, we take the advantages of stream-based sampling, where un-

abeled examples are presented one at a time and the learner must

ecide whether or not it is worth to invoke a teacher to label the ex-

mple. Now, the following questions remain: When we should ask a

eacher? Which teacher to invoke? And what action should we per-

orm in response?

Teacher Selection: Details of the active learning mechanism are

llustrated in Fig. 3 using a flowchart. Whenever an unlabeled activity

s presented to the system, the current activity recognition model is

pplied on the activity, which generates a tentative decision H(x),

ith a confidence score S(x). Let the second highest confidence score

e G(x). S(x) and G(x) are defined as follows,

(x) = max
y∈Y

∑
k

∑
t∈Tk

1[Ht (x) = y] log
1

Bt
(11)

(x) = max
y∈(Y−H(x))

∑
k

∑
t∈Tk

1[Ht (x) = y] log
1

Bt
, (12)

here, 1[.] is the indicator function, x ∈ Rn is the input activity, y ∈
1, . . . ,Y} are class labels, Ht (x) is a classifier, and log (1/Bt) is the cor-

esponding weight. We invoke the weak teacher when the tentative

ecision H(x) has sufficiently large confidence score. That means, if

(x) is greater than a threshold δ, the unlabeled activity is labeled

sing the label H(x) from the current model. Else if, |S(x) − G(x)| is

ess than a threshold ε, the current model is not confident enough to

ecide about the label. This example lies near the decision boundary

nd possesses valuable information. In this case, the system invokes
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Segment an Activity

Current Model

� − � � �

Invoke weak teacher Invoke strong teacher

Sufficient Examples?

Temporary Buffer

Yes Yes

No

No

Yes

No

Incremental Learning

Fig. 3. Flowchart of selecting examples for incremental learning and how to get the

correct labels of these examples through active learning. S(x) and G(x) are defined in

Section 5.

Fig. 4. A sample run of our proposed incremental activity learning framework. After

segmenting an activity from the video stream, we generate features and obtain a tenta-

tive label with a confidence score from the current model. Our active learning system

analyzes the score and obtains the correct label for the activity by invoking a teacher.

We temporarily store this new activity with the label for the next incremental learning

step.
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he strong teacher and obtains the label. Otherwise, the unlabeled

ctivity is not used for incremental learning. When the system has

ccomplished the task of labeling the unlabeled activity, new activity

with label y is stored in a buffer temporarily. Choice of the param-

ters δ and ε are domain dependent and can be updated regularly

ased on system’s performance. If the current model performs better

n the unseen validation data, these parameters can be set such that

he costly strong teacher is invoked rarely during training. Sensitivity

nalysis of these two parameters are provide in Section 6.

A sample run of our incremental learning framework on KTH

ataset using STIP feature is illustrated in Fig. 4. An activity is seg-

ented at timestamp t0 + i, which is followed by feature genera-

ion. New activity is labeled as “boxing” by the current model with a

ery high confidence score that leads the system to invoke the weak
eacher. At timestamp t0 + (i + 1), current model labeled another

ew activity as “walking” with a lower confidence score, which leads

he system to invoke the strong teacher. At timestamp t0 + (i + 2),

he segmented activity is labeled as “waving”, which is eventually ig-

ored by the active learning system because the score is neither con-

dent enough nor it is close to the decision boundary. Activities in

he first two cases are stored temporarily in a buffer to be used as the

raining examples for the next incremental learning step.

. Experiments

We perform experiments on four challenging datasets to evaluate

nd compare the performances of our framework. These datasets are

TH [30], UCF11 [31], VIRAT [32], and UCLA-Office [33]. In the first

wo datasets - KTH and UCF11, activities are temporally segmented,

t means that each video segment contains only one activity, whereas

n VIRAT and UCLA-Office datasets video sequences are long and con-

ain more than one activities. That’s why, for the last two datasets,

e use a video segmentation algorithm as described below to seg-

ent the activities from the long video sequences. Since the activ-

ties in KTH and UCF11 are already temporally segmented, they do

ot naturally posses any activity–activity or activity-object contex-

ual information. We improvise context features for these datasets in

rder to evaluate our context model. On the other hand, activities in

IRAT and UCLA-Office naturally posses contextual information. We

pply a set of detectors in the activity regions in order to construct

he context features. We describe them in details later in this section.

e now briefly describe the four datasets - KTH, UCF11, VIRAT, and

CLA-Office as follows.

