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Abstract

Activity recognition in video has recently benefited from
the use of the context e.g., inter-relationships among the
activities and objects. However, these approaches require
data to be labeled and entirely available at the outset. In
contrast, we formulate a continuous learning framework
for context aware activity recognition from unlabeled video
data which has two distinct advantages over most existing
methods. First, we propose a novel active learning tech-
nique which not only exploits the informativeness of the in-
dividual activity instances but also utilizes their contextual
information during the query selection process; this leads to
significant reduction in expensive manual annotation effort.
Second, the learned models can be adapted online as more
data is available. We formulate a conditional random field
(CRF) model that encodes the context and devise an infor-
mation theoretic approach that utilizes entropy and mutual
information of the nodes to compute the set of most informa-
tive query instances, which need to be labeled by a human.
These labels are combined with graphical inference tech-
niques for incrementally updating the model as new videos
come in. Experiments on four challenging datasets demon-
strate that our framework achieves superior performance
with significantly less amount of manual labeling.

1. Introduction
Enormous amount of visual data is being generated con-

tinuously from various sources. Learning from these visual
data, e.g., learning activity models, should be a continuous
process so that the models can be improved with new video
observations and adapted to the changes in dynamic envi-
ronment. However, learning needs labeled data and labeling
these large corpus of videos requires expensive and tedious
human labor. Continuous manual labeling of these incom-
ing videos in order to train the recognition models is infea-
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Figure 1. A sequence of a video stream [1] shows three new un-
labeled activities - person getting out of a car (A1) at T + 0s,
person opening a car trunk (A2) at T + 7s, and person carrying
an object (A3) at T + 12s. These activities are spatio-temporally
correlated (termed as context). Conventional approaches to active
learning for activity recognition do not exploit these relationships
in order to select the most informative instances. However, our ap-
proach exploits context and actively selects instances (in this case
A2) that provide maximum information about other neighbors.

sible. Active learning can be used to achieve an effective
solution to this problem, since it is a powerful tool for train-
ing classifiers from unlabeled data sources with a reduced
labeling cost and without compromising performance.

Recent successes in visual recognition take advantage
of the fact that, in nature, objects and events tend to co-
exist with each other in a particular configuration, which
is often termed as context [2]. Similarly, human activi-
ties in reality are inter-related and their surroundings can
provide significant visual clue for their recognition (Fig-
ure 1). Several research works [3–7] considered the use
of context from different perspectives to recognize human
activities and showed significant performance improvement
over the approaches that do not use context. However, these
approaches are batch methods that require large amount of
manually labeled data and are not able to continuously up-
date their models. Even though few research works such
as [8–10] learn human activity models incrementally from
streaming videos, they do not utilize contextual information
for more efficient recognition. In this work, we formulate
a continuous learning framework for context aware activ-
ity recognition models that leverages upon a novel active
learning technique in order to reduce the required human
annotation effort.
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Figure 2. Our proposed framework for learning activity models continuously. Please see the text in Section 1.1 for details.

Active learning has become an important tool for select-
ing the most informative queries from a large volume of un-
labeled data to be labeled by a human annotator, which are
then used for training classifiers. During query selection,
most of the approaches [11] only exploit informativeness,
expected error reduction (EER), etc. of individual data in-
stances in a batch or in an online manner assuming that there
are no inter-relationships among them. As stated earlier, ac-
tivities and objects in video show strong inter-relationship,
which are generally encoded using graphical models. It
would be beneficial to exploit these relationships (i.e., con-
text) during the most informative query selection process
as illustrated in Figure 1. Few works, such as [12], exploit
link-based dependencies of the networked data, while [13]
utilizes the inter-relationship of the data instances in feature
space for active learning. Some works [14] perform query
selection on CRF model for structured prediction in natural
language processing by utilizing only the co-occurrence re-
lationship that exist among the tokens in a sentence, while
activities in a video sequence additionally exhibit spatial
and temporal relationships as well as interactions with other
objects. Hence, it would be a significant contribution to de-
velop a new active learning technique for such applications.

1.1. Main Contributions and Overview
In this work, we propose a novel framework that ex-

ploits contextual information which are encoded using a
CRF in order to learn activities continuously from videos.
The main contribution of this work is twofold -

1. A new query selection strategy on a CRF graphical
model for inter-related data instances by utilizing en-
tropy and mutual information of the nodes.

