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ABSTRACT OF THE DISSERTATION

Wide-Area Video Understanding: Tracking, Video Summarization and Algorithm-Platform
Co-Design

by

Shu Zhang

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2015

Dr. Amit K. Roy-Chowdhury, Chairperson

Analyzing scenes captured in video over wide areas, either in a single view or in multiple

views, is the focus of this thesis. The thesis considers three inter-related problems in this domain -

tracking in a network of cameras, summarization of the collected videos, and algorithm design that

is robust to the physical conditions of the environment and the hardware platforms on which they

are implemented. The inter-relationships between various objects in the scene (termed as context)

are explored in the developed solution strategies.

In this thesis, we explore the problems of multi-target tracking in a wide-area scene, where

the context information is shown to effectively improve the results because of the target interactions.

We present a context-aware multi-target tracking algorithm in an overlapping camera network. The

proposed algorithm is able to track multiple interacting targets in a wide-area camera network. From

observations that both individuals and groups of targets interact with each other in natural scenes, we

develop a Switching Network Tracker (SNT) that tracks both individuals and groups. In addition,

due to the lack of the availability of public non-overlapping camera network datasets, we propose
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a new camera network tracking dataset (CamNeT) with multiple challenges. A baseline algorithm

where the context information is considered is provided along with the dataset.

We also explore the video summarization problem. In a wide-area scene, most of the data

is redundant. Therefore, we develop an algorithm, Context-Aware Video Summarization (CAVS)

algorithm, that can capture the important video portions through information about individual local

motion regions, as well as the interactions between these motion regions (context information). The

summarization problem is then solved as the methodology of sparse coding with generalized sparse

group lasso.

Moreover, although complex algorithms have been developed, there are few methods con-

sidering the real applications when there is a performance constraint. We study this fundamental

problem in computer vision, which is to co-design the algorithm-platform for an unknown dataset

under certain performance constraints. Our algorithm calculates a similarity between a test video

and each unique training scenario. Similarity between training and test dataset indicates the same

algorithm-platform can be applied to both of them. We test our algorithm on two applications:

pedestrian detection and tracking.

We conclude the thesis by highlighting future research directions.
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Chapter 1

Introduction

There is a large of amount of available video data nowadays. However, manually an-

alyzing all the data is extremely difficult, especially in a wide-area scene. Therefore, we aim to

develop automatic algorithms to understand the scenes in the videos. Automatically understanding

the scenes is challenging because of the unstable features, illumination changes, cluttered scenes,

and etc. Although researches have successfully developed numerous features as well as algorithms

to solve different problems, most of these methods did not fully investigate how to deal with the case

of a wide-area scene. The inter-relationships between variables of interest, which are of importance

in understanding a video scene, has been studied in video analysis, e.g. object classification [96].

Another example is the multi-target tracking problem, where target states estimation was usually

performed independently for each individual target. However, the target motions are sometimes

highly correlated to each other. Therefore, these observations motivate researchers to model the

relationship between targets, activities and etc, which is usually termed as “context information” in

video analysis [111, 122].

1



In this thesis, we explore the problem of multi-target tracking in a wide-area scene (Chap-

ter 2 and 3), where the context information is very useful to improve the algorithm performance.

The context information is shown to effectively improve the tracking performance in a wide-area

scene. In addition, due to the large amount of redundant data in a wide-area scene, we design a video

summarization framework that captures the most informative information of video sequences. The

context information helps to capture the individual motion regions as well as interactions between

them. Moreover, we observe that algorithm performance usually varies significantly on different

datasets. The computation constraints also limit each algorithm’s applications. Thus we work on

a fundamental and practical problem in Chapter 5: when there are some available algorithms, how

do we automatically select the “best” algorithm for an unknown dataset under certain computation

constraints?

In the second chapter, we investigate the applicability and importance of the context in-

formation in the problem of multi-target tracking in an overlapping camera network. We propose a

framework for tracking multiple interacting targets in a wide-area camera network with the spatio-

temporal context information. Our method is motivated from observations that both individuals and

groups of targets interact with each other in natural scenes. We associate each raw target trajectory

(i.e., a tracklet) with a group state, essentially the context information, which indicates if the trajec-

tory belongs to an individual or a group. Structural Support Vector Machine (SSVM) is applied to

the group states to decide if merge or split events occur in the scene. Information fusion between

multiple overlapping cameras is handled using a homography-based voting scheme. The problem

of tracking multiple interacting targets is then converted to a network flow problem, for which the

solution can be obtained by the K-shortest paths algorithm. We demonstrate the effectiveness of the
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proposed algorithm on the challenging VideoWeb dataset in which a large amount of multi-person

interaction activities are present.

In the third chapter, we consider the multi-target tracking problem in a non-overlapping

camera network. Due to the lack of available datasets, we propose a novel Non-Overlapping Camera

Network Tracking Dataset (CamNeT) for evaluating multi-target tracking algorithms. The dataset

is composed of five to eight cameras covering both indoor and outdoor scenes at a university. This

dataset consists of six scenarios. Within each scenario are challenges relevant to lighting changes,

complex topographies, crowded scenes, and changing grouping dynamics. Persons with predefined

trajectories are combined with persons with random trajectories. Ground truth data for predefined

trajectories is provided for each camera. Also, a baseline multi-target tracking system is presented,

where the context information is considered.

In the fourth chapter, we present a method that is able to find the most informative video

portions, leading to a summarization of natural video sequences. In contrast to the existing ap-

proaches, our method that uses the context information is able to capture the important video por-

tions through information about individual local motion regions, as well as the interactions between

these motion regions. Specifically, our proposed Context-Aware Video Summarization (CAVS)

framework adopts the methodology of sparse coding with generalized sparse group lasso to learn a

dictionary of video features and a dictionary of spatio-temporal feature correlation graphs. Sparsity

ensures that the most informative features and relationships are retained. The feature correlations,

represented by a dictionary of graphs, indicate how motion regions correlate to each other globally.

When a new video segment is processed by CAVS, both dictionaries are updated in an online fash-

ion. Specifically, CAVS scans through every video segment to determine if the new features along
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with the feature correlations, can be sparsely represented by the learned dictionaries. If not, the dic-

tionaries are updated, and the corresponding video segments are incorporated into the summarized

video. The results on three public datasets show the effectiveness of our proposed method.

In the previous chapters, we focused on developing new algorithms. However, there is a

fundamental problem in computer vision, which is that computer vision algorithms are known to

be extremely sensitive to the environmental conditions in which the data is captured, e.g., lighting

conditions and target density. Tuning of parameters or choosing a completely new algorithm is often

needed to achieve a certain performance level, especially when there is a limitation of the computa-

tion capability. In this chapter, we focus on this problem and propose a framework to automatically

choose the “best” algorithm-parameter combination (often referred to as the best algorithm for sim-

plicity) under certain performance constraints for an unknown dataset. This necessitates developing

a mechanism to switch between different algorithms and parameters as the nature of the input video

changes. Our proposed approach is built upon a training and a test phase. Specifically, our proposed

algorithm calculates a similarity function between a test video scenario and each unique training

scenario, where the similarity calculation is based on learning a manifold of image features that

is shared by both the training and test datasets. Similarity between training and test dataset indi-

cates the same algorithm-parameter can be applied to both of them under the same performance

constraint. We design a cost function with this similarity measure to find the algorithm-parameter

combination that performs the best on the corresponding training data under a certain platform. The

proposed framework can be used online whereby the “best” algorithm-parameter is selected for each

new incoming video segment. We test our algorithm on two applications: pedestrian detection and

tracking.
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1.1 Related Works

In this section, we provide detailed literature surveys on each of the problem we study in

this thesis.

1.1.1 Multi-target Tracking in a Camera Network

In general, tracking in a camera network can be divided into two parts: tracking in a

non-overlapping camera network and tracking in an overlapping camera network.

In the first category, [57] is one of the early papers on non-overlapping multi-camera

tracking, in which appearance relationships between cameras were used to establish correspon-

dence. [52] learned a camera network topology and path probabilities of objects. Many existing

approaches focused on spatio-temporal cues to solve the tracking problem. The method in [71]

investigated the unsupervised learning of a model of trajectories based on the activity information.

[35] used a stochastic transition matrix to describe motions between cameras. Similarly, [98, 102]

proposed new transition distributions based on statistical dependence between observations in dif-

ferent cameras. The methods of [24, 45, 53] learned the brightness transfer functions (BTFs) either

online or offline between cameras. The approach in [61] learned an appearance affinity model be-

tween two non-overlapping cameras online. Some recent methods on tracking in non-overlapping

camera views combine both appearance information and spatio-temporal cues together to achieve

better results. [89, 95, 113] proposed an optimization framework by combining short term feature

correspondences across the cameras with the long-term feature dependency models. The method in

[26] did not use the spatio-temporal cues in multi camera scenarios, but instead investigated direc-
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tional angles using the spatio-temporal continuity in a single camera field. However, most of these

approaches failed to handle a high clutter scene.

In the second category (overlapping views), most approaches used systems with calibrated

cameras. The approach in [66] projected all the blobs in different cameras onto the ground plane

and then performed standard feature association algorithms. The approach in [18] used a similar

method but developed a greedy matching algorithm which can achieve results similar to the Hun-

garian algorithm but with less computation. The approach in [58] determined spatial positions by

transforming images based on a ground plane homography. The method in [42] estimated a ground

plane occupancy map to track people by their 2D segmentations in each camera. The method in

[12] exploited both dynamical and geometrical constraints to improve robustness to occlusion. [56]

explored a distributed estimation strategy for tracking and data association.

Tracking methods utilizing group information have been studied in single camera tracking

schemes. In [27, 82, 88], group information worked as a constraint to improve individual tracking

performance. The method in [14] jointly modeled individual and group information. [21, 117]

proposed the problem of group tracking with a descriptor of appearance features. The approach in

[72] exploited the social force between two pedestrians to associate groups of people. However,

none of these approaches used two classes of trackers that could freely track groups and individuals

simultaneously to obtain robust tracks for every target. Person re-identification [6, 7, 8, 100] is

another method which finds the one to one correspondences between targets in different cameras.

However, no group information is used in such an application, and person re-identification datasets

are more constrained than what we deal with in this chapter.
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In addition, there do exist some datasets with overlapping camera views. The Videoweb

Activities dataset [33] is a dataset that has been widely used. It has multiple activities among more

than 10 cameras. However, it does not contain a non-overlapping view scenario. Similarly, the Mul-

tiple Cameras Fall dataset [11] has 8 cameras monitoring one meeting room with overlapping views.

In this case, the purpose of the dataset is totally different from the one we are proposing. MuHAVi

[93] uses 8 cameras with overlapping views to collect 17 action classes which are performed by

14 actors. All these datasets are not specifically designed for tracking purposes; instead they are

more suitable for activity analysis. The PETS 2009 dataset [3] is one of the most popular multi-

view datasets for tracking. 8 cameras with overlapping views are used to monitor persons’ walking

behaviors. There are only three scenes in the tracking subset of the dataset, where each scene only

lasts for around 40 seconds. Other datasets are designed for the problem of object re-identification.

The Dana36 dataset [83] contains more than 23,000 images depicting 15 persons and 9 vehicles.

Both overlapping and non-overlapping scenarios are provided in this dataset. However, as stated

in this thesis, this dataset is not suitable for tracking because of the specifics of data acquisition

(multiple passes). The 3DPeS dataset [13] is another collection designed for the problem of person

re-identification. Both of these two datasets lack temporal information, because of which they can-

not be used for tracking. There are some multi-camera datasets that are more suited to the CamNeT

use-case. The GRID dataset [68] contains 250 pedestrian image pairs taken from 8 disjoint camera

views. However, such a multi-camera dataset does not fit into the problem of multi-target tracking

since no full video is provided. Instead, only person re-identification can be performed.
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1.1.2 Video Summarization

Video summarization is gaining widespread attention in recent years. As mentioned in

[99], many existing approaches focused on the problem of structured video summarization, such

as the movie or sports videos [28, 65]. The specific characteristics of these videos help to achieve

good video summarization results. However, these methods are usually not easy to be extended to

general video sequences.

In general, key frame based method is one of the most commonly used techniques in video

summarization. Features such as gradient orientations [86], color features [91] and a combination of

color and texture features [120] were used. Beyond purely visual information, additional audio data

[54] or multi-data source [119] were also considered as important features to find the key frames

of a video. Object level methods [41, 87, 112] have also been applied to remove irrelevant video

frames, in which the relationships between objects were considered. The methods in [59, 60] used

images as a prior to create semantically meaningful summaries. Change detection was also used

in video summarization [50, 77], in which a video was clustered based on a spatio-temporal slice

model. In [49, 80], new video segmenting methods were developed for summarizing videos. Be-

sides these, egocentric video summarization methods have also been developed. In [64], a saliency

based framework learned a linear regression model to predict importance score for each frame. In

[69], a random-walk based method between video subshots was developed to indicate the progres-

sion of the events. However, these methods require special features and are event specific. So the

applications are usually limited to the domain of wearable cameras.

Sparse coding, originally used in the computer vision domain of image classification

[104], has been applied to the problem of video summarization in recent years. In [29], the features
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of the entire video were learned as a dictionary to reconstruct every video segment. The method in

[115] improved the sparse coding method used in [29] by online updating of the learned dictionary.