.1. Human activity datasets

KTH Human Action Dataset: There are six action classes in KTH

30] dataset such as boxing, handclapping, handwaving, jogging, run-

ing, and walking. These actions are performed by 25 individual sub-

ects in four different scenarios - outdoors, outdoors with scale varia-

ion, outdoors with different clothes, and indoors with lighting vari-

tion. There are totally 599 video clips with the resolution of 160 ×
20 pixels. As mentioned above activities are temporally segmented.

UCF11 Human Action Dataset: The second experiment is per-

ormed on more challenging UCF11 dataset [31]. There are eleven dif-

erent action classes in this dataset such as basketball, biking, div-

ng, golf swing, horse riding, soccer juggling, swing, tennis swing,

rampoline jumping, volleyball spiking, walking, etc. Each action is

erformed by 25 different subjects under challenging scenarios and

llumination conditions. Videos were collected from Youtube where

ubjects perform various sports activities in the wild. There are about

600 video clips with the resolution of 320 × 240 pixels.

VIRAT dataset: It is a challenging wide area human activity dataset

ith 11 types of activities such as person entering vehicle, person

xiting vehicle, person opening trunk, person closing trunk, person

oading vehicle, person un-loading vehicle, person carrying an object,

erson gesturing, person running, person entering, and person exit-

ng a facility. The types of the objects associated with the activities are

ag, object, vehicle, bike, and person. These activities are subjected

o high amount of occlusion and clutter. This dataset has 11 surveil-

ance video scenes, which are fragmented into 329 sequences. We use

rst 170 sequences as the training examples and rest of them as the

esting.

UCLA Office dataset: The UCLA office dataset consists of indoor

nd outdoor activities involving one or two persons interacting with

ach other or objects. We conduct experiment on three office scenes

f around 35 minutes that contains around 136 activities. We use half

f the activity instances as the training example to learn the mod-

ls continuously and the rest of them are used for testing. There are

en activity classes such as enter room, exit room, sit down, stand up,
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work on laptop, work on paper, throw trash, pour drink, pick phone,

and place phone down. The object classes are laptop, water dispenser,

phone, and paper.

6.2. Dataset preprocessing

Activity Segmentation: We use an adaptive background subtrac-

tion based algorithm [34] to locate motion regions in the continuous

video. Inside these motion regions, moving persons are detected by

[35]. These detections are used to initialize the tracking method de-

veloped in [36] to obtain trajectories of the moving persons. Spatio-

temporal interest points (STIP) [12] are collected only for these mo-

tion regions. Each motion region is segmented into activity segments

using the motion segmentation based on the method in [37] with STIP

histograms as the model observation. We apply this method to seg-

ment activities in VIRAT and UCLA-Office datasets, which consist of

long video sequences. In KTH and UCF11 activities are already tempo-

rally segmented. Moreover, we do not perform any spatial segmenta-

tion in these datasets.

Appearance Feature Extraction: We use STIP [12] as the basic local

features in our experiments. STIP is a spatio-temporal local feature

and widely used for representing human actions in video. Any other

local features can also be used. After collecting STIP features, we use

a spatio-temporal pyramid based pooling technique [13] in order to

obtain a fixed length feature representation for each activity segment.

This representation can effectively collect local information and also

preserve the global structure of the activities.

Context Feature Extraction: As mentioned in Sections 4.1 and 4.2,

the CRF has two types of nodes - activity nodes and context nodes.

We assign the confidence scores from the ensemble of SVMs as the

node potential. On the other hand, we construct the context node

potentials as described by Eqs. (4) and (5) by analyzing the activity

region. We train a set of object detectors based on HOG features and

SVM classifier to detect objects of interest in the region. Detection re-

sults of the classifiers are used to construct the context features. We

trained five object detectors for VIRAT dataset and four object detec-

tors UCLA-Office dataset. For KTH and UCF11 datasets, we only use

activity-activity context. Here, we assume that similar types of activ-

ity can influence each other. For example, boxing, handclapping, and

handwaving activities of KTH dataset are similar and they can influ-

ence each other. By influence we mean correct recognition of one of

these activities can help to obtain better recognition of another simi-

lar activity. We do not use activity-object context for KTH and UCF11

datasets, because KTH activities do not have interaction with objects.