2. Continuous learning of both the appearance and the
context models simultaneously as new video observa-
tions come in so that the models can be adaptive to the
changes in dynamic environment.

In order to achieve these goals, we show how to automati-
cally construct a CRF online that can take care of any num-
ber and types of context features. Detailed overview of our
proposed framework is illustrated in Figure 2.

Our framework has two phases: initial learning phase
and incremental learning phase. During the initial learning
phase, with a small amount of annotated videos in hand,
we learn a baseline activity classifier and spatio-temporal
contextual relationships. During the incremental learning
phase, given a set of newly arrived unlabeled activities, we
construct a CRF with two types of nodes - activity nodes

and context nodes. Probabilities from the baseline classi-
fier are used as the activity node potentials and the object
detectors are used to compute context features that are used
as the context node potentials. Spatio-temporal contextual
relationships are used as the edge potentials. We perform
inference on the CRF in order to obtain the marginal prob-
abilities of the activity nodes.

Our active learning system consists of a strong and a
weak teacher. We use information theoretic criteria - en-
tropy and mutual information of the activity nodes for se-
lecting the most informative instances to be labeled by a
human annotator, which we refer to as the strong teacher.
We condition on these newly labeled nodes and run infer-
ence again. We retain the highly confident labels obtained
from the inference, which we refer to as the weak teacher.
Newly labeled examples are stored in a buffer to be used in
the next step of incremental update of the baseline classi-
fiers and the contextual relationships.

2. Relation to Existing Works
Our work involves following areas of interest - human

activity recognition, active learning, and continuous learn-
ing. We will review some relevant papers from these areas.

Activity recognition. Visual feature based activity
recognition approaches can be classified into three broad
categories such as interest point based low-level local fea-
tures, human track and pose based mid-level features, and
semantic attribute based high-level features based methods.
Survey article [15] contains more detailed review on feature
based activity recognition. Recently, context has been suc-
cessfully used for activity recognition. Definition of context
may vary based on the problem of interest. For example, [3]
used object and human pose as the context for the activity
recognition from single images. Collective or group activ-
ities was recognized in [5] and [6] using the context in the
group. Spatio-temporal contexts among the activities and
the surrounding objects were used in [7]. Graphical mod-
els was used to predict human activities in [4]. However, as
mentioned in Section 1, these approaches are not capable of
learning activity models continuously from unlabeled data.

Active learning. It has been successfully applied to
many computer vision problems including tracking [16],
object detection [17], image [18] and video segmentation
[19], and activity recognition [20]. It has also been used
on CRF for structured prediction in natural language pro-
cessing[14,21,22]. They use information theoretic criteria
such as entropy of the individual nodes for query selection.
We additionally use mutual information because different
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activities in video are related to each other. It captures the
entropy in each activity but subtracts out the conditional en-
tropy of that activity when some other related activities are
known. This criteria enables our framework to select the
most informative queries from a set of unlabeled data repre-
sented by a CRF. Experiment results in Figure 5(column-3)
validate our claim that using only entropy is not enough to
capture the contextual relationships in videos.

Continuous learning. Among several schemes on con-
tinuous learning from streaming data, ensemble of classi-
fiers [23] based methods are most common, where new
weak classifiers are trained with the newly available data
and then, added to the ensemble. A few methods can be
found that learn activity models incrementally. The fea-
ture tree based method proposed in [8] grows in size with
new training data. The method proposed in [9] uses hu-
man tracks and snippets, and the method proposed in [10] is
based on active learning and boosted SVM classifiers. How-
ever, these methods do not exploit context, which has the
ability to enhance the recognition performance.

3. Modeling Contextual Relationships
Prerequisite. We have a set of activities A = {ai} seg-

mented from the video stream. Let {xi} be the visual fea-
tures extracted from these activity segments. Additionally,
we have a baseline activity recognition model P and a set
of object detectors D. We aim to formulate a generalized
model that does not depend on any particular choice of fea-
ture extraction and classification algorithms in order to per-
form above mentioned tasks. In Section 5, we describe the
specific choices we made during our experiments.