However, our method is significantly different from these methods, where every feature vector was

considered independently. In our model, the spatio-temporal dependencies between the features are

incorporated into the sparse coding based video summarization framework. This is a more accurate

representation of the actual video since it models the inter-relationships between the various objects

and events. The approaches in [16, 122] have explored the correlations between activities. How-

ever, the abnormal event detection paper [16] considered the co-occurrence between pixels rather

than events as in our approach and do not explicitly model the sparsity. The activity recognition

approach in [122] required the prior knowledge of all the available activities in the dataset.

1.1.3 Algorithm-Platform Co-Design

Algorithm selection has been studied in recent years. In [107], image segmentation algo-

rithms were selected on different images. Features were learned by support vector machine (SVM)

and the performance of each algorithm was mapped to a four-bin ranking vector based on the corre-

lation between features. The results were shown to be effective on 1000 synthetic images. In [10],

the goal was to segment pixels in an image into different regions that are suitable to different al-

gorithms. Different features were classified by a random forest classifier, and different optical flow

algorithms were automatically selected.

Our method is different from these two approaches. We consider the problem of auto-

matically switching the algorithm based on the scene similarity between a test time window and all

the unique scenarios in the training dataset. Our proposed algorithm does not learn which specific

feature to be used for a dataset, and does not need manual analysis of the feature-performance cor-
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respondence. This is more general than [10], where the effects of the features on the training dataset

were manually analyzed to obtain the correlations between features and algorithms, e.g. which fea-

ture has an impact on a specific data. The methodology of domain adaptation that we use finds the

underlying correspondences between features while the approaches[10, 107] did not investigate this

issue. In [101], budget constraints were taken into consideration as the leverage rule between differ-

ent algorithms in the context of handwriting recognition and scene categorization. The algorithms

were selected based on a binary tree. Our method does not only consider the budget constraints.

Instead, our proposed framework considers both budget constraints and the performances of each

algorithm. We also investigate the possibility to change computation parameters to balance the

algorithm performances and the computation time.

To the best of our knowledge, this is the first approach that adaptively selects algorithm-

parameter combinations with applications on pedestrian detection and tracking. We briefly intro-

duce some related works on these two applications. The most widely used pedestrian detector in the

past decade is the Histograms of Oriented Gradients (HOG) detector [30], where the HOG feature

was developed and a linear SVM was adopted to classify HOG features. The part-based model

(PBM) that was developed in [39, 40] applied HOG features on a part-based multi-component

model and achieved very good performance on some datasets. The method in [46] considered a

deformable part model with k parts as k-poselets, and used a separate HOG template to model the

appearance. A summary of the approaches of person detection can be found in [37]. The method

in [109] looked into the problem of how a previously trained classifier can be adapted to a target

dataset and proposed deep networks which jointly solved the problem of target detection as well as

reconstruction of the target scene. Our method differs from this in two important ways. First, we
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build upon existing well-known algorithms whose performance is very well understood and choose

the best algorithm for each video segment. Second, the method proposed here can be applied online

as new test data is available.

In the area of multi-target tracking, we have introduced the applications in a camera net-

work. In the single camera scenario, most state-of-the-art approaches focus on solving the problem

of data association, given that the detections are available. [94, 105] adopted the bipartite graph

matching method to find out initial detection association results, and used the statistics or other

properties of the associated tracks to obtain the final tracking results. The methods in [27, 88, 111]

developed complex detection association models based on the grouping behaviors between targets.

In [20, 32, 85], the problem of multi-target tracking was modeled as a network-flow problem. Al-

though the state-of-the-art results have been obtained recently, the computations of these algorithm

are usually too high to be adopted in the applications that require certain budget constraints or pro-

cessing speed. For example, the approaches in [31, 111] have complex graph structures which make

the learning and inference of the graphs time consuming. To meet the computation time require-

ment, we adopt a simple yet effective approach that has been widely used as the baseline algorithm

in [27, 88, 94, 105, 111].

1.2 Organization

The rest of this thesis is as follows. The multi-target tracking problem in an overlapping

camera network is introduced in Chapter 2. In Chapter 3, we introduce the new non-overlapping

camera network (CamNeT) as well as a baseline algorithm with a contextual motion model. In

Chapter 4, we focus on another application of the context model: video summarization. In Chapter
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5, we consider the case of constrained performance and propose an adaptive algorithm-platform

selection model. Finally, we conclude the thesis in Chapter 6 with an outline of the future direction

of research.
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Chapter 2

Multi-target Tracking in an Overlapping

Camera Network

2.1 Introduction

Multi-target tracking in a camera network, although attractive to researchers for a long

time [24, 45, 114], still remains challenging. In particular, large illumination variations across cam-

eras, cluttered scenarios and a camera network with overlapping views pose impediments to tra-

ditional tracking algorithms. Moreover, multiple cameras require computing associations between

detected targets in different views, which can also be a challenging task. In this chapter, we propose

a novel camera network tracking scheme, called Switching Network Tracker (SNT), for tracking of

multiple interacting targets in a cluttered camera network scene.

Our scheme is motivated by natural scenes as shown in Fig. 2.1, where people interact

with each other in a camera network. We see that people often congregate together in a way where
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Figure 2.1: Tracking challenges in a camera network, where C1 and C2 have overlapping views.

The horizontal axis represents time and the vertical axis shows three different cameras in each time

step. At t1, five persons stay in a group who are marked with five different colors. C1 can fully

observe these five persons, while C2 can only observe three of them. At t2, the five-persons group

splits into three parts. C1 observes the persons in yellow and red, while the persons in purple and

blue (illustrated by two arrows) are occluded by them. However, the person in purple can be fully

observed in C2. At time t3, the person in purple in C1, who is occluded at t2, can be fully observed.

it may be difficult to individually detect them, and these congregations might split either within the

view of an individual camera, or in the blind areas between non-overlapping cameras. When an

individual target cannot be detected, we can still get an estimate of the target’s state by tracking

the group into which it merged. Therefore, it is necessary to design a tracking scheme for camera

networks, which integrates group tracking and individual tracking, and switches smoothly between

the two to generate robust individual tracks.
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Besides, in order for a tracking scheme to obtain long and stable tracks for every tar-

get within and across cameras for overlapping views, cooperation among cameras is necessary to

improve the system performance.

There are a few papers which systematically address the problem of multi-target tracking

in camera networks. The methods in [61, 95] extended the recent multi-target tracking framework

in [94, 105] to a non-overlapping camera network application. Detections of a person are associated

to form a short but robust track, the so called tracklet, for this person. However, the problem

of tracking targets in a cluttered scene with a large number of interacting activities has not been

addressed in these approaches. [18, 66] addressed the tracking problem in overlapping views with a

similar tracklet association scheme, but clutter due to people grouping together was not addressed.

The proposed SNT is designed to handle a cluttered scene with multiple interacting tar-

gets. Specifically, the SNT can track individuals and groups simultaneously in a camera network.

Individuals are tracked in uncluttered scenes where single targets can be clearly detected, whereas

the groups are tracked for cluttered environment where individual target detection is inaccurate or

infeasible with state-of-the-art detectors. We assign each detected region with a group state to de-

fine if the region is associated with a group or an individual. In order to identify a group state of

a detected region, a Structural Support Vector Machine (SSVM) model is constructed, upon local

features of each target and the relationships between targets, to determine the merging and splitting

events occurring in the scene. In the operational phase of the system, detections that can be associ-

ated with high confidence lead to the formation of tracklets. Each tracklet is assigned with a group

state by the learned SSVM based on all associated observations from cameras with overlapping

views. Then, a homography based target state estimation methodology is applied to fuse tracklets
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in overlapping views. With the consistent tracking results on overlapping views, the problem of

tracking multiple interacting targets in a camera network is formulated as a network flow problem.

We show that such a problem can be converted to a mixed integer programming problem and the

K-shortest paths algorithm [51, 97] is used to obtain the optimal solution.

In the experiments, we work on the VideoWeb dataset [33], which is a publicly available

camera network dataset with overlapping camera views. To the best of our knowledge, we deal with

a far more complex multi-camera scenario than previous methods that have looked into this problem

[53, 61, 66, 95], in terms of the number of cameras, targets, their actions, and camera fields of view.

We demonstrate the effectiveness of our tracking algorithm with thorough test results.

2.1.1 Contributions

Our method has three main contributions:

1. We propose a novel tracking framework - SNT - for camera networks. The SNT is

designed to generate robust and long individual tracks, even in cluttered scenes, by tracking both

individuals and groups simultaneously depending on the degree of clutter in the scenes.

2. We design an SSVM that integrates spatial and temporal relationships between tracklets

to detect group formation and splitting in a camera network. With the merging and splitting events,

group states of tracklets can be better determined, which is significant for the smooth switching

between individual and groups across cameras.

3.A general tracklet association algorithm is developed. We introduce group nodes to the

standard min-cost network flow problem and modify the problem accordingly to handle multiple

interacting targets in a camera network. An approach based on linear programming is proposed to

solve the modified network flow problem.
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2.2 Group model using a structural SVM (SSVM)

As interactions between targets may lead to a situation where individuals cannot be de-

tected separately, a group model is needed. We are also interested in the merge and split activities

of the group so as to obtain a long track for each target.

In the traditional definition of a group [82, 105], a tracklet is seen in a group when there is

at least one nearby tracklet within the same time window. Corner features were commonly used to

cluster the trajectories into groups [19, 90], while [44] performed group detection based on tracklets.

We use the tracklets as the inputs of our group detector, while the corner features provided additional

cues in case of missing detections. Following the method in [94, 111], we use the particle filter

to associate detections into tracklets. We train an SVM classifier [23] upon the features of the

bounding boxes. Note that the group detector is not the focus of our approach and can be replaced

by any advanced group detector. Three classification scores (named group states g) are obtained:

individual (0), group (1) and others (2). g = 2 is needed to deal with situations when it is not clear

if an individual or group is detected, which can happen when groups merge or split.

There are three possible group events between two group states: merge, split, and stable.

The input of the group model is a set of tracklets in cameraCm; T Cm = {T Cm
1 , T Cm

2 , · · · , T Cm
i , · · · ,

T Cm
N }, where N is the total number of tracklets in Cm. We consider tracklets T Cm

i and T Cm
j from

different times, where T Cm
j starts after T Cm

i ends and the start time of T Cm
j minus the end time

of T Cm
i is within a threshold. The group event label y, evaluated over the two time windows, is

defined as
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y(T Cm
i , T Cm

j ) =



0, if no event,

1, if merge events detected,

2, if split events detected.

(2.1)

As discussed above, if g = 2 for a tracklet, we need to learn if the tracklet is in a

merge/split event. We propose a novel group event learning method which can jointly estimate

the group event labels of a set of tracklets. A structural SVM model that integrates motion features

with various context features is developed for this purpose. In the most of this section, we drop

Cm from the notation of a tracklet because the group event detection is performed in every single

camera view.

2.2.1 Motion feature descriptors

To detect the group state of a tracklet, both spatial context features and temporal context

features are needed. This is because a tracklet’s group state change depends on the spatial relation-

ship between this tracklet and other tracklets. A merge/split event also depends on the temporal

relationship between two tracklets, i.e., an individual merges to a group over time. A tracklet i’s

motion features include the average size, the position on the first and last frame, and the moving

speed. A motion feature descriptor of tracklet i is represented as [Wi, Hi, Xi, Yi, sxi, syi]. We use

W andH to represent the average width and height of a tracklet between its first and last frame, and

use X and Y to represent the average horizontal and vertical positions of a tracklet on the image

plane between its first and last frame. sx and sy denote the average moving speed of the tracklet in

horizontal and vertical directions.
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Spatial context feature descriptor: Given a time windowNT , the spatial context feature

is the spatial relationship between the interested tracklet and the nearby tracklets. RSij(n) and

RT ij(n) are the spatial and temporal relationships of Ti and Tj at frame n. The spatial relationship

between these two tracklets is defined as the normalized histogram RSij = 1
NT

∑NT
n=1RSij(n),

where NT is the number of frames in the time window. RSij(n) represents the distance between Ti

and Tj at frame n. In practice,RSij(n) depends on the motion features of the tracklets. The distance

between two tracklets Ti and Tj at frame n is dn(Ti, Tj) =
√

(Xi(n)−Xj(n))2 + (Yi(n)− Yj(n))2.

The spatial context feature descriptor between Ti and Tj at frame n is defined as

RSij(n) =



[1 0 0]T , if dn(Ti, Tj) < min{Wi(n),Wj(n), Hi(n), Hj(n)},

[0 0 1]T , if dn(Ti, Tj) > 2×min{Wi(n),Wj(n), Hi(n), Hj(n)},

[0 1 0]T , otherwise.

(2.2)

Table 2.1: Different relationships between individuals and groups with t1 < t2.

Attribute Subset Associated Attributes

A1 t1: an individual; t2: a group.

A2 t1: a small group; t2: a large group.

A3 t1: a group; t2: an individual.

A4 t1: a large group; t2: a small group.

A5 Otherwise.