In UCF11, each activity is associated with an unique object class. Use

of object context in UCF11 would overfit the model.

We provide an illustrative example of a simplified version of the

CRF for two activities in Fig. 5. It also shows the corresponding node

and edge potentials. Suppose, we have six activity classes. So the node

potential is a vector of size 6 × 1 and the activity–activity edge poten-

tials is a 2d matrix of size 6 × 6. Suppose four types of objects are as-

sociated with the activities and we have a very simple context model.
A

C

A

C

6x1 6x1

6x46x4

6x6

4x1 4x1

Fig. 5. An illustrative example of a simplified version of the CRF for two activities with

potentials.
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l

o the context feature is a vector of size 4 × 1, where each position

ndicates the presence of an object. Activity-object edge potential is a

d matrix of size 6 × 4 that represent the co-occurrence frequencies

f the activities and the objects. Now, if we run belief propagation al-

orithm on this CRF, it will give us the marginal probabilities of the

ctivities. In this work, we incrementally update the node and edge

otentials so that they can perform better with time on the unknown

nstances.

.3. Objective and experiment setup

The main objective of the experiments is to analyze how well our

ramework incrementally learns the activity model with unlabeled

ata and to compare the performances against state-of-the-art batch

nd incremental methods. We abide by the following rules during all

xperiments -

• Due to the random selection of examples during training of SVM

classifiers, each run of incremental learning on same dataset and

features shows significant variance in accuracy. In order to get rid

of this randomness, we average our results over multiple runs

containing different random orders in which the data is pre-

sented.
• For splitting training and test data, we perform five fold cross val-

idation and then report the mean results over these folds.

We report our results in similar looking plots later in this section.

-axis of the plots represents the accuracy. It is normalized between

ero to one. This accuracy is computed over the test set by dividing

he number of correct classification by the total number of test in-

tances. X-axis represents the percentage of training instances the

ramework has seen so far. For example, 0.6 means that the frame-

ork has seen sixty percent of the total training instances. The re-

orted accuracy for 0.6 is the accuracy of the models trained with

ixty percent of the total training instances.

.4. Comparison with other methods

We compare performances of the three variants of our framework

gainst the state-of-the-art methods as illustrated in Fig. 6(a) , (b), (c),

nd (d) for VIRAT, UCLA-Office, KTH, and UCF11 datasets respectively.

hese three variants are No-Context, Context-A, and Context-AO. As

he name implied, No-Context does not use any context information.

he accuracies are solely based on the appearance model without any

nfluence of other activities. Context-A uses only activity-activity con-

extual information, where nearby activities can influence each other

or better recognition. Context-AO does not only use the activity-

ctivity context but also take the advantages of activity-object inter-

ctions. Here, associated objects can influence for the better recogni-

ion of the corresponding activities. We compare our results against

ollowing state-of-the-art methods - structural SVM (SSVM) [8], sum

roduct network (SPN) [38], spatio-temporal scene structure (STSS)

7], incremental activity modeling (IAM) [11], continuous learning

ith deep nets (CLDN) [13], bag of word (BOW) [8], incremental fea-

ure tree (IFT) [9], snippets (SNP) [10], incremental gaussian process

IGP) [24], recognizing realistic action (RRA) [31], and semantic visual

ocabulary (SVV) [39]. All the variants of our framework utilize both

f the weak and the strong teachers. Among all of the instance we

anually label about fifty percent of them to achieve these results.

able 1 shows the numeric comparison with other methods. We ana-

yze the characteristics of the plots in Fig. 6 as follows -

• Performances on all of the datasets increase asymptotically as

the framework see more and more training instances. When the

framework is finished seeing all of the incoming instances, perfor-

mances are already better than state-of-the-art approaches. But it

uses only about fifty percent of the labeled training instances.
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Fig. 6. Performances of the three variants of our framework are compared against the state-of-the-art methods. Please see the texts in Section 6.4 for more details. Plots are best

viewable in color.

Table 1

Comparison of our results against state-of-the-art batch and incremental methods.