Overview. We model the inter-relationships among the
activities and the object attributes using a CRF graphical
model as shown in Figure 3. It is an undirected graph
G = (V,E) with a set of nodes V = {A,C,X,Z}, and
a set of edges E = {A−A,A−C,A−X,C −Z}. A are
the activity nodes, C are the context features, and X and
Z are the observed visual features for the activities and the
objects respectively. In Figure 3, P represents the activity
classifier and D stands for the object detectors. They are
used to compute the prior node potentials and to construct
the context features respectively. We are interested in com-
puting the posterior of theA nodes. Red edges among theA
and C nodes represent spatio-temporal relationship among
them. The connections between A and C nodes are fixed
but we automatically determine the connectivity among the
A nodes along with their potentials. The overall potential
function (Φ) of the CRF is shown in Equation 1, where φs
and ψs are node and edge potentials. We define the potential
functions as follows.

Activity node potential, φ(ai, xi). These potentials cor-
respond to theA nodes of the CRF. They describe the inher-
ent characteristics of the activities through low level motion
features. We extract low level features xi from the activity
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Figure 3. Illustrative example of a CRF for encoding the contextual
information. Please see the text in Section 3 for details.

Φ =
∏

ai∈A,ci∈C
xi∈X,zi∈Z

φ(ai, xi)φ(ci, zi)
∏

ai,aj∈A
ci∈C

ψ(ai, aj)ψ(ai, ci)

(1)

φ(ai, xi) = p(ai|xi,P) (2)

φ(ci, zi) = φ(c1i , zi)� φ(c2i , zi) (3)

φ(c1i , zi) = p(c1i |zi,D) (4)

φ(c2i , zi) = bin(c2i ) N (c2i , µc2 , σc2) (5)

ψ(ai, aj) = Fa(ai, aj) N (‖tai − taj‖2, µt, σt)
N (‖sai − saj‖2, µs, σs) (6)

ψ(ai, ci) = ψ(ai, c
1
i )⊗ ψ(ai, c

2
i ) (7)

ψ(ai, c
1
i ) = Fc1(ai, c

1
i ) N (‖sai − sc1i ‖

2, µc1 , σc1) (8)

ψ(ai, c
2
i ) =

∑
a∈A

bin(c2i )I(a = ai)
T N (c2i , µc2 , σc2) (9)

segments ai and train a baseline classifier P . Classification
score of a candidate activity segments ai generated byP are
then used as the node potential as defined in Equation 2.

Context node potential, φ(ci, zi). These potentials cor-
respond to the C nodes of the CRF, which are scene level
features and object attributes related to the activity of inter-
est. They are not low level motion features but may provide
important and distinctive visual clues. For example, pres-
ence of a car may distinguish unloading a vehicle activity
from entering a facility activity. In this work, we employ a
semi-automatic technique to learn these contexts by apply-
ing a number of detectors on the image observation Z in the
activity segment. Number and type of these context features
may vary for different applications. For example, we use
two context features in an application - objects (φ(c1i , zi))
and person (φ(c2i , zi)) attributes as defined in Equations 4
and 5, where c1i is the object class vector, c2i = ‖L1 − L2‖
is the distance covered by a person in the activity region,
bin(·) is a binning function as in [24], and µc2 and σc2 are
the mean and variance of the covered distances. We con-
catenate them in order to compute the context nodes poten-
tial (Equation 3 - � is the concatenation operation).

Activity-Activity edge potential, ψ(ai, aj). This poten-
tial models the connectivity among the activities in A. We
assume that activities which are within a spatio-temporal
distance are related to each other. This potential has three
components - association, spatial, and temporal compo-
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nents. The association component is the co-occurrence fre-
quencies of the activities. The spatial (temporal) component
models the probability of an activity belonging to a par-
ticular category given its spatial (temporal) distance from
its neighbors. ψ(ai, aj) is defined in Equation 6, where
ai, aj ∈ A, Fa(ai, aj) is the co-occurrence frequency
between the activities ai and aj , sai , saj , tai , and taj are
the spatial and temporal locations of the activities, and
µt, σt, µs, and σs are the parameters of the Gaussian dis-
tribution of relative spatial and temporal positions of the ac-
tivities, given their categories.

Activity-Context edge potential, ψ(ai, ci). This poten-
tial function models the relationship among the activities
and the context features. It corresponds to A − C edges in
the CRF. This potential is defined in Equation 7-9. ψ(ai, c

1
i )

models the relationship between the activity and the object
attribute and ψ(ai, c

2
i ) models the relationship between the

activity and the person attribute. Operator ⊗ performs hor-
izontal concatenation of matrices.