Temporal context feature descriptor: The SNT will not switch the tracking mode until a

merge or split event is detected. The temporal relationship between merge/split events and the group

states g is considered in the tracking system. There are 5 attribute subsets between two tracklets at
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two consecutive time windows. The attribute subset definitions can be found in Table 2.1. If any

attribute Ai is satisfied, the corresponding attribute is 1 while the others are 0. Ai is determined

by the tracklets’ group states g and the feature descriptors of the tracklets. Note that the potential

merge/split events are determined based on the average size change of the tracklets and become cues

for the final label of these group events. The average size change cues include the number of persons

as well as the size of the group on the image plane. If the number of persons does not change while

the size of the group on the image plane has a significant change, there is a high possibility that

the person detector missed some persons in the crowded scene. The normalized histogramRT ij is

the temporal context feature of tracklet Ti with respect to tracklet Tj . We define RT ij as a 5-bin

histogram, an example of which is shown in Fig. 2.2.

2.2.2 Group merge and split model

Given all the features of tracklets, the goal is to detect the merge or split events. A set of

tracklets T is associated with a label vector y = {yi}, i = 1, 2, ..., N , where yi ∈ {0, 1, 2} is the

group event label vector of Ti. We infer the group states of the tracklets set from the combination

of various context features discussed above. Define DRS and DRT as the dimensions of RSij and

RT ij . A potential function between features of T and label y is defined as F (T , y):

F (T , y) =
N∑

i=1,j=1,i 6=j
wTRS,(yi,yj)RSij +

N∑
i=1,j=1,i 6=j

wTRT ,(yi,yj)RT ij (2.3)

where RSij ∈ RDRS and RT ij ∈ RDRT are the spatial and temporal context feature descriptors

associated with tracklet Ti and Tj respectively. wRS,(yi,yj) ∈ RDRS and wRT ,(yi,yj) ∈ RDRT are
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Figure 2.2: An example of spatial and temporal context motion features in four consecutive time

windows. (a) has two individual tracklets (red and blue rectangles) and one group tracklet (yellow

rectangle). The spatial context descriptor between the blue and red individuals at this frame n is

RSbr(n) = [1 0 0], where the subscripts denote the color blue and red. In (b), the purple group

is merged by the two individuals in (a). The temporal context feature descriptor between the blue

tracklet in (a) and the purple tracklet in (b) is RT bp = [1 0 0 0 0] because it is the event that two

individuals merge to a group. From (c) to (d), the purple group and the yellow group merge to

a larger group. The temporal context feature descriptor between the purple tracklet and the green

tracklet is thusRT pg = [0 1 0 0 0].

the weights that capture the spatial and temporal relationships of group event classes yi and yj . N

is the number of tracklets.

2.2.3 Model learning and inference

The potential function F (T , y) can be converted to a linear function with a parameter

vector w. Define yi the label vector of the corresponding tracklet Ti. We first rewrite Eq. 2.3 as:

F (T , y) =wTRS

N∑
i=1,j=1,i 6=j

ψ(RSij , yi, yj) + wTRT

N∑
i=1,j=1,i 6=j

φ(RT ij , yi, yj) (2.4)
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where wRS and wRT are weight vectors and defined as

wRS = [wTRS,(1,1) · · ·w
T
RS,(1,N) · · · w

T
RS,(N,N)]

T ,

wRT = [wTRT ,(1,1) · · ·w
T
RT ,(1,N) · · · w

T
RT ,(N,N)]

T ,

and ψ(RSij , yi, yj) and φ(RT ij , yi, yj) have non-zero entries at the position corresponding to

class pair (yi, yj).

We define the joint weight vectorw and the joint feature vectorE(T , y) asw = [wTRS , w
T
RT ]T

and E(T , y) = [
∑

i,j,i6=j ψ(RSij , yi, yj),
∑

i,j,i6=j φ(RT ij , yi, yj)]T , where i, j = 1, · · · , N . Then

Eq. 2.4 can be expressed as

F (T , y) = wTE(T , y), (2.5)

The learning algorithm can be written as

w∗ = arg min
w
{1

2
wTw − C

M∑
i=1

wTE(Ti, yi) + C

M∑
i=1

max
yi

[wTE(Ti, yi) + ∆(Ti, yi)], (2.6)

where ∆ is the number of tracklets that associate with incorrect labels and C controls the tradeoff

between the errors in the training model and margin maximization. Eq. 2.6 can be converted to an

unconstrained convex optimization problem and solved by the cutting plane methodology [55].

In the inference part, we adopt the greedy search methodology in [34, 121, 122] to find the

optimal label vector ytest. We first initialize the assignment sets, the label set y, and the instanced

tracklet set T as the null sets, indicating no tracklet state is recognized yet. We augment these sets

by iteratively adding the labeled tracklet that increases the potential score the most.
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2.3 Camera network tracklet association

Having the group state and the group event label of every tracklet in each camera, tracklet

fusion in cameras with overlapping views is performed to obtain the consistent group states for the

overlapping tracklets. Then, with single camera tracking being done, the tracklet association scheme

is applied to the camera network. The tracklet association scheme aims to associate tracklets into

long, stable tracks. If merge/split events are detected by the SSVM group model in Sec. 2.2, a group

tracklet is associated with its corresponding individual tracks.

2.3.1 Group State Estimation in Overlapping Views

The SNT fuses all the tracklets in the overlapping views by a homography transformation

between overlapping views similar to [58]. A homography transformation is used to project the

ground plane from one camera view to that in another camera view. The group state of one target

in different camera views may not be the same because of the differences in the observations. A

weighted voting scheme is used to obtain the consistent group state of the same target across all

cameras. Specifically, if there is an observation in the overlapping views between at least two

cameras, the final group state is a linear combination of the group state from each camera. The

group state from the camera with the widest view is assigned the highest weight while the ones

from other cameras are assigned low weights. Thresholding is applied then to decide a consistent

group state for the target.

Single camera tracking

We formulate the multi-target tracking task in a single camera as a network flow problem.

We assume that there are l time intervals in a video sequence in every camera view. A graph
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G = (V,E) is built as in Fig. 2.3. Every tracklet is seen as a node in G, where the group states of it

in all the overlapping view cameras are consistent. We also add two virtual nodes: the source node

vstart and the sink node vend representing the starting and ending nodes. The edges correspond the

admissible association between two nodes. The vertex set V consists of a start node vstart, a sink

node vend, and nodes from the time interval 1 to l. Each edge is assigned a cost ci,j which is based

on the feature similarity between two nodes i and j. We define fij as a binary indicator variable that

is 1 when there is an association between the nodes i and j and 0 otherwise. Thus,

fstart,i =


1, if i is the starting node of a track Xk,

0, otherwise.

(2.7)

fi,end =


1, if i is the ending node of a track Xk,

0, otherwise.

(2.8)

fi,j =



1, if there is an admissible associationbetween the nodes i and j

in two consecutive time intervals,

0, otherwise.

(2.9)

where Xk represents a long, associated track.

For every node, the sum of flows arriving at a node j equals to the sum of outgoing flows

from the node j. If there is an association between two tracklets, no other associations are allowed

between either of these two tracklets. Thus the following constraint on the variable f must be

satisfied,
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Figure 2.3: A network flow framework for a simple graph in a single camera view. The purple nodes

with solid lines represent the single target, the blue nodes with solid lines represent the group target,

and the blue nodes with dotted lines are virtual nodes.

fstart,j +
∑
i

fi,j =
∑
k

fj,k + fj,end, (2.10)

While a node can represent either a group or an individual, such a constraint in Eq. 2.10

cannot be always satisfied because a group can be merged or split into multiple individuals. This

might cause a many-to-one matching problem. To avoid such a case, we use the group state of a

node as well as the merge/split label obtained from Sec. 2.2 to temporarily change the number of

nodes. Specifically, if there is a merge/split event before/after a group node, we add virtual group

nodes to make the total number of group nodes including the virtual nodes equal to the number of

individual nodes before/after the split/merge event. An example is shown in Fig. 2.3, in which the

blue node with solid lines is a group node and the blue node with dotted lines is the virtual node.

Thus,
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Nt =



Nt−1 + ÑG
t−1, if there is a merge event before t,

Nt+1 + ÑG
t+1, if there is a split event after t,

0, otherwise.

(2.11)

where Nt is the number of nodes in time interval t, and ÑG
t−1 is the number of the added virtual

nodes in time interval t− 1.

We define the cost between two nodes i and j in a graph G as the negative logarithm of

the feature similarity between two nodes, which is denoted by ci,j , i.e.,

ci,j = − logS(Ti, Tj), (2.12)

where S is the similarity function.

The tracking problem in a single camera view is then formulated as

Minimize
∑
j

cstart,jfstart,j +
∑
i,j

ci,jfi,j +
∑
j

cj,endfj,end, (2.13)

We also need to ensure that all flows from the source node vstart eventually end up in the

sink node vend, i.e.,

∑
i

fstart,i =
∑
k

fk,end. (2.14)

Camera network tracking

In a camera network, the problem formulation is similar to the method above. However,

some significant differences should be noticed. We assume that an edge only exists between two

consecutive time steps excluding the source and sink nodes in a single camera. This is because a
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target’s motion can be seen continuously. To make the approach general to non-overlapping views,

the definition of fij in Eq. 2.9 is redefined as

fi,j =



1, if there is an admissible association between

the nodes i and j within a time window;

0, otherwise.

(2.15)

In the network flow in a single camera, a target is seen as a node in every camera. Since

the tracklet fusion can be done as stated above, all the observations of the same target are seen as

one node in the new network flow framework. Such a simplification can guarantee that Eq. 2.10

is satisfied. An example of the network flow framework of a camera network can be seen in Fig.

2.4. The link from the second node at time 1 to the first node of time 3 is because of the blind area

between Ca and Cb. Note that a node in camera a can have an edge with another node in the same

camera since a target might leave the camera view and return back to the same camera.

The similarity between two observations is defined as S(OCb
j , OCa

i ), where OCa
i denotes

the observation of tracklet i in camera a. Cb can be any camera including the camera Ca.

The overall problem for tracking multiple interacting targets in a camera network can now

be rewritten as a linear programming one.
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Figure 2.4: A network flow framework for a simple graph in a camera network. The purple nodes

with solid lines represent the single target, the blue nodes with solid lines represent the group target,

and the blue nodes with dotted lines are virtual nodes. To keep the graph clean, we only show one

example of two non-consecutive nodes from camera a in time interval 1 to camera c in time interval

3.

Minimize
∑
j

− log{Sstart(OCa
i )}fstart,j +

∑
i,j

− log{S(OCb
j , OCa

i )}fi,j

+
∑
j

− log{Send(OCc
i )}fj,end

s.t. fi,j ≥ 0, fstart,i ≥ 0, fi,end ≥ 0 ∀(i, j) ∈ E,

fi,j ≤ 1, fstart,i ≤ 1, fi,end ≤ 1 ∀(i, j) ∈ E,∑
k

fj,k + fj,end − (fstart,j +
∑
i

fi,j) ≤ 0,

∑
k

fk,end −
∑
i

fstart,i ≤ 0

(2.16)
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where Sstart(OCa
i ) represents the probability that the observation i in camera a is the starting point

of a track and Send(OCc
i ) representing this observation in camera a is the last observation of a track.

2.3.2 Solution of the Linear Programming Problem

The problem in Eq. 2.16 is similar to a linear programming formulation with discrete

variables. A similar problem has been studied in [17, 20, 85, 110]. However, ours is the first

approach that addresses the problem of tracking multiple interacting targets, i.e., both individuals

and groups, into the network flow graph, and makes the problem different from existing methods.

We realize that though the integer program (IP) can be solved by any generic IP solver, the size of

the NP-complete problem makes the solution impractical. Such a problem is also known as a mixed

integer programming problem [5]. Though the branch and bound algorithm has been proved to

effectively solve such a problem, recent studies [17] have shown that the complexity of this problem

can be reduced by reformulating the problem to a similar problem that approximates the original.

The relaxed problem is called the k-shortest node-disjoint paths (KSP) problem on a directed acyclic

graph (DAG).

Let H denote the feasible solutions of the problem in Eq. 2.16. Thus the optimal solution

f∗ is rewritten as

argminf∈H

∑
a,b,i,j

c(ea,bi,j )fi,j (2.17)

where c(ea,bi,j ) = − log{S(OCb
j , OCa

i )} − log{Sstart(OCa
i )} − log{Send(OCa

i )}.

The optimal solution in Eq. 2.17 can be obtained as in [17]. We first run KSP on a single

camera assuming the group state of each target is known. Then we add the shape and appearance
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features and the time gap constraints into the KSP in the camera network tracking scheme. The KSP

is rerun and the optimal solution Eq. 2.17 is obtained. A detailed implementation will be provided

in the experimental section.