Datasets Our methods State-of-the-art methods

KTH 99.5%(Context-A) 92.1% (HoF) [40], 96.3% [24], 93.9% (ICA)

[41], 91.0% [11], 96.4% [13], 96.0% [9],

90.3% [10]

UCF11 78.2% (Context-A) 71.2%[31], 76.1% [39]

VIRAT 73.6% (Context-AO) 47.0% [11], 54.2% [13] 73.5% [8] 72.0%

[38]

UCLA-Office 87.7% (Context-AO) 86.7% [7]
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• One of the major advantages of this framework is that it does

not require to store previous training instances. After incremental

learning with a new batch of training instances, it discards them.

The framework retain information in terms of ensemble of SVM

classifiers.
• Performances of Context-AO is much better than No-Context

and Context-A, whereas performances of Context-A is better

than No-Context as expected. Because they use more contextual

information.

.5. Effect of teacher selection

As discussed in Section 5, our framework takes the advantages of

wo kinds of teachers - strong and weak teachers. We select an in-

tance based on its informativeness and send to the strong teacher

or labeling, which is basically an expensive human annotator. Weak

eacher obtains the labels from the existing classifier, which does not

equire any cost. Selection of these teachers has different impact on

he performances of the framework as illustrated in Fig. 7(a), (b), (c),
nd (d) for VIRAT, UCLA-Office, KTH, and UCF11 datasets respectively.

ur analysis of these results are as follows -

• All-Manual is the plot where we do not have any active learning

system and hence, all of the instances are manually labeled. It

is the most expensive way of learning. Strong+Weak-Teacher

is the plot where we use the active learning system with both

of the strong and the weak teachers. Here we only manually label

the instances which are informative for the incremental learning.

As name implied, Strong-Teacher and Weak-Teacher plots only

use the strong or the weak teachers respectively. Weak-Teacher

plot does not use any manually labeled instances.
• The plots show that All-Manual performs better than other meth-

ods. Because it uses all of the incoming instances for incremen-

tal learning and labels all of them manually. The performances

of Strong+Weak-Teacher is very similar to the All-Manual. This

proves the robustness of the framework in learning incrementally

because it manually labels only fifty percent of the incoming data.
• Strong-Teacher also performs almost similarly to the

Strong+Weak-Teacher. It demonstrates that the weak labels

have little effect on incremental learning.
• The performances of Weak-Teacher is the worst comparing to

other methods because it only uses the labels produced by the

classifier. Performance diverges with time because of the noisy

labels.

.6. Performance evaluation on individual activities

Fig. 8 shows how incremental learning affects the classifica-

ion probability scores of some test instances as time goes on. In
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Fig. 7. Effect of different teachers in incremental active learning. Please see the text in Section 6.5 for more details. Plots are best viewable in color.
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general with some exceptions, an activity may be misclassified at

the beginning but when the models see more and more training

instances it becomes more distinctive and correct the labels with

higher probability scores. Fig. 8 shows some example activities of

four datasets and corresponding probability distribution in differ-

ent time points (the blue line). The red shade in a plot shows the

time points where the corresponding instance was misclassified.

GT is the ground truth label and PD is the predicted label of an

instance.

6.7. Comparison with other active learning techniques

We perform some experiments in order to compare our active

learning system with one other related existing active learning tech-

nique (Entropy) [20] and random sampling. Entropy selects an un-

labeled instance to be labeled by a human annotator based on the

uncertainty measure known as the entropy of the distribution. It

does not take the advantage of weak teacher. Random selects an in-

stance randomly without taking care of any informativeness mea-

sure. These plots are shown in Fig. 9(a) and (b) for VIRAT and UCLA-

Office datasets respectively. Our active learning system consists of

strong and weak teacher performs better than other two methods.

The margin of difference is smaller for VIRAT but larger for UCLA-

Office dataset.

6.8. Manual labeling comparison

Table 2 shows the amount of manual labeling used by different

methods to obtain the results in Fig. 7. All-Manual labels all the train-
ng instances. Strong-Teacher manually labels forty percents of the

raining instances to generate results in Fig. 7. Weak-Teacher does

ot use any manually labeled data during incremental training but

t need some labels during initial model learning. The most efficient

ethod is the Strong+Weak teacher.