Structure Learning. We assume the connection be-
tween A and C if the involved person or the objects are
detected by the detector D. However, we learn the A − A
connections in an online manner because it is hard to pre-
dict the number of activities and they might not be related
to each other. A recent approach for learning the structure
is hill climbing structure search [3], which are not designed
for continuous learning. In this work, we utilize an adaptive
threshold based approach in order to determine the connec-
tions among the nodes in A. At first, we assume all the
nodes in A are connected to each other. Then we apply two
thresholds - spatial and temporal - on the links. We keep the
links whose spatial and temporal distances are below these
thresholds, otherwise we delete the links. We learn these
two thresholds using a max-margin learning framework.

Suppose, we have a set of training activities
{(ai, tai , sai) : i = 1 . . .m} and we know the pair-
wise relatedness of these activities. The goal is to learn
a function fr(d) = wT d, that satisfies the constraints in
Equation 10, where dij = [abs(ti − tj), ‖si − sj‖].

fr(dij) = +1, ∀ related ai and aj , (10)
fr(dij) = −1, Otherwise.

We can formulate this problem as a traditional max-
margin learning problem [3]. Solution to this problem will
provide us a function to determine the existence of link be-
tween two unknown activities.

Inference. In order to compute the posterior prob-
abilities of the A nodes, we choose belief propagation
(BP) message passing algorithm. BP does not provide
guarantee to convergence to true marginals for a graph with
loops but it has proven excellent empirical performance
[25]. Its local message passing is consistent with the
contextual relationship we model among the nodes. At
each iteration, belief of the nodes are updated based on

the messages received from their neighbors. Consider a
node ai ∈ V with a neighborhood N(ai). The message
sent by ai to its neighbors can be written as, mai,aj (aj) =
α
∫
ai
ψ(ai, aj)φ(ai, xi)

∏
ak∈N(ai)

mak,ai(ai)dai. The
marginal distribution of each node ai is estimated as,
p′(ai) = αφ(ai, xi)

∏
aj∈N(ai)

maj ,ai(ai). The class label
with the highest marginal probability is the predicted class
label. We use the publicly available tool [26] to compute
the parameters of the CRF and to perform the inference.

4. Context Aware Active Learning
Inference on the CRF G = (V,E) provides the marginal

probabilities and pairwise marginal joint distribution of the
nodes correspond to the edges. In this section, we use these
probabilities to select the most informative set S∗ ∈ V .

Suppose, we have a set of labeled data instances L with
c number of classes. We learn a baseline classifier P and
a context model C with these labeled data L. Now, we re-
ceive a set of unlabeled activity instances U = {ai} with
low level visual features {xi} from the video stream. We
then construct a CRF G with the activities in U using P and
C as discussed in Section 3. Inference on G gives us a prob-
ability distribution PG(ai) for an unlabeled activity ai. Our
goal is to use U to improve the model P and C with least
amount of manual labeling.

To begin with, let us assume that no inter-relationships
exist among the data instances in U . At first, we apply the
current model PG on the instances of U to obtain a class
probability distribution PG(ai) for each instance. We se-
lect the most informative subset S from the instances in U .
An instance is considered informative if the current model
PG is uncertain about it. We measure the uncertainty using
entropy. This can be formulated using Equation 11, where
H(S) is the sum of entropies of the nodes in S.
S∗ = arg max

S⊂U
H(S) (11)

H(S) =
∑
ai∈S
H(ai) =

∑
ai∈S

c∑
j=1

PG(ai = j) log
1

PG(ai = j)

However, in many applications, data instances are inter-
related, which can be modeled by a CRF as shown in Fig-
ure 3. Related instances are connected by edges, where
probability distribution of one instance can influence other
neighboring instances. In order to perform active learning
on such models, we also have to acknowledge these influ-
ences. Intensity of these influences can be computed by
mutual informationM. The basic intuition is that if two in-
stances are connected and can heavily influence each other,
we can select only one of them for manual labeling. After
getting the label, if we perform inference again on the CRF
with conditioning on the newly labeled nodes, neighboring
instances will have the chance to receive the correct label
with much higher probabilities. Mathematically speaking,
we select a set S∗ that maximizes the entropy of the indi-
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vidual instances but minimizes the pairwise mutual infor-
mation in the set (M(S)) . We also want to select nodes
which have more connections with other nodes since they
can influence more nodes once they have the correct labels.
The overall optimization problem for selecting the activities
to be labeled can be formulated using Equation 12, where
Deg(S) is the sum of the degrees of the nodes in S .