2.4 Experiment

2.4.1 Dataset

We perform experiments on the public VideoWeb dataset [33] to assess the effectiveness

of our tracking system. In VideoWeb dataset, each scenario has 8 cameras. There are totally
(
8
2

)
=

28 camera pairs per scenario. Among them, 12 pairs have overlapping views and the rest 16 pairs

do not share overlapping views with each other. Each scenario has at least 8 persons walking into

different camera views. Each video lasts for 4-6 min. 17 challenging scenarios are selected to test

our algorithm. We use 7 scenarios for training and the remaining for testing. So totally 80 video

sequences are used for testing our algorithm where the total video duration is around 350 min and

the number of persons is 91. Each video sequence records real-world scenes with complex human

activities that are present most of time. The dataset has many challenging scenarios, e.g., people

interact with each other while merging to a group and then splitting; people leave a camera view and

then come back after a long time; people stay in a cluttered scenario with heavy occlusions. We use

8 cameras to test our tracking algorithm on a camera network while [24, 45, 61] used 5,4,2 cameras

respectively.
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2.4.2 Feature similarity

There are three equations, 2.12, 2.16 and 2.17, where calculation of feature similarity is

involved. In the tracking scheme, the optimal solution f∗ depends on the flow cost in Eq. 2.17,

where the flow cost is defined as a negative logarithm of a feature similarity score S. In Eq. 2.12,

the similarity score is defined as the motion affinity between the features of two tracklets in a single

camera. In Eq. 2.16, feature similarity is necessary because the motion affinities between two

tracklets are not reliable. The view and pose of a tracklet can change significantly in different

cameras. It is possible that a merge/split event may happen in the blind area between the two

camera views. Since the SNT can decide the group state of a tracklet in any camera, in general, two

cases need to be considered when calculating feature similarities: two observations are recognized

as individuals and at least one observation is recognized as a group.

Individual tracklet association If two observations are recognized as two individuals, we use a

linear combination of appearance in HSV space, histogram of oriented gradients (HoG) and pyra-

mid of histograms of orientation gradients (PHoG) as the features of each observation. Firstly, a

brightness transfer function (BTF) is applied to transform the appearance of a target from a camera

to another. We adopt the method of [45] which can incrementally learn the BTF across cameras.

With the transformed color features and the shape features (HoG and PHoG), the feature distance

between individuals tracklets can be calculated by Bhattachayya distance which is denoted by B(.).

Thus, the feature similarity between two tracklets is S(OCb
j , OCa

i ) ∝ ptran · exp{−B(OCb
j , OCa

i )},

where ptran denotes the transition probabilities between two cameras.
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Group tracklet association If at least one of the two observations in two cameras is a group, two

sub-cases should be considered. The first sub-case is that there is no merge/split event in the blind

area between two cameras. This means that the same group appears in these two linked cameras.

The second sub-case is that a merge/split event occurs in the blind area which makes the targets in

these two cameras different.

To associate group observations Gi and Gj , feature similarity between two group regions

should be calculated. Similar to [21, 117], the appearance and statistical properties of the group

region are represented by a covariance descriptor. Given the feature points {xi}i=1,...,NPI
where

NPI is the number of pixels in the group region, the covariance descriptor is

VG =
1

NPI − 1

NPI∑
i=1

(fi − µG)(fi − µG)T , (2.18)

where µG is the mean feature vector of these NPI feature vectors. The feature similarity between

two groups in cameras a and b is computed based on their covariance descriptors V Gi and V Gj

between two cameras a and b, i.e.,

S(GCa
i , GCb

j ) = 1−
√∑

i

ln2λi(V
Ca
Gi
, V Cb

Gj
), (2.19)

where {λi} are the generalized eigenvalues of the two group covariance matrices CCa
Gi

and CCb
Gj

.

If S(GCa
i , GCb

j ) is larger than a given threshold, we consider GCb
j is a good candidate

match to GCa
i . Otherwise, the two groups are recognized as different. If no group matches GCa

i , it

is highly possible that a merge/split event occurred in the blind area. The number of individuals in

two groups are estimated according to the detections in the group. The algorithm to associate group

tracklets is listed in Alg. 1. Given a group tracklet Gi in Ca, the goal of this algorithm is to find a
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correspondence T Cb
j which is the best match to GCa

i . Note that we use Tj to represent a candidate

tracklet because the candidate can be an individual tracklet. Even if Tj is an individual tracklet, the

same method can be applied.

Algorithm 1 Group tracklet association

Input: Tracklets T Ca
i whose group state is 1.

if at least one good group candidate is found to match GCa
i in all entry/exit zones linked to the

zone of T Ca
i then

Apply Eq. 2.19;

else

Search all candidates from valid linked entry/exit zones in other cameras;

Divide the region of GCa
i and T Cb

j into a set of small parts where each part has a size of a standard

individual;

Find the feature distance between each small part of the two tracklets and select the best one;

if all feature similarities are smaller than a given threshold then

Recognize the tracklet GCa
i as a birth/death tracklet;

else

Find the tracklet T Cb
j with the largest similarity to GCa

i and assign them the same ID;

end if

end if

Output: The best match to GCa
i ;
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2.4.3 Group Detection Evaluation

VideoWeb dataset is very rich in interaction activities. Every video sequence has around

8 merge events and 7 split events on average. Our training samples are video frames of crowded

scenes, which contain both individuals and groups. The group and individual labels of the bound-

ing boxes are manually annotated according to the ground truth for training. During the training,

SVM is trained upon the pedestrians’ distance features developed based on their bounding boxes.

Every camera view is trained separately because the average sizes of pedestrians are different in

different camera views. For every camera view, we selected 4 video sequences for training. Each

video sequence contains individuals and pedestrian groups where the ground truth is available. In

the testing phase, among 80 video sequences, we obtain 3188 groups totally. After tracklet associa-

tion, 1513 groups are obtained. This means that 1675 groups are associated using the optimization

framework in Sec. 2.3. The number of people detected per group varies from 2 to 8 depending upon

the scenario. In Fig. 2.5, an example shows that though individuals cannot be recognized in the

high clutter, their identities can be recovered after the group splits into individuals.

2.4.4 Tracking Performance Evaluation

There are no standard evaluation metrics for a multi-camera tracking scheme, though

single camera tracking evaluation metrics have been studied for years [76]. We adopt the evaluation

metrics in [4] to fairly evaluate our results because it introduces both single camera and multi-

camera evaluation metrics. In the single-camera evaluation, PR (precision), IDC (ID change) and TF

(track fragmentation) are adopted. Three metrics are used for the multi-camera tracking evaluation:
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Figure 2.5: Tracking recovering through clutter using individual-group switching mechanism. (a)

- (c) are sorted by time. In (b), two persons who are marked by red cannot be detected because of

the occlusion. However, their identities can be found before the group merging in (a) and after the

group splitting in (c).

TL (trajectory length), XFrag (crossing fragments in two different cameras) and XIDS (crossing

ID-switches in two cameras).

To the best of our knowledge, there is no existing tracking method based on this public

dataset. Comparisons with other multi-camera tracking methods like [24, 61] are not feasible as

the goals of the algorithms presented there were very different from ours and, therefore, cannot be

applied to the Videoweb dataset. Thus, we evaluate our results with respect to the ground truth.

We also show comparisons with [45, 95]. The average results on all the ten testing scenarios are

provided in Table. 2.4.

We first run a particle filter to associate detections into tracklets. After tracklet fusion

across overlapping views, the SNT is run to obtain single camera tracking results, the average of

which are shown in Table 2.2. According to the results, our tracker is able to obtain a good precision
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Table 2.2: Single camera tracking results.

PR TF IDC

Cam 16 67.0% 3 1

Cam 17 89.2% 8 4

Cam 20 93.0% 2 1

Cam 21 74.6% 9 9

Cam 27 85.5% 7 6

Cam 31 81.4% 15 8

Cam 36 89.6% 7 4

Cam 37 83.1% 10 5

while the number of track fragmentation and ID change are small. The precision of camera 16 is

low as there are many misdetections in this camera view.

The multiple interacting targets tracking results in a camera network are shown in Table

2.3. We present the results on every scenario we worked on to better represent the performance

of our camera network tracker on different scenes. A high trajectory length with low crossing

fragments and crossing ID switches in each scene shows the advantage of the proposed algorithm.

Representative tracking results are provided in Fig. 2.6. Among the 6 time steps, there

are totally 7 persons appearing in the scene. Typical scenarios are listed below.

• t1: Person 2 and 12, who can be observed by C21, stay individually.

• t2: Person 2 and 12 interact with each other and person 12 cannot be observed by any camera.

The SNT outputs the ID of these two persons as a group 20. The person who stays within the

group 5 at t1 leaves the group at t2 with the ID 3.
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Table 2.3: Multi-camera tracking results.

TL XFG XIDS

Scene 1 79.6% 4 3

Scene 3 80.0% 6 4

Scene 4 81.5% 4 4

Scene 5 77.3% 5 3

Scene 6 79.0% 5 4

Scene 7 78.7% 5 3

Scene 22 75.6% 7 6

Scene 23 76.3% 8 7

Scene 24 79.9% 6 6

Scene 25 77.1% 8 7

• t3: Person 3 interacts with the group 20, and finally merges to a new group 24. The track of

person 10 starts in C20.

• t4: Group 24 can be observed by C17, C21, C31 at t3 and t4. Person 10 walks into the view

of C16, C17, C21, C31, C36 and C37 at t4, in which full body detections in C17, C31, C36 and

C37 are obtained by a person detector.

• t5 and t6: Person 10 and person 3 merge into group 29 at t5, and walk into the view of C27 at

t6.

The results show that the track IDs of the same target in overlapping camera are the

same, e.g., person 10 and person 12. Another observation is that though only parts of a group (an

individual) are observed in some camera, the weighted voting scheme is able to find the correct

group state. For instance, at t3, the group 24 can be fully observed in C21 and C31. However, only
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one person can be observed by C17 while a group ID is assigned to this person. A similar example

is illustrated in group 29 at t6. A failure case is represented by red dots where missing detections

lead to tracks loss.

Table 2.4: Comparison of the proposed SNT algorithm with some existing methods.

TL XFG XIDS

[45] 63.0% 150 111

[95] 65.0% 135 129

Proposed method 78.5% 58 47

2.5 Conclusion

In this chapter, we have addressed the problem of tracking in an overlapping camera net-

work where there are individuals and groups interacting. A structural SVM model was proposed to

discriminate between individuals and groups. Observations in overlapping cameras were fused, and

associations between those in a camera network were calculated. Formulating the problem of the

camera network tracking as a network flow model, a standard linear program problem is obtained.

An efficient K-shortest paths algorithm is used to perform robust multi-object tracking. Experi-

mental results on a very challenging public dataset show the robust performance of our tracking

system.
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Figure 2.6: Representative multiple interacting targets tracking results in a camera network. The

horizontal axis represents the time step while the vertical axis illustrates 8 different cameras. Dif-

ferent colors of lines with arrows represent how a target moves over time, while straight dotted lines

show the same target observed by different cameras.
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Chapter 3

Multi-target Tracking in a

Non-Overlapping Camera Network

3.1 Introduction

Multi-target tracking in a non-overlapping camera network poses challenges that are

unique to its application domain. These challenges include large blind areas between cameras,

significant changes in the pose of targets, and differences in scene illumination between cameras.

Moreover, single camera issues, like occlusion and appropriate feature selection, carry-over into the

multi-camera domain and affect the overall performance. Though there are some existing multi-

camera tracking papers, they all use their own datasets lacking any standardization.

In this chapter, we present a camera network tracking (CamNeT) dataset, specially de-

signed for the problem of multi-target tracking. Differing from highly cited papers [53, 61] where

three cameras are used for testing tracking algorithms, five to eight cameras are used in this dataset.
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These cameras comprise part of an actual surveillance system distributed along the corridors and

open courtyard of a building. Three different camera configurations are used in the proposed dataset.

The layout of each configuration can be seen in Fig. 3.1 (a), (b) and (c). Lighting conditions vary

from indoor scenes to outdoor scenes and cause appearance information to be more volatile than in

other multi-camera datasets. The proposed dataset consists of six scenarios, one performed in the

configuration in Fig. 3.1 (a), three performed in the configuration in Fig. 3.1 (b), and two performed

in the configuration in Fig. 3.1 (c). Since temporal information is very important for tracking, a UTC

time stamp is provided for every frame in each camera to compensate for the occurrence of frame

loss.

To the best of our knowledge, there are no public multi-camera surveillance videos with

non-overlapping views, especially for the purpose of tracking. Though multiple papers report their

tracking results with multi-camera non-overlapping views, none of them reported their results on

a publicly available dataset. This makes a comparison between different tracking algorithms very

difficult.

There do exist some datasets with overlapping camera views. The Videoweb Activities

dataset [33] is a dataset that has been widely used. It has multiple activities among more than 10

cameras. However, it does not contain a non-overlapping view scenario. Similarly, the Multiple

Cameras Fall dataset [11] has 8 cameras monitoring one meeting room with overlapping views. In

this case, the purpose of the dataset is totally different from the one we are proposing. MuHAVi [93]

uses 8 cameras with overlapping views to collect 17 action classes which are performed by 14 actors.

All these datasets are not specifically designed for tracking purposes; instead they are more suitable

for activity analysis. The PETS 2009 dataset [?] is one of the most popular multi-view datasets for
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Figure 3.1: Camera configurations and an example of every camera view. (a)(d) are from scenario 1,

(b)(e) are from scenario 2, and (c)(f) are from scenario 6. (a) (b) and (c) are camera configurations

for scenario 1, scenarios 2-4 and scenarios 5-6 respectively. Note that the camera in the middle

of (f) is only used in scenario 6 while scenario 5 leaves a larger blind area between cameras. The

black regions indicate that there is no path through these regions, while the white regions represent

available paths. Each camera view is represented by a blue triangle. The camera numbers are listed

using a red circle. (c) and (d) are examples, where two persons are shown in 8 different indoor and

outdoor cameras, highlighting the challenges of working with such networks. These two persons

have widely differing appearances in different camera views. The dotted lines represent possible

path connections between two camera views.
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tracking. 8 cameras with overlapping views are used to monitor persons’ walking behaviors. There

are only three scenes in the tracking subset of the dataset, where each scene only lasts for around 40

seconds. Other datasets are designed for the problem of object re-identification. The Dana36 dataset

[83] contains more than 23,000 images depicting 15 persons and 9 vehicles. Both overlapping and

non-overlapping scenarios are provided in this dataset. However, as stated in this chapter, this

dataset is not suitable for tracking because of the specifics of data acquisition (multiple passes). The

3DPeS dataset [13] is another collection designed for the problem of person re-identification. Both

of these two datasets lack temporal information, because of which they cannot be used for tracking.