.9. Parameter sensitivity

Fig. 10 (a) and (b) shows the sensitivity analysis of the parameter

k on VIRAT and KTH datasets respectively. Initially, the higher val-

es of Tk perform better than the lower values of Tk, but this perfor-

ance gap reduces significantly when the framework sees more and

ore data. Fig. 11(a) and (b) shows the effect of the different amount

f manual labeling on the performance of our framework for VIRAT

nd KTH datasets respectively. For both of the datasets, our frame-

ork begins to achieve the best performance with about fifty per-

ent of the manually labeled data. The plot All-Manual-Labeling is a

at line. It represents accuracy of the method that manually labels

ll of the training instances. Each of the accuracy plotted here is the

nal accuracy of the Strong+Weak teacher method with respective

mount of manual labeling in the x-axis. Fig. 12(a) and (b) shows the

ensitivity analysis of the weak teacher selection parameter δ for VI-

AT and KTH datasets respectively. For VIRAT dataset, accuracy of the

ramework reduces for the lower values of δ, because it tends to select

oisy labels for the training instances. However, for KTH dataset mar-

in of the performance reduction is not significant because activities

re more distinctive and most of them are classified with very high

robability score. As a result, selecting instances with δ = 0.5 returns

lmost same instances with δ = 0.9.
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Fig. 8. This figure shows the performance of the proposed incremental activity modeling framework on individual test action clips of different datasets. Plots are best viewable in

color.
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Fig. 9. Performance comparisons with other active learning techniques.
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Table 2

Number of manually labeled instances used by different methods to obtain the results in Fig. 7.

Datasets Total Training All-Manual Strong+Weak Strong Weak

KTH 599 479 479 156 (32.6%) 249 96

UCF11 1523 1218 1218 597 (49%) 634 244

VIRAT 925 740 740 351 (47.5%) 385 148

UCLA-Office 136 109 109 48 (44.4%) 57 22

Percentage of training instances
0.2 0.4 0.6 0.8 1  

A
cc

ur
ac

y

0.3

0.4

0.5

0.6

0.7

0.8
Dataset: VIRAT

T
k
=2

T
k
=4

T
k
=6

T
k
=8

T
k
=10

T
k
=12

T
k
=14

T
k
=16

T
k
=18

T
k
=20

Percentage of training instances
0.2 0.4 0.6 0.8 1  

A
cc

ur
ac

y

0.7

0.75

0.8

0.85

0.9

0.95

1
Dataset: KTH

T
k
=2

T
k
=4

T
k
=6

T
k
=8

T
k
=10

T
k
=12

T
k
=14

T
k
=16

T
k
=18

T
k
=20

ba

Fig. 10. Sensitivity of the parameter Tk . Please see the texts in Section 6.9 for more details.
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Fig. 11. Effect of the amount of manual labeling on the performance. Please see the texts in Section 6.9 for more details.

Percentage of training instances
0.2 0.4 0.6 0.8 1  

A
cc

ur
ac

y

0.3

0.4

0.5

0.6

0.7

0.8
Dataset: VIRAT

δ=0.5
δ=0.6
δ=0.7
δ=0.8
δ=0.9
δ=1.0

Percentage of training instances
0.2 0.4 0.6 0.8 1  

A
cc

ur
ac

y

0.7

0.75

0.8

0.85

0.9

0.95

1
Dataset: KTH

δ=0.5
δ=0.6
δ=0.7
δ=0.8
δ=0.9
δ=1.0

ba

Fig. 12. Sensitivity analysis of the parameter δ. Please see the texts in Section 6.9 for more details.
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7. Conclusion and future works

In this work, we proposed a framework for incremental activity

modeling. Our framework took advantage of state-of-the-art machine

learning tools and active learning to learn activity models incremen-

tally over time with reduced amount of manually labeled data. We
lso exploit the contextual information and learn it incrementally so

hat it helps to recognize activities more efficiently over time. We per-

ormed rigorous experiments on four challenging datasets. Results

how the robustness of our approach as accuracy asymptotically in-

reases in all of the cases. One future direction of this work could be

he use of interrelationships among the activities in a video sequence
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uring active learning, whereas this work only exploits the decision

mbiguity of the classifier on an unknown instance independent of

ther instances to measure the informativeness. Some preliminary

ork in this direction is presented in [42].
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