S∗ = arg max
S⊂U

[H(S)−M(S) + βDeg(S)] (12)

M(S) =
∑

ai,aj∈S
M(ai, aj) =

∑
ai,aj∈S

∑
i,j∈c
PG(ai = i, aj = j)

log
PG(ai = i, aj = j)

PG(ai = i)PG(aj = j)

Above mentioned optimization problem will select a
subset S∗ that will contain instances with higher entropies
and lower pairwise mutual information. However, it is a
subset selection problem and NP-hard. We provide a greedy
solution to this problem in Algorithm 1 in order to obtain
the set S∗, where we set β to 1.

Algorithm 1 Greedy Query Selection (Equation 12)
Input: CRF graph G = (V,E), |V | = N

Node probabilities: N × c
Edge probabilities: N ×N × c

Output: S ⊂ V , |S| = K
Compute entropies of the nodes,H : N × 1
Compute pairwise mutual information,M : N ×N
while |S| < K do

v1 = arg max
v∈V

[H(v) + βDeg(v)];

S ← S ∪ v1; V ← V − v1
v2 = arg min

v∈Neigh(v1)
M(v1, v); S ← S∪v2; V ← V −v2

end while

We ask a human annotator (strong teacher) to label the
instances in S∗. We then perform inference on G again by
conditioning on the nodes ai ∈ S∗. It provides more ac-
curate labels to the neighbors of ai ∈ S∗. Now, for an
instance aj ∈ U − S∗, if one of the classes has probability
greater than δ (say δ = 0.9), we assume that current model
PG is highly confident about this instance. We retain this
instance along with its label obtained from the inference for
incremental training. We refer to this as the weak teacher.
Number of instances obtained from the weak teacher actu-
ally depends on the value of δ, which we set large for safety
so that miss-classified instances are less likely to be used in
incremental training. An illustrative example of our active
learning system is shown in Figure 4.

4.1. Incremental Updates
We have two models to update - appearance model and

context model. These models are responsible for the node
and edge potentials of the CRF respectively.
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Figure 4. Inference on the CRF (top) gives us marginal probability
distribution of the nodes and edges. We use these distributions to
compute entropy and mutual information. Relative mutual infor-
mation is shown by the thickness of the edges, whereas entropy
of the nodes are plotted below the top CRF. Algorithm 1 exploits
entropy and mutual information criteria in order to select the most
informative nodes (3, 4, and 6). We condition upon these nodes
(filled) and perform inference again, which provides us more ac-
curate recognition and a system with lower entropy (bottom plot).

Updating appearance model. We use a multino-
mial logistic regression model as the baseline activity
classifier. In this model, the probability of label yi

of xi belongs to class j is written as p(j|xi; θ) =
exp(θTj xi)/

∑c
l=1 exp(θTl xi), where, j ∈ {1, . . . , c} is the

set of class labels, θTj is the weight vector corresponds
to class j, and the superscript T denotes transpose oper-
ation. The cost function is given by, arg minθ J(θ) =
− 1
m

∑m
i=1

∑c
j=1 1{yi = j} log p (yi = j|xi; θ) . This is a

convex optimization problem and we solve this using gradi-
ent descent method, which provides a globally optimal so-
lution. The gradient equation can be written as,∇θjJ(θ) =
− 1
m

∑m
i=1 [xi (1{yi = j} − p(yi = j|xi; θ))].

For updating this model, we obtain the newly labeled in-
stances from the active learner and store them in a buffer.
When the buffer is full, we use all of these instances to com-
pute the change of gradient∇θjJ(θ) of the model. Then we
update the model parameters using gradient descent as fol-
lows, θt+1

j = θtj −α∇θtjJ(θ), where, α is the learning rate.
This technique is known as the mini-batch training in lit-
erature [27], where model parameter changes are accumu-
lated over some number of instances before actually updat-
ing the parameters. We use [28] for incrementally training
the SVM when we use it as the baseline classifier.