There are some multi-camera datasets that are more suited to the CamNeT use-case. The GRID

dataset [68] contains 250 pedestrian image pairs taken from 8 disjoint camera views. However,

such a multi-camera dataset does not fit into the problem of multi-target tracking since no full video

is provided. Instead, only person re-identification can be performed.

Some research papers report multi-target tracking results [24, 25, 26, 45, 53, 61, 95]. None

of these papers use the same dataset to evaluate their algorithms. That lack of consistency exposes

a clear need for a dataset that can serve as a suitable platform for each of these and future tracking

algorithms to be tested for a non-overlapping use-cases. In addition, a common dataset would need

to provide a collection of challenges that lie at the frontier of robust tracking system capabilities.

This dataset is more challenging than other non-overlapping multi-camera datasets used

in the literature because

1). The number of cameras in the tracking literature is usually between 2 and 5, while we

use 5 to 8.
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2). Every pair of cameras has more than one path from one to the other as shown in Fig.

3.1 (d)-(f).

3). Our dataset has both indoor and outdoor scenarios. The lighting conditions and fea-

tures of each target are significantly different in each camera.

4). The number of targets in each camera can vary from 1 to 10 per frame, often making

tracking difficult. In scenario 1 to 4, there are around 10 persons in every scenario that walk a

predefined path. A minimum of 20 additional people walk uncontrolled, adding to scene clutter.

In scenario 5 to 6, there are around 25 persons in every scenario with significant occlusions. More

activities are introduced in scenario 5 to 6, i.e., people talking, group merging, group splitting,

long-term occlusion, and etc.

Our contributions are as follows.

(1) This is the first public multi-camera dataset with non-overlapping views which is spe-

cially designed for multi-target tracking. Cameras are synchronized across all camera views, and

global time information is provided to detect frame loss.

(2) There are 6 scenarios in which every scenario lasts at least five minutes with 5 to 8

cameras. The videos are rich with person activities. This is different from the dataset used in [45],

in which the dataset used is sparse with respect to person activities.

(3) The CamNeT dataset provides single person and group walking behavior across differ-

ent cameras under both indoor and outdoor scenarios. In each scenario, the paths of around 10 - 25

people are predefined while several unknown persons move through the scene and make multi-target

tracking extremely hard.

(4) The detailed annotations for subjects walking predefined paths are provided.
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(5) We provide detailed preliminary results with a baseline tracking algorithm where the

context information is considered.

3.2 Camera Network Tracking

3.2.1 Database collection

In the CamNeT data collection procedure, several persons (8-25) in different subsets were

asked to follow specific paths in the camera network. These persons either walked alone or in a

group. In some cases, subjects would split from one group and join another group. In addition,

multiple unknown persons trafficked the data collection areas. The total number of persons in each

scenario varied from 25 to 50.

In scenario 1, four indoor cameras and four outdoor cameras were used on a sunny day.

The indoor cameras covered most of the corridors as shown in Fig. 3.1. All the indoor cameras

had front/back views of the persons. Thus the persons who were not close to the camera were

small within the camera frame. In the outdoor scenarios, there were strong shadows on the ground.

Four cameras covered a small part of the courtyard. Different from the indoor camera views, which

had one-to-one path connections, the courtyard is large and a person could have different walking

choices from one camera view to another. The outdoor cameras had both front/back views and side

views of each person. It is noted that sometimes the view of one person could be blocked by another

person who was walking together with him/her. In scenarios 2-4, 5 indoor cameras and 3 outdoor

cameras were used. We changed some of the camera configurations so that different scenarios could

be explored. In scenarios 5 and 6, around 25 persons walked along different paths. We varied the

number of cameras; 5 cameras were used in scenario 5 and 6 were used in scenario 6. There are
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Figure 3.2: Entry and exit points for each camera for one setup.

more areas which are not covered by the cameras. Rich person activities are considered in these

two scenarios. Persons can walk together, stay together while talking to each other, merge to/split

from a group within or outside a camera view, etc. The large amount of unknown behaviors in the

blind areas between cameras, the large number of persons, and the heavily cluttered scenes make

the provided tracking problem extremely challenging. In each setup approximately 20% to 30% of

the open area is covered by active cameras.

Each scenario lasted from 5 to 7 minutes. Though the frame rate for every scenario was

25 frames per second, problems with network communication caused frame loss in one or more

cameras. Network communication issues and slightly different start times for video recording be-

tween cameras resulted in the problem that every video has different lengths. To solve this problem,

our dataset includes global time information. Each frame of every video has a corresponding UTC

timestamp. This means that temporal correspondences between cameras can be relied upon, which

is required for tracking in multiple cameras. The selected frames can be found in Fig. 3.3.
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3.2.2 Dataset Characteristics

Compared to existing datasets, CamNeT represents significant challenges. One of the

main challenges is varying lighting conditions. Fig. 3.1 shows the appearance variations under

different camera views. Lighting was also subject to change within camera views. The courtyard

contained areas of shadow and bright sunlit illumination. Furthermore, persons whose paths were

predefined entered each camera’s field of view at least twice for scenarios 1-4. However, the di-

rection they faced was not necessarily fixed for each camera. Such wide variations in appearance

makes appearance-only tracking methods fail.

Table 3.1: Comparison between different datasets. OV represents overlapping views,NOV denotes

non-overlapping views, ppc represents persons per camera, and pps denotes persons per scenario.

# of OV/ Max # Highest Pers Height Indoor or Max # of

camera NOV ppc Resolution (pixels) Outdoor pps

VideoWeb 4-8 OV 8 640 x 480 50-350 outdoor 12

Dana36 36 both 3 2048 x 1536 200-600 both 15

3DPeS 2-8 NOV ≤ 5 704 x 576 50-100 outdoor unknown

PETS09 4-8 OV 8 768 x 576 80-100 outdoor 30

CamNeT 5-8 NOV 10 640 x 480 50-350 both 39

The dotted line in Fig. 3.1 shows possible paths from one camera to another. The camera

network represents a complex topology where there exists more than one path between cameras.

Therefore, the spatial information between tracklets is relevant, but not necessarily predictive. With
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this information, typical time gaps between camera views can be estimated, but not solely relied

upon for movement prediction. Some representative entry and exit points for every camera are

shown in Fig. 3.2.

Grouping patterns are also variable for this dataset. In scenarios 1-3, persons with planned

trajectories stayed in one group or walked alone. However, in scenario 4 there were instances of a

person leaving one group and joining another. This is further muddled by the presence of crowds.

In scenarios 5-6, group merge and split events could happen in the blind area between cameras. In

each scenario of our dataset, more than 20 persons pass through the scene. In some instances up to

10 persons appear at the same time in one camera view. Since grouping information can change,

these scenarios represent the most challenging tracking problems.

To better explain the characteristics of CamNeT, Table 3.1 is provided to compare our

dataset to other camera network datasets. Note that the first three datasets in Table 3.1 do not suit

the purpose of tracking because of the non-availability of temporal information or time synchro-

nization across cameras. The fourth dataset is used for tracking; however it is not designed for non-

overlapping views. The proposed dataset is much more suitable for tracking in an non-overlapping

camera network.

The resolution for each frame is 640 by 480 pixels. This is nowhere near the best resolu-

tion available, however it is not uncommon. The purpose of this dataset is to provide a challenging

group of videos that require advanced tracking algorithms to correctly track across cameras. The

resolution and consequent size of tracked objects, being 50 to 350 pixels in height, is seen as fol-

lowing the spirit of the challenge. As well, the appearance information for a person can vary greatly

within a camera view falling off dramatically at the edges. The lack of detail combined with the
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other factors present in this dataset requires advanced context models to fill in the gaps where direct

observations will fail.

3.2.3 Annotations

To better test and compare results with this dataset, the annotations of the ground truth

of the persons whose walking paths were predefined are provided. The ground truth of a person is

expressed by the camera number, the frame number, the person’s upper left corner image coordinate

(horizontal and vertical coordinates) and the size of the target (width and height). We save every

person’s ground truth in a text file with the name as the ID of this person. The exact UTC time can

be obtained by looking for the timestamps for every frame in every camera. Only when a viable full

body appears in the scene do we label the ground truth of this person.

We show a thorough experimental evaluation of the system. We also show how the overall

performance decreases when some aspects of the algorithm are removed.

3.3 Baseline Algorithm

To evaluate the effectiveness of each proposed algorithm, we provide a baseline algorithm

considering the spatio-temporal relationships between tracklets. Input to the multi-target tracking

system was the collection of recorded videos for a particular time period. We used the detector

[39] to generate detection responses for every person and then a basic tracker with particle filter to

remove false positives and associate the remaining detections into tracklets for every camera. The

problem of how to associate these sets of tracklets and find out the best subset of associations was

then broached. Our camera network tracking framework was invoked where a camera to camera
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feature transformation scheme and the proposed social group model (SGM) across cameras are

used. An overview of the system is given in Fig. 3.4 where the details of each part of the system are

given in the sections below.

3.3.1 Inter- and Intra-Camera Tracking

The tracklets generated from a basic tracker in every camera are assumed to be a set

of short, reliable tracks. To reduce the high dimension of associations, the first task in a multi-

camera tracking framework is to create long, robust single camera tracks (SCTs) for each camera.

To realize this goal, features of each tracklet were generated first, and the Bhattacharyya distance

was used to calculate the appearance-distance between each feature. We used both appearance and

motion information to group tracklets into SCTs for every person in every camera.

The input of the inter-camera tracking system is the output of the intra-camera tracking

system, which are a set of long, robust SCTs. Each SCT represents a target in a single camera and

the goal of the inter-camera system is to associate all SCTs in a high dimensional space.

Feature Generation

After intra-camera tracking is done, different features of each SCT are generated to better

distinguish two persons. We use appearance features in HSV space, HOG features, PHOG features

and texture features to calculate feature distances.

Feature Transformation across Cameras

In our camera setup, there are both indoor and outdoor scenarios with very different light-

ing conditions. Therefore, the appearance of the same person might vary widely across cameras. So
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normalized appearance features are important for reducing the effect of lighting variance. We use

the method in [45] to find the linear brightness transfer function (BTF) in color space.

Social Grouping Model

We observe that people often walk with others. Therefore, when people are in groups

we can consider the inter-relationships between them rather than tracking each person separately.

We exploit both the spatial and temporal information between neighboring targets to build a social

grouping model (SGM) in one camera. If we are confident for at least one person’s association, this

increases our confidence for associations made for other people in the same group.

If X represents a SCT, we calculate the motion similarity between two pairs of SCTs in

two cameras Cn and C ′n, which is represented by XCn
i and XC

′
n

i′ . We adopt the definition of a group

in [105], where a moving group is a collection of people who move at similar speeds and in similar

directions. A group is created when two or more people walk together for enough time within a

distance threshold. At a given time t, let τ be defined as

τ = min{w(XCn
i ), h(XCn

i ), w(XCn
j ), h(XCn

j )} (3.1)

where w(XCn
i ) and h(XCn

i ) are the width and height of the bounding box of SCT i in at time t. If

the the distance between two SCTs d(X (T )
i ,X (T ′)

i′ ) satisfies the following condition

d(X (T )
i ,X (T ′)

i′ ) = ||XCn
i −XCn

j || < α · τ (3.2)

with α be a control parameter and (T ) be a time window T , we can say that the tracklet XCn
i and

XCn
j are in the same group in camera Cn if the condition holds for 80% of time. We will still find
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Algorithm 2 Overview of Social Grouping Model
Input: SCTs from the intra-camera tracking scheme (Assuming p SCTs in Cn and q SCTs in

C ′n); A zero initialized grouping matrix Φ, the size of which is (p+ q)× (p+ q);

Build a matrix G1 which is p× p and another matrix G2 which is q × q. These two matrices are

to label if two SCTs are close to each other for enough time or not;

Find pairs of SCTs from the same camera which satisfy Eq. (3.2) in 80% of the time windows

(T ) and (T ′) individually in the corresponding position of G1 and G2;

for i from 1 to p do

for i′ from 1 to q do

if d(X (T )
i ,X (T ′)

i′ ) < θ then

check if there is at least one j and one j′ which make G1(i, j) = 1 and G2(i
′, j′) = 1;

if YES then

if Ev(j, j′) = 1 and Ep(j, j′) < δp then

Φ(X (T )
i ,X (T ′)

i′ ) = −1;

Φ(X (T )
j ,X (T ′)

j′ ) = −1;

end if

end if

end if

end for

end for

Output: The grouping matrix Φ, where Φ(i, i′) = −1 means the two SCTs in different time

windows belong to a same group and Φ(i, i′) = 0 means otherwise;
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a grouping function Φ which represents if two SCTs belong to the same group under two different

camera views. The overall algorithm of SGM across cameras is given in Algorithm 2.