Updating context model. Updating the context model is
actually recomputing the parameters of the Equations 5, 6,
8, and 9. The parameters are mainly co-occurrence frequen-
cies and means and variances of the Gaussian distributions.
The parameters of the Gaussians can be updated using the
method in [29], wheres the co-occurance frequency matri-
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ces can be updated as follows, Fij = Fij + sum([(L =
i).(L = j)T ]. ∗ Adj), where, i, j ∈ {1, . . . , c}, L is the set
of labels of the instances in U obtained after the inference,
Adj is the adjacency matrix of the CRF G of size |L| × |L|,
sum(.) is the sum of the elements in the matrix, and .∗ is the
element wise matrix multiplication.

5. Experiments
The objectives of the experiments is to analyze the per-

formance of our framework and to compare it with the state-
of-the-art batch and incremental methods as well as with
the recent active learning techniques. It is desirable that
the performance improves with the availability of new train-
ing instances and eventually converges to the performance
of the batch methods after all of the training instances are
seen. We conduct experiments on four challenging datasets
- VIRAT [1], UCLA-Office [30], MPII-Cooking [31], and
UCF50 [32] - to evaluate the performance of our proposed
continuous learning framework. Detailed description of
these datasets are available in the supplementary material.

Experiment setup. We conduct five fold cross valida-
tion on each of the datasets. Four folds are used as the
training and remaining one is used as the testing set. We
divide the training set into five or six batches. First batch
is used to train prior appearance and context models. Rest
of the batches are used to update the models sequentially.
Instances in the first batch are manually labeled, whereas
we perform active learning on other batches and use the ob-
tained labels for incremental training of the models. Af-
ter finishing incremental training with a batch of data, we
evaluate the resultant models on the testing set and report
these results as shown in Figure 5. Each row corresponds to
one dataset and each column corresponds to one experiment
scenario, which we describe below.

Activity segmentation. For VIRAT and UCLA-Office,
we use an adaptive background subtraction algorithm to
identify motion regions. We detect moving persons around
these motion regions using [33] and use them to initialize a
tracking method in order to obtain local trajectories of the
moving persons. We collect STIP features [34] from these
local trajectories and use them as the model observation in
the method proposed in [35] to identify candidate activity
segments from these motion regions. Activities are already
segmented in UCF50, whereas for MPII-Cooking we use
the segmentation provided with the dataset.

Appearance feature. We extract STIP [34] features
from the activity segments. We use a spatio-temporal pyra-
mid and average pooling based technique similar to [36]
to compute an uniform representation using these STIP fea-
tures. For MPII-Cooking dataset, we use bag-of-word based
MBH [37] feature that comes with the dataset.

Context features. Number of context features and their
types may vary based on the datasets. Our generalized CRF
formulation can take care of any number and type of context

features. We use co-occurrence frequency of the activities
and the objects, their relative spatial and temporal distances,
movement of the objects and persons in the activity region,
etc. as the context feature. Some of the features were de-
scribed in Section 3. Context features naturally exist in VI-
RAT, UCLA-Office, and MPII-Cooking datasets, whereas
for UCF50 we improvise a context feature by assuming that
similar types of activities tend to co-occur in the nearby spa-
tial vicinity. Dataset specific detailed description of these
features can be found in the supplementary material.

Baseline Classifier. We use multinomial logistic regres-
sion or softmax as the baseline classifier for VIRAT, UCLA-
Office, and UCF50 datasets, whereas we use linear SVM for
the MPII-Cooking dataset.

Result Analysis. We conduct four different experiments
for each dataset - 1) comparison with other batch and in-
cremental methods against three different variants (based
on the use of context) of our approach, 2) performance
evaluation of the four variants (based on the use of strong
and weak teachers) of our proposed active learning system,
3) comparison against other state-of-the-art active learning
techniques, and 4) the accuracy vs. the percentage of man-
ual labeling plot. We show these plots in the first, second,
third, and fourth column of Figure 5 respectively. We ana-
lyze these plots in the subsequent paragraphs.

Comparison with state-of-the-arts. Plots in Figure 5(a,
e, i, m) illustrate the comparisons of our three test cases -
no context, A-A context, and A-A-C context against state-
of-the-art batch and incremental methods for four datasets.
The definitions of these test cases are as follows. No
context means we apply the appearance model P inde-
pendently on the activity segments without exploiting any
spatio-temporal contextual information. A-A context means
we only utilize the inter-relationship among the activities,
which are only the A nodes and corresponding red edges in
Figure 3. A-A-C context means we exploit the object and
person attribute context along with the A-A context. In all
these three test cases, we use active learning with both of
the weak and the strong teachers. We apply several object
detectors based on HOG features and SVM in order to con-
struct the A-C part of the A-A-C context for VIRAT and
UCLA-Office datasets. These datasets have five and four
different object classes respectively. We directly use the
context features provided with the MPII-Cooking dataset.
However, we do not use A-C context for UCF50, where
each activity is associated with a specific object like food-
ball, piano, etc. Use of A-C context would have been pro-
duced better results from a over-fitted model that would not
reflect the true contribution of this work.

We compare the results on the VIRAT dataset against
structural SVM (SSVM) [7], sum product network (SPN)
[38], and incremental activity modeling (IAM) [10]. We
compare the results on UCLA office dataset against stochas-
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Figure 5. Plots (a, e, i, and m) show the performance comparisons of our frameworks against state-of-the-art methods on VIRAT, UCLA-
Office, MPII-Cooking, and UCF50 datasets respectively. Plots (b, f, j, and n) show the performances of weak and strong teachers. Plots
(c, g, k, and o) show the performance comparisons of our proposed active learning system (CAAL) against state-of-the-art active learning
and semi-supervised methods. Plots (d, h, l, and p) show accuracy vs. percentage of manual labeling for our methods and batch methods.
Please see the text for the explanation of the plots. For clarity, please see on a color monitor. The plots can be zoomed in.

tic context sensitive grammar (STSG) [30], and SVM based
bag-of-word. We compare the results on MPII-Cooking and
UCF50 datasets against MPII [31] and action bank [39] re-
spectively. Since these are the batch methods, we report
only the final performances of these methods when they
finish using all the training instances. Hence, plots of ac-
curacies of these methods are horizontal straight lines.

Followings are the analysis of the plots - i) All of the four
plots for four different datasets show similar asymptotic
characteristics. Performance improves with new batches of
training instances. ii) Performance improves when we use
more contextual information. A-A-C performs better than
A-A. A-A performs better than no context. iii) Our meth-
ods outperform other state-of-the-art batch and incremental
method with far less amount of manually labeled data. In
these plots our method uses around forty to fifty percent

manually labeled data depending on the datasets, whereas
all other methods use all the instances to train their models
except IAM. IAM does not report amount of manual label-
ing for VIRAT. iv) Our no context and A-A test cases also
outperform other methods that do not use context features.

Performances of four variants. Plots in Figure 5(b, f, j,
n) illustrate the comparisons among the four test cases based
on the use of weak and strong teachers. These test cases are
defined as follows. Weak teacher - for incremental train-
ing, we only use the highly confident labels provided by the
model after the inference. No manually labeled instances
are used in this test case. Strong teacher - we label a portion
of the incoming instances manually. This portion is deter-
mined by Algorithm 1. Strong+Weak teacher - we use both
of the above mentioned teachers. All instances - we label
all the incoming instances manually and use all of them to

7



0 0.5 1

ExitingFacility
OpeningTrunk
EnteringFacility
ClosingTrunk

Batch 1

0 0.5 1

ExitingFacility
GettingOutVehicle
Digging
OpeningTrunk

Batch 3

0 0.5 1

CarryingObject
ExitingFacility
GettingOutVehicle
OpeningTrunk

Batch 5

0 0.5 1

ThrowTrash
EnterRoom
StandUp
PickPhone

Batch 1

0 0.5 1

EnterRoom
ExitRoom
StandUp
ThrowTrash

Batch 3

0 0.5 1

EnterRoom
ExitRoom
StandUp
ThrowTrash

Batch 5

(a) VIRAT: Carrying Object (b) UCLA-Office: Enter Room

0 0.5 1

spread
background
squeeze
TakePutInSpiceHolder

Batch 1

0 0.5 1

spread
openTin
background
squeeze

Batch 3

0 0.5 1

spread
background
openTin
scratchOff

Batch 5

0 0.5 1

TennisSwing
ThrowDiscus
BaseballPitch
SoccerJuggling

Batch 1

0 0.5 1

TennisSwing
BaseballPitch
ThrowDiscus
Diving

Batch 3

0 0.5 1

BaseballPitch
Diving
TennisSwing
SoccerJuggling

Batch 5

(d) MPII-Cooking: Spread (c) UCF50 - Baseball Pitch
Figure 6. Evaluation of continuous learning on individual activities. Activity with green color means the ground truth class, whereas
activities with red color means false predictions. Grey bars represent probability scores. Here, we show the results obtained after the arrival
of batch 1, 3, and 5 data. In each of these examples, continuous learning helps to obtain the correct label with a higher probability even
though some of them were miss-classified initially. Best viewable in color.