In Algorithm 2, θ is a controlled threshold. Φ is a grouping cue matrix, where Φi,j = 0

means tracklets i and j are not in the same group in the given two time windows (T ) and (T ′),

while Φi,j = −1 means they are. Note that Φi,j does not represent two tracklets in the same time

window; instead it represents two tracklets in different time windows. d represents the feature

distance between two tracklets. In this algorithm, if an element in the matrix G1 or G2 equals to 1,

this means that the overlapped part of the two tracklets are very close to each other and these two

tracklets can be viewed as belonging to the same group.

3.3.2 Tracking Algorithm in a Non-Overlapping Camera Network

The overall camera network tracking system is encapsulated in the optimization of an

energy function shown in Fig. 3.4. The goal of the energy function is to combine different features

of SCTs, which are generated by the intra-camera tracking module, and then compare each SCT

in order to find a one-to-one mapping between each SCT. This one-to-one mapping is then used

to generate the final track for the wide area. Suppose there are N cameras and the camera set is

C = {C1, C2, ..., CN}. If we use L to represent if two SCTs in different cameras can be associated

or not, then

L(XCn
i ,XC

′
n

i′ ) =


1, if XCn

i → XC
′
n

i′ ,

0, otherwise

(3.3)

where XCn
i represents the ith SCT in camera view Cn and ”→” denotes that the two tracklets can

be associated. We define the overall problem of multi-camera tracking as
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argmin
L

∑
i,i′

L(XCn
i ,XC

′
n

i′ ) ·D(XCn
i ,XC

′
n

i′ ) (3.4)

where D is a distance function between two SCTs.

However, there are a couple of constraints which may reduce the number of possible

associations. For example, grouping behavior is an important cue we observe when people are

walking together. Also, similar to [24], prior knowledge of camera network topology is another

important cue for intra-camera tracklet association. The prior knowledge of topology includes both

spatial and temporal cues. For the spatial cues, we can know if it is possible for a person walk from

one camera to another. Temporal constraint can tell us how much time it typically takes for a person

to walk from one camera to another. Assuming we detected every person in every camera, if we use

U to represent the location adjacency between Cn and C ′n, then

U(Cn, C
′
n) =


1, if Cn → C ′n,

0, otherwise

(3.5)

where Cn → C ′n means these two cameras have location adjacency.

If the mean transition time fromCn toC ′n is t̄ and the standard deviation for each transition

time is σ(t), the temporal transition probability V is a Gaussian function

V (Cn, C
′
n) = G(t̄, σ(t)) (3.6)

The overall transition probability between two cameras is:

PTran(Cn, C
′
n) = U(Cn, C

′
n) · V (Cn, C

′
n) (3.7)

Adding both group constraints and the topology constrains to the overall energy function

for a inter-camera system, it becomes to
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argmin
L

∑
i,i′

L(XCn
i ,XC

′
n

i′ ) ·D(XCn
i ,XC

′
n

i′ ) + λ2 ·
∑
i,i′

Φ(XCn
i ,XC

′
n

i′ )

s.t. PTran(Cn, C
′
n) = c

(3.8)

where c is a constant between 0 and 1.

As mentioned above, to solve Eq. 3.8, D and Φ have to be computed. D is computed by

a predefined distance function where Bhattacharyya distance is used in this chapter and Φ can be

computed as determined in Sec. 3.3.1.

3.4 Preliminary Experimental Results

Our evaluation metrics in non-overlapping camera network tracking are the same as those

in the overlapping cameras. In our experiments, we assume that if the tracking results are within 0.5

meters of the ground truth, we consider the association between two tracklets is correct; otherwise

it is wrong. We test our tracking system on two subsets of CamNeT, which cover the two different

scenarios. The step-by-step results of scenario 1 are listed, where different combinations of models

from the baseline algorithms are tested. The final tracking results of scenarios 2-6 are also provided.

In our experiments on scenario 1, we generate 1456 tracklets and 322 SCTs for all the

8 cameras using our basic tracker. Table 3.2 shows the tracking results of scenario 1. In order to

demonstrate the significance of each model in our algorithm, we compare our results with the state-

of-art method in [95]. We also consider the SGM in the implementation for fair comparison. The

results show that when SGM is applied, the numbers of XIDS and XFrag reduce. Moreover, both

temporal (i.e. the walking time from one camera to another) and spatial constraints (i.e. if a walking
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path exists between two camera views) are applied when we implement our algorithm. We take out

one or both of these two constraints and show the importance of the effect of the topology.

Table 3.2: Tracking results of scenario 1, where “t-constraints” denotes the temporal constraints, “s-

constraints” denotes the spatial constraints and ‘st-constrains” represents the spatio-temporal con-

straints. The first row shows the results obtained using the method in [95]. The rest of the rows

show results for different variants of the proposed method. The several constraints with/without

which the proposed method is run are described in the first column.

TL XFrag XIDS

Method in [95] 82.8% 24 23

Without SGM 84.1% 27 20

Without t-constraints 72.2% 21 75

Without s-constraints 56.6% 22 102

Without st-constraints 43.9% 18 156

With SGM and st-constraints 84.3% 27 15

Fig. 3.5 shows the tracking results over the data collection period. Each row represents the

data collected for a particular camera, while each column represents the data collected at a specific

time. The boxed individuals in each scene represent people being tracked. For groups of people

determined to be walking together, the same color box is used to represent the pair. From one time

instant to another, box color remains constant for the same people when correct associations are

made within and between cameras.
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The inter camera tracking results of scenario 2 to 6 are listed in Table 3.3. We use spatio-

temporal constraints when reporting our results.

Table 3.3: Tracking results of scenarios 2 to 6 (S2-S6).

S2 S3 S4 S5 S6

TL 85.0% 78.9% 77.3% 70.0% 75.0%

XFG 29 36 36 52 40

XIDS 23 26 32 44 34

3.5 Conclusions

In this chapter, we provide a new non-overlapping multi-camera dataset (CamNeT) for

tracking. This dataset has 5 to 8 non-overlapping cameras, which cover around 20% to 30% of

the open area. Due to the lighting conditions variations and crowded scenarios, this dataset is very

challenging and can be seen as a standard dataset to work with. We also present a baseline camera

network tracking system. We show preliminary results on our datasets which can be compared

against any other methods.

57



Figure 3.3: Selected frames of selected cameras from the proposed dataset. (a) and (b) are two

scenarios. The horizontal axis represents the time and the vertical axis shows the camera numbers

in different scenarios. The time is not synchronized in this presentation because we want to show

as many tracks as possible. In (a), the same group or individual is represented by the same color

of arrow. For instance, the group consisting of the person in pink and the person in blue shows up

in camera 5, 6 and 3 respectively. The features and sizes of them are highly distinguished in these

three cameras, especially in C6 at time t2. In (b), the scenario is even more challenging than (a).

The group denoted by the red arrow in camera 1 and the group denoted by light blue at t1 merge

to a large group in C2 at t2. A similar scenario can be found with the green and purple arrow. The

three-person group in C3 is denoted by the dark blue arrow at t2. However, only two of them can

be found in C1 at t3. The group with the yellow arrow at t1 and t2 splits to two individuals at t3.

58



Figure 3.4: Overview of baseline camera network tracking algorithm.

Time 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 

Camera NO. 

𝐶1 

𝐶2 

𝐶3 

𝐶4 

𝐶5 

𝐶6 

𝐶7 

𝐶8 

𝑡1 

Figure 3.5: Tracking result of scenario 1. Each row is the view from a different camera. Each

column is a snapshot from all the cameras at a particular time instant. Bounding boxes of the same

color from one time instant to the next represent re-associated targets. Bounding boxes of the same

color within camera views represent a collection of people recognized as a group.
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Chapter 4

Video Summarization

4.1 Introduction

The huge growth in video data calls for an urgent need to develop tools to summarize

events occurring in these videos. Large parts of most videos are often redundant or not informative.

Manually watching hours of videos to figure out the informative events is very time consuming.

Furthermore, it is difficult for people to focus on watching videos for hours and not miss important

events in the video. So, it is very important to develop tools that allow analysts to automatically

select the most informative parts of a video sequence. The problem of finding such informative

video portions is usually considered as the problem of video summarization.

Although the video summarization problem has been extensively studied, many previous

methods worked on structured videos [99], e.g. sports videos and movies. These videos have well-

organized structures which can be exploited in the summarization process, but may not be applicable

in other natural videos. In recent studies, the video summarization problem has been often defined

as the problem of feature reconstruction [29, 60]. This is essentially to determine if the features
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in the test dataset can be reconstructed by those in the summarized data. However, they have not

considered the fact that objects and events are often inter-related to each other, which can be very

efficiently exploited in the summarization process. This inter-relationship, often termed as context

information, has been very effective for many object and activity recognition problems [74, 121].

This chapter explores this aspect from the perspective of the video summarization problem.

Figure 4.1: Examples of video segments deemed as important by our summarization framework.

From left to right: (1) from getting out of a vehicle to leaving a car, (2) from getting out of a vehicle

to going back into the vehicle, (3) from getting out of a vehicle to opening a trunk. Although the

same event, getting out of car happens in all three cases, the other events that happen around it may

determine that it is important enough to be summarized in all three cases. Also, by summarizing the

entire segments, rather than individual events, CAVS produces a more meaningful output.

Many videos consist of complex events that have strong correlations between each other.

For instance, Fig. 4.1 shows consecutive video segments in a surveillance video. Some scenarios

with informative events are highlighted, which are expected to be summarized. The first scenario

shows that a person in a white gets out of the car, closes the door and leaves the car. In the second

scenario, a person gets out of the car, walks around the car and finally goes back into the car.

In the third scenario, the person gets out of the car, walks to the back of the car and opens the
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trunk. According to the problem formulation in existing papers like [29], every scenario has the

event of getting out of the car and such an event may not be shown in all the summarized videos.

However, analysts may want to watch summarized videos as stories or series of informative events.

Rather than watching a short yet non-informative event such as entering a car, video watchers can

be more interested in watching a slightly longer but informative summarized video sequence , i.e.

from person getting out of the car to getting back into the car. The importance of the correlations

between different events is obviously of significance.

In this chapter we consider the spatio-temporal correlations between events to be as im-

portant as the events themselves. Thus, we propose a video summarization framework that is able

to find new events as well as different event correlations. When we select an informative video por-

tion as part of the summarization results, the new events, along with the spatio-temporal correlation

between them, are learned. This makes our proposed method significantly different from previ-

ous related works [29, 64, 115]. We term this as Context-Aware Video Summarization (CAVS), a

framework that incorporates the event correlations to generate a short video summarizing the most

informative parts of a long video sequence. The sparse representation, a method to represent high-

dimensional samples using less training data, is adopted in CAVS to guarantee that the size of the

summarized video is as small as possible.

During the training phase, the video features that describe events, e.g. spatio-temporal

motion features, are first extracted. CAVS learns a dictionary of these features, summarizing the

main contents of the training videos. Besides, the spatio-temporal correlations between features are

also learned, represented by a dictionary of feature correlation graphs. The learned representative

training features are used to sparsely reconstruct the features in the testing data using the general-
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ized sparse group lasso [43, 92]. Specifically, a video sequence in the testing dataset is divided into

segments, each of which may contain multiple events or motions. CAVS scans through every video

segment along time. The new features in a new video segment are compared with the known ones

in each detected region, as well as the inter-relationships between them. If the features in a new

video segment can be sparsely represented by the learned features, this video segment is assumed

to be non-informative. Otherwise, the new video segment indicates that some important unseen

information occurs in this video segment and should be absorbed into the summarized video. The

corresponding features are added into the learned dictionary, and the new feature correlations are

also updated in the dictionary of correlation graphs. This process is performed online until every

video segment is scanned by the algorithm. We demonstrate the effectiveness of our algorithm on

two state-of-the-art surveillance video datasets [78, 81]. Each video in these datasets contain mul-

tiple events that interact with each other in space and time. It is demonstrated in Sec. 4.4 that our

proposed method outperforms three state-of-the-art approaches [29, 86, 115] in video summariza-

tion.

4.1.1 Contributions

We summarize our main contributions as follows.

• We propose a novel framework to find the most informative parts of a video sequence. Our

proposed model preserves the correlations between the motion regions and therefore is able to

preserve the global motion information. The spatio-temporal correlations between different

events are represented by a dictionary of spatio-temporal feature correlation graphs.
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• The video summarization problem is formulated as the problem of sparse feature reconstruc-

tion. This is achieved through the generalized sparse group lasso, and ensures that only the

most informative portions of the video are selected.

• We propose a method for online updating of the feature dictionary and the dictionary of

feature correlation graphs.

• We demonstrate the effectiveness of our algorithm on two public surveillance datasets that

contain many different spatio-temporal events.

4.2 Video Summarization Methodology

An overview of the framework is shown in Fig. 4.2. A sparse coding model is built to

learn a feature dictionary and a sparse representation of the video features. A dictionary of feature

correlation graphs is obtained by learning the spatio-temporal correlations between video features.

Given new video segments, if the video features in these segments can be sparsely represented by

the learned features, the corresponding video segments are not important to summarize. Otherwise,

the corresponding video segments are absorbed into the summarized video. We now describe a

detailed overview of our proposed context-aware video summarization framework.

4.2.1 Feature Representation

Given a set of videos Y, we use an adaptive background subtraction algorithm [123]

to locate motion regions. Then, we evenly segment Y into small video segments {Y1, Y2, · · · }. In

every video segment Yi, we use the spatio-temporal interest point (STIP) detector in [62] to generate
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Figure 4.2: Overview of CAVS. ε represents the objective function in Eq. 4.1.

concatenated histogram of oriented gradients (HOG) and histogram of optical flow (HOF) features

for the detected motion regions. A video segment, enriched with multiple events, is represented by

histograms of STIP features.

4.2.2 Problem Formulation

Sparse coding can find a set of basis vectors, i.e. the dictionary of the input feature matrix

and the sparse coordinates with respect to the dictionary. In the training videos, our goal is to

learn a feature dictionary Df of most discriminative features that represents the whole feature set

X = {X1, X2, · · · } of size |X |, where |X | is the number of feature vectors in the training videos.

The size of feature dictionary is denoted by |Df |. The dictionary of feature correlation graphs is

denoted by Dg, the size of which is |Dg|. Given the testing videos, we find a coefficient matrix B

that minimizes the difference between the features in the training videos and those in the testing

videos. We use Bi = {B1
i , B

2
i , · · · } ∈ R|Df | to represent the i-th column of B, and Bj

i to represent

the j-th item of Bi. Thus the video summarization problem can be formulated as
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min
B

1

2|X |

|Dg |∑
p=1

{
‖X −DfB‖2F + α1Tr(BLpB

T ) + α2

|Df |∑
j=1

∥∥Bj
∥∥
2

+ α3

|X |∑
i=1

‖Bi‖1

}
, (4.1)

where α1, α2 and α3 are regularization parameters, ‖.‖F denotes the matrix Frobenius norm, Tr

represents the trace of a matrix, and Lp is a Laplacian matrix that is explained in details below.

The first term in Eq. 4.1 indicates the reconstruction error, and the last two terms denote the group

sparsity regularization. With the optimal B, Eq. 4.1 outputs the difference between the features

in the new video segments and those in the existing videos, which is shown in Fig. 4.2. Ideally,

if features in a video segment have not been observed, the reconstruction cost should be high and

contain a large number of atoms in the dictionary.

There are two major contributions in Eq. 4.1 that makes our framework different from

the existing approaches in [29, 115] on video summarization. The first difference is the sparsity-

inducing regularization term, which has been studied in the statistics and machine learning [73,

108]. It is often defined as the problem of group lasso. We, however, adopt the state-of-the-art

methodology, the generalized sparse group lasso [43] to solve our problem. In the traditional sparse

representation algorithms, l1 norm is mostly used [63] and l2,1 norm [29] is proved to perform

better than l1 norm in some cases. Recently, the study of group lasso has attracted more attention

[73, 108]. It works like the lasso at the group level: the model can either keep or drop an entire

group. However, the group lasso does not yield sparsity within a group. The advantage of the

application of sparse group lasso over traditional l1 norm, l2 norm and group lasso is that it can find

both “groupwise sparsity” and “within group sparsity”. Specifically, “groupwise sparsity” refers to

the number of groups with at least one nonzero coefficient, and “within group sparsity” refers to the

number of nonzero coefficients within every nonzero group.

66



Moreover, we introduce the term Tr(BLpB
T ) in Eq. 4.1 as a regularization terms intro-

duced by the spatio-temporal correlations between features. The idea is inspired from [15, 116],

in which the dependencies between features are considered as a regularization term in the en-

ergy function. For the set of video segments p, we develop an undirected weighted graph Gp

that models the spatio-temporal correlations between features. A dictionary of the graphs Dg =

{G0,G1, · · · ,Gp, · · · } denotes all the correlation graphs. In CAVS,Mp represents the spatio-temporal

correlations between features, and thus makes CAVS summarize the global discriminative video

portions. We define the degree matrix R as a diagonal matrix with each diagonal element as∑
kM

ik
p , where M ik

p is the element of the i-th row and the k-th column of Mp. Lp = Rp −

Mp is the Laplacian matrix. Given B which is a sparse representation of the feature matrix X ,

Tr(BLpB
T ) essentially represents how closely two feature vectors are correlated, and equals to

1
2

∑
i

∑
k (Bi −Bk)2M ik

p .

4.3 Optimization Methodology

In this section, we propose a methodology to solve Eq. 4.1. This includes the dictionary

learning and updating processes.

4.3.1 Sparse Matrix Optimization

Eq. 4.1 is the summation of convex functions and is therefore convex. It can be shown

that Eq. 4.1 can be rewritten as
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min
B

1

2|X |

|Dg |∑
p=1

{ |X |∑
i=1

‖Xi −DfBi‖22 + α1

|X |∑
i,k=1

Likp B
T
i Bk + α2

|Df |∑
j=1

∥∥Bj
∥∥
2

+ α3

|X |∑
i=1

‖Bi‖1

}
.

(4.2)

To find an optimal solution of B, we use the block coordinate based methodology that is

able to yield sparse solutions at both the group and individual feature levels [43]. An overview of

the optimization process is provided in Algorithm 3.
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Algorithm 3 Sparse group lasso optimization
Input:Video features X

for g ← 1 to |Dg| do

for i← 1 to |X | do

Define β = Bi;

Initialize β̂ = β0

for j ← 1 to |Df | do

Define Hi = Xi −
∑

k 6=j D
k
fβk,

Dj
f = (A1, A2, · · · , Ak), where Dj

f is the j-th group of Df ,

βj = (θ1, θ2, · · · , θk),

vl = (w1, · · · , wN ) = Hi −
∑

k 6=lAkθk.

if θj 6= 0 then

sk = θk/βj ;

else

s satisfies ‖s‖2 ≤ 1;

end if

tk ∈ sign(θk);

ak = α2sk + α3tk;

J(t) = 1
α2

2

∑
l (al − α3tl)

2 ;
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Algorithm 3 Sparse group lasso optimization (continued)

if J(t̂) ≤ 1 then

Set β̂j = 0;

else

for All l and k do

if |ATl vj | < α3 then

θ̂l = 0;

else

minθl{
1
2

∑N
n=1 (vn −

∑k
l=1Anlθl)

2
+ α1

∑
n,l Lnlβ

T
β + α2‖θ‖2 +

α3
∑k

l=1 |θl|} (*);

end if

end for

end if

end for

end for

end for

(*) can be solved by the method in [43];

Output:B;

4.3.2 Learning Dictionary of Features and Feature Correlation Graphs

We adopt the method in [70] to learn the feature dictionary. A summary of the method is

as follows.
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1) CAVS generates a random dictionary with a fixed number of atoms.

2) Given the initial dictionary, the algorithm seeks a solution of the reconstruction matrix

B.

3) The two step iteration process between parameters B and D continues until converge.

Please refer to [70] for more details.

In the process of learning the correlation matrix Mp, a function of Lp in Eq. 4.2, we build

a spatio-temporal graph between features G0 = (V,E). The set of nodes is V = {V1, V2, · · · }

and the set of edges is E = {· · · , Eij , · · · }. Such a graph G0 is called a feature correlation graph.

We use the method similar to [106]. Firstly, we use Bag-Of-Words combined with multi-class

support vector machine (BOW+SVM) to calculate the probability that a feature vector belongs to an

activity class p(cj |xi), where cj denotes class j. The node label Vi is arg maxj p(cj |xi). The edge

Eij represents the spatio-temporal correlations between nodes Vi and Vj . The spatial correlation

models the probability of a feature vector belonging to a particular class given its spatial distance

with its neighbor. The temporal correlation models the probability of a feature vector belonging to

a particular class given its temporal distance with its neighbor. Given two nodes Vi and Vj and their

spatial and temporal locations s and t, the spatial and temporal correlations ψs and ψt are modeled

as normal distributions

ψs(Vi, Vj) = N (‖si − sj‖2;µs(ci, cj), σs(ci, cj)),

ψt(Vi, Vj) = N (‖ti − tj‖2;µt(ci, cj), σt(ci, cj)),
(4.3)

where µs(ci, cj), σs(ci, cj) are the parameters of the spatial correlation and µt(ci, cj), σt(ci, cj)

are the parameters of the temporal correlation. The edge weight, represented by spatio-temporal

correlation between two nodes Vi and Vj , is calculated by
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(a) Exit vehicle (b) Open trunk 

(c) Close trunk (d) Leave vehicle Spatio-temporal graph 

𝑉𝑎 

𝑉𝑏 

𝑉𝑐 
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Ψ𝑏𝑐 Ψ𝑐𝑑  

Ψ𝑎𝑐 

Figure 4.3: An example of spatio-temporal graph learning. (a)-(d) show four events which are

correlated to each other. The spatio-temporal graph is learned by the correlations between these

events.

Ψij = uijψs(Vi, Vj)ψt(Vi, Vj), (4.4)

where uij is an association probability that is computed as a ratio of the number of times a feature

class cj has occurred in the vicinity of ci to the total number of times ci has occurred. The parameters

can be learned by maximizing
∑

k Ψk
ij , where Ψk

ij is the k-th training example. We assume that

every edge weight can be learned independently. An example of a learned graph is shown in Fig.

4.3.

Our algorithm scans through consecutive video segments in the training dataset and mod-

els the pairwise spatio-temporal correlations between every pair of feature vectors. In the training

of CAVS, the dictionary of feature correlation graphs is initialized as DG = {G0}, which is built by

the method above. Each item of M is represented by the correlation graph G0. Specifically, given

that cm = i and cn = j, the correlation between two features Xm and Xn is Mmn = Ψij .
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4.3.3 Online Dictionary Update of Features and Feature Correlation Graphs

As CAVS scans through the video sequence, features that cannot be sparsely reconstructed

using the existing dictionary, are considered to belong to video segments that are parts of the sum-

marized video. Video watchers do not want to watch similar video portions again. Therefore,

updating the dictionaries is of great importance.

In the process of online updating the dictionary Df , we follow the method in [70]. Con-

cretely, CAVS updates the dictionary sequentially, and only needs to store two matrices: Pt =∑t
i=1BiB

T
i and Qt =

∑t
i=1X

T
i B

T
i . Given Df at time t − 1, we use the sparse coding steps to

compute B at time t − 1. With these two variables at time t − 1, the algorithm can find the new

optimal Df at time t, where each column of Df is updated sequentially. It has been proved in [70]

that the dictionary Df at time t − 1 is a warm restart for computing Df at time t, and this process

can converge to an optimal solution.

When updating the dictionary of feature correlation graphs, new feature correlation graphs

are constructed by the method in Sec. 4.3.2. This process is performed independent of the learning

process. If the new graph is recognized as different from the graphs in the dictionary, the new graph

is incorporated into the graph dictionary. The methodology in [118] is used to compare the similarity

between the built graph and the learned graphs in the dictionary. We calculate the similarity between

the new graph Gi and the graphs in the dictionary DG . The similarity between Gi and a graph in

the dictionary DGl is denoted by sim(Gi,DGl). Assume that there are two graphs Ga = (Va,Ea)

and Gb = (Vb,Eb). The number of nodes in these two graphs are represented by |Va| and |Vb|

individually. A solution of graph matching is a subset of possible correspondences, denoted by a

binary matrix H with the size |Va| × |Vb|. If V a
i ∈ Va matches V b

i′ ∈ Vb, then Hii′ = 1; otherwise
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Hii′ = 0. We use h to represent a column-wise vectorized replica of H . The graph matching

problems can be defined as the problem of finding the assignment vector h∗ that satisfies

h∗ = arg max
h

sim(Ga,Gb)

s.t.


h ∈ {0, 1}|V

a||Vb|,

∑
i hii′ ≤ 1,

∑
i′ hii′ ≤ 1.

(4.5)

The similarity function sim(Ga,Gb) is decomposed into the node similarity function

sv(i, i
′) for a node pair Vi ∈ Va and Vi′ ∈ Vb, and an edge similarity function se(ij, i′j′) for

an edge pair Eij ∈ Ea and Ei′j′ ∈ Eb. The similarity function is thus defined as

sim(Ga,Gb) =
∑
hii′=1

sv(i, i
′) +

∑
hii′=1,hjj′=1

se(ij, i
′j′), (4.6)

where sv(i, i′) is 1 if the distance between the features of Vi and Vi′ is smaller than a threshold, and

0 otherwise. se(ij, i′j′) is 1 if the difference between the weights on two edges is smaller than a

threshold, and 0 otherwise.

Note that updating graph correlation is an unsupervised process, where prior information

of class labels is not needed. When some activities are detected, they are compared with the known

ones based on the individual features in each detected region, as well as the inter-relationships

between them. This is done by comparing with the nodes and edges of the learned graphical model

as available up that time. If the individual activities and their inter-relationships do not match, they

are identified as new ones, and the graph is updated. We update the dictionary of correlation graphs

based on Algorithm 4.
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Algorithm 4 Online update the dictionary of correlation graphs.
Input:The learned weight graph G0 from the training videos and the new graph Gi which is built

from the new video segment, and a threshold τ .

Initialization: Let DG = G0;

for l← 1 to |DG | (the size of DG) do

if sim(Gi, DGl) > τ then

for j ← 1 to |EGi | (the size of edges in Gi) do

for j′ ← 1 to |EDGl | (the size of edges in DGl) do

Denote the nodes associated with the j-th edge in Gi as Vp and Vq, and those

associated with the j′-th edge in DGl as Vp′ and Vq′ ;

if sv(p, p′) = 1 and sv(q, q′) = 1 then

if se(j, j′) = 1 then

Accept the original edge weight between j and j′;

else

E
DGl
p′q′ ← EGipq ;

end if

end if

end for

end for

else

DGl = DGl ∪ Gi;

end if

end for

Output:DG ;
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4.4 Experiments

To show the effectiveness of CAVS, we perform experiments on three public datasets:

UCLA office dataset [81], VIRAT dataset [78] and SumMe [49]. All datasets consist of various

surveillance videos and contain many different events. We compare the results of CAVS with the

state-of-the-art approaches.

4.4.1 Dataset

The UCLA office dataset consists of three surveillance videos of single and two-person

activities. The total length of these three video sequences is around 35 minutes. Every video

sequence is composed of repetitive events with different temporal orders. We use one third of every

video sequence to train our model, and use the rest two thirds to online update the dictionaries, thus

producing the summaries.

The SumMe dataset consists of videos from both static and moving cameras. Every video

sequence lasts from 30 secs to 7 mins. The topics of SumMe dataset cover holidays, events and

sports. We select 9 video sequences in which enough person/animal activity features can be ex-

tracted to test CAVS algorithm. Similar to UCLA office dataset, one third of every video sequence

is used to train the model. The rest two thirds of a video sequence are used to update the dictionaries.

The VIRAT dataset is a surveillance dataset which contains many challenging character-

istics such as large variation in the activities and clutter in the scene. Moreover, there are many

different spatio-temporal correlations between events that make VIRAT dataset more challenging

than other datasets used in the existing video summarization papers. A surveillance dataset usu-

ally does not have a specific topic; thus most summarization algorithms working on storyline based
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videos [60, 80] cannot be directly applied. In VIRAT, there are 334 videos, each lasting 2 to 15

minutes. These videos are recorded on 10 different scenarios including parking lots, university

campuses and etc. We use around 40% of the dataset as training and the rest as testing.

4.4.2 Results

To find a compact representation of the activity features, we use the spatio-temporal pyra-

mid and average pooling method to generate a vector of size 162 (HoG+HoF) features. In CAVS,

we fix the number of atoms in the dictionary to be 120. Three parameters in Eq. 4.2 are manually

set to be: α1 = 0.3, α2 = 0.05 and α3 = 0.08. The length of every video segment is set to be 90

frames (30 frames per second).

We adopt two evaluation metrics on different datasets that are used in this chapter. We

use the evaluation metrics in [29, 115] on VIRAT and UCLA datasets because these two papers are

mostly closely related to our approach and we directly compare our results with theirs on these two

datasets. The summarization accuracy is reported by this evaluation method, in which both video

segment contents and time differences are considered in this evaluation method. Specifically, if two

video segments share the same scene contents and occur within a period of time, they are considered

to be equivalent to each other. The ground truth summary is manually labeled by two analysts to

minimize the influence of subjectiveness. In the evaluation process, the summarization accuracy is

computed as the ratio between the automatically summarized video and the ground truth summary

provided by two analysts.

Moreover, we adopt the evaluation methodology in [49] to compare our results with theirs

on SumMe dataset since the authors directly reported their results on SumMe dataset. Specifically,

the evaluation score Fi for the human selection i is defined as
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Fi =
1

N − 1

∑
j 6=i

2
pijrij
pij + rij

(4.7)

where N is the number of humans, pij is the precision and rij is the recall of human selection i

using the j-th ground truth.

Table 4.1 illustrates the summarization accuracy on UCLA dataset with different algo-

rithms. We compare our algorithm with activity clustering video abstraction (AC) [86], dictionary

selection based video summarization (DSVS) [29] and LiveLight (LL) [115]. It is shown that CAVS

performs the best among all the three scenarios. An illustration of the results on UCLA dataset can

be found in Fig. 4.4, where selective pictorial results of CAVS and LL are shown individually.

CAVS generates a summarized video which is composed of short stories. Although some events are

summarized more than once, the spatio-temporal correlations between them tell analysts a whole

story of what happens in the video. For instance, a short story is composed of a person working on

the laptop, standing up, pouring water and sitting down. However, LL only summarizes the events

of working on a laptop and pouring water, which are not informative to analysts. Similarly, another

story could be a person pouring water, picking up a phone and placing down a phone. Such strong

correlations are not detected by LL.

Table 4.2 shows a summary of the results on VIRAT dataset. In VIRAT, we classify the

videos into 10 categories based on the type of scenarios. It can be seen that CAVS obtains the best

results in most scenarios on the average accuracy in VIRAT. In scenario 8, LL and CAVS obtain the

same results. This is because of the few spatio-temporal feature correlations in this scenario.
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Time(s) AC DSVS LL CAVS

UCLA 1 420 67.9% 75.3% 83.0% 88.5%

UCLA 2 324 71.2% 72.5% 73.2% 76.7%

UCLA 3 1154 58.5% 66.6% 69.5% 78.2%

Average - 65.9% 71.5% 75.2% 81.3%

Table 4.1: Video summarization results on UCLA office dataset. ”Time” represents the total length

of the original videos. The percentage value represent the overlaps between the summarized video

and the ground truth.

CAVS 

LL 

Figure 4.4: Video summarization results on UCLA office dataset. The results by CAVS are a series

of stories, while LL obtains the results that are purely based on the independent video features. In the

results of CAVS, the first 12 figures represent stories of temporal events. Then the spatial correlated

events are captured. The supplemental material provides the videos for clear video summaries.
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Time(s) AC DSVS LL CAVS

VIR 1 1880 48.0% 67.3% 68.0% 77.1%

VIR 2 986 52.5% 66.5% 76.2% 76.8%

VIR 3 1656 50.4% 69.0% 74.1% 83.2%

VIR 4 1441 60.2% 65.5% 64.3% 75.1%

VIR 5 942 58.5% 64.0% 64.7% 68.7%

VIR 6 2052 60.5% 71.5% 71.6% 71.0%

VIR 7 675 59.6% 72.9% 73.3% 83.4%

VIR 8 305 79.9% 85.6% 90.0% 90.0%

VIR 9 1546 61.3% 74.5% 78.0% 82.2%

VIR 10 631 81.6% 89.7% 90.7% 92.8%

Average - 61.2% 72.7% 75.0% 80.0%

Table 4.2: Video summarization results on VIRAT dataset. ”Time” represents the total length of the

original videos. The percentage values represent the overlaps between the summarized video and

the ground truth.

Figure 4.5: Representative video summarization results on VIRAT by CAVS. These two stories are

not summarized by the other methods, because every single event is a repeat of the events in the

training videos. However, the stories are captured by our algorithm through the spatio-temporal cor-

relations between events. The supplemental material provides the videos for clear video summaries.
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Fig. 4.5 shows two examples from the summarized videos in VIRAT by CAVS. We

select some key frames from the highlighted video segments to represent two stories that CAVS

summarizes. The first story is that two persons get off the truck, load objects, one leaves and one

goes back into the truck, and a person loads objects into the truck. The second story shows the story

that a person gets out of the vehicle, another person loads an object while the first person opens

the door, and the second person leaves and the first person goes back into the car. With the method

of [29, 115], the video features in these video segments can be sparsely represented by those in

the training videos, and these scenes are not summarized. CAVS, however, identifies these in the

summarized video.

In Table 4.3, we illustrate our results on SumMe dataset with the evaluation metrics used

in [49], where SF denotes the superframe method in [49]. It is shown that CAVS obtain significant

better results than SF (the superframe method in [49]. 9 video sequences with rich human/animal

activity features are tested by our algorithm. Some representative image results on the Kids Playing

video sequence and the Cooking video sequence are shown in Fig. 4.6. In the first row, we show

the summarized kids activities which include lying on the leaves, picking up leaves, standing up,

throwing leaves at others, running away, running back and throwing leaves again. These activities

and their temporal correlations are well captured by CAVS. In the second row, the activities of

cooking meats, moving onion slices, stacking up onion cones, adding oils, burning onions are well

captured. In the last image, we can see that the spatial correlations between foods and fires are

captured.

Our summarized video provides a 7x-40x compression without losing the semantic under-

standing of the original surveillance video. For instance, the lengths of CAVS summarized videos
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Time(s) SF CAVS

Bearpark 133 0.12 0.38

Bike Polo 103 0.36 0.30

Cooking 86 0.32 0.47

Excavators 388 0.19 0.32

Jumps 39 0.43 0.34

Kids Playing 106 0.09 0.40

Paluma jump 85 0.18 0.29

Playing water 102 0.20 0.42

Saving dolphins 222 0.15 0.24

Average - 0.23 0.35

Table 4.3: Video summarization results on SumMe dataset. ”Time” represents the total length of

the original videos. The score of SF and CAVS is defined in Eq. 4.7.

Figure 4.6: Summarized videos in SumMe. The activities of lying on the leaves, picking up leaves,

standing up, throwing leaves to others, running away, running back and throwing leaves again are

highlighted in the first row, while the activities of cooking meats, moving onion slices, stacking up

onion cones, adding oils, burning onions are well captured in the second row.
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in UCLA dataset are 39s, 18s and 68s respectively; while those of LL summarized videos are 24s,

12s and 38s respectively. Although the CAVS summarized video is longer than that in [115], it is

more informative and tells a whole story of how events interact with each other.

4.5 Conclusion

In this chapter, we present a novel approach to summarize the most informative video

portions. Both individual local motion regions and interactions between these motion regions are

taken into consideration in our framework. We formulate the video summarization problem as the

problem of sparse feature reconstruction with generalized sparse group lasso. To solve the overall

problem, we propose an algorithm to learn and update dictionaries of video features along with

feature correlations. Our promising experimental results on two public datasets have shown that

encapsulating the spatio-temporal correlations between events can be used to tell analysts a story of

global events. Such a summarized video is closer to the ground truth than existing methods.
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Chapter 5

Algorithm and Platform Co-Design for

Vision Applications

5.1 Introduction

Numerous algorithms have been developed for different computer vision applications like

object detection, object recognition, tracking, etc. Also, many public datasets have been released

to help researchers fairly evaluate their algorithms. For instance, the datasets of CAVIAR [1],

ETHMS [38], and TUD-Brussels [103] have been commonly used in the area of tracking. In most

cases, each algorithm is able to achieve very good performance on some datasets, while failing to

beat other algorithms on some other datasets. Besides, it is interesting to see that some algorithms

perform well on parts of a dataset, but cannot achieve good results on some other parts. This is

because every algorithm is sensitive to the environmental conditions in each dataset or parts thereof.

Moreover, although some state-of-the-art algorithms can achieve better results than other algorithms
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Figure 5.1: Illustrations of pedestrian detection results by four algorithms {A1, A2, A3, A4} with

the parameter frames per second (FPS) in a video sequence within a day. The two parts represent

two computation platforms, each of which leads to different FPSs for these four algorithms. In each

part, a row denotes results of an algorithm-parameter , and each column represents an image frame.

An example of the adaptive algorithm-parameter selection under a platform is shown with green

arrows in the left part, which is A4 → A4 → A3 → A3 → A2. In the right part, with a different

platform, the algorithm-parameter selection results change to A1 → A1 → A1 → A2 → A2.

under a platform, the high computation complexity limits their applications in the real-world sce-

narios. Choosing other algorithms under a different platform may also meet the performance re-

quirement. All these observations raise an important question: can we automatically co-design

algorithm-platforms for an application domain under performance constraints?

The goal of this chapter is the following. Given a set of existing computer vision al-

gorithms and its parameters, i.e. , algorithm-parameter combinations, for a certain problem, can

we automatically select the “best” algorithm-parameter combination along with a platform for that

problem domain under a performance constraint? The answer, in most cases, will not lie in one spe-

cific algorithm-parameter combination but on an adaptive mechanism for selecting among the set of

85



algorithm-parameter combinations, since the conditions in the video will likely change over time.

Conditions that could trigger the switch include the lighting in the video, the number of targets in the

scene, the resolution of the targets, and so on - factors which are known to affect the performance

of vision algorithms. In addition, the platforms will limit the application of algorithms, especially

those complex ones. In the experiments, we specifically focus on the problems of pedestrian de-

tection and tracking, since pedestrian detection is a fundamental low-level task that is crucial to

higher-level tasks, e.g. tracking, and these two tasks are known to be sensitive to environmental fac-

tors. The proposed algorithm is a general solution that should be applicable to many other computer

vision domains.

An illustration of such an algorithm selection process is shown in Fig. 5.1, where the re-

sults of four pedestrian detectors are affected by the frequently-changing scales of objects, number

of objects, and illumination condition. There are two different sets of algorithm-parameter combi-

nation selection results which are obtained under two platforms. In both left and right parts of Fig.

5.1, each row shows representative image frames from a video recorded at different times of a day,

and each column denotes the person detection results by four different algorithms. It is noted that

each pedestrian detector achieves desired results on some image frames while does not perform well

on the others. For instance, in the first frame, the detectors with the best performances are detector

1, 2 and 4, while in the second frame, the detector with the best performances changes to 1. In the

third frame, only detector 3 successfully detects all the pedestrians. In the fourth and fifth frames,

the detectors with the best performances also do not lie on the same detector. The image features

of the first two image frames are similar to each other. However, in the third frame, the illumina-

tion changes and the number of pedestrians increases. It is shown that detector 