incrementally update the models.
Followings are the analysis of the plots - i) Performance

of all of the test cases improves as more training instances
are seen except the weak teacher. ii) Strong+weak teacher
test case uses around forty percent of manually labeled in-
stances. However, its performance is very similar to all in-
stance test case that uses hundred percent manually labeled
instances. It proves the efficiency of our method for se-
lecting the most informative queries. iii) Performances of
Strong+weak teacher and strong teacher are almost over-
lapped. It means that weakly labeled instances don’t posses
useful information for training because they are already
confidently classified by the model. iv) Performance of
weak teacher is not as good as other because it does not
manually label the instances except in the first batch. Its
performance tends to diverge due to the fact that some of
the initial labels provided by the classifier are not correct.

Comparison with other active learning methods.
Plots in Figure 5(c, g, k, o). illustrate the comparisons of our
context aware active learning (CAAL) method against ran-
dom sampling and three other state-of-the-art active learn-
ing techniques such as IAM [10], Entropy [21], and ex-
pected change of gradients (ECG) [11]. IAM selects a
query by utilizing classifier’s decision ambiguity over an
unlabeled instance and takes advantages of both weak and
strong teachers. Entropy [21] selects a query if the clas-
sifier is highly uncertain about it based on entropy mea-
sure. ECG [11] considers an instance informative if it brings
significant change to the cost function. We obtained the
codes from the authors of IAM, while we implemented En-
tropy and ECG by ourselves. We follow the same conven-
tions and parameter setup for these experiments for ensur-
ing fairness. Our method outperforms other active learning
methods and random sampling for all datasets. This is be-
cause our method can utilize the interrelationships of the
instances. The margin of improvement is large for UCLA-
Office, MPII-Cooking, and UCF50 datasets. IAM performs
better than Random, Entropy, and ECG because it is bene-
fited from the weak teacher.

Accuracy vs. manual labeling. Plots in Figure 5(d, h,

l, p). illustrate the accuracy vs. the percentage of manual
labeling for four different test cases - no context + all man-
ual label (NC+All), no context + active learning (NC+AL),
A-A context + all manual label (AAC+All), and A-A con-
text + context aware active learning (AAC+CAAL). A-A
context and no context test cases have been defined above.
Additionally, no context and A-A context use strong+weak
teacher active learning. All of the reported accuracies in
this plot are after the final batch. All manual label test case
manually labels all the instances. It has only one accuracy,
which is a straight line in this plot. It is evident in the
plot that A-A-C begins to achieve accuracy similar to all
instance test case with only forty to fifty percent manually
labeled data. Performance of no context is far below than
A-A-C context. We conducted experiments on challeng-
ing natural video datasets where intra-class variance is very
high. We achieve performance similar to the state-of-the-
art batch methods on such challenging datasets by utilizing
roughly forty to fifty percent manual labeled data. It proves
the robustness of the framework for selecting the most infor-
mative queries. Only UCF50 is the exception. For UCF50,
there are short clips, so context does not help much and that
is the reason we do not see a similar reduction in labeling
effort. So the main impact of our work is in natural videos,
which have not been pre-processed into short clips so that
the relationships between the activities can be exploited.

Figure 6 shows the incremental performance of our
framework on four individual activities from four datasets.
Due to space limitation in the main paper, we will provide
more results in the supplementary materials.

6. Conclusion
We presented a continuous learning framework for con-

text aware activity recognition. We formulated a new ac-
tive learning technique that utilize the contextual informa-
tion among the activities and objects. We utilized entropy
and mutual information of the nodes in active learning to
account for the inter-relationships between them. We also
showed how to incrementally update the models using the
newly labeled data. Finally, we presented experimental re-
sults to demonstrate the robustness of our method.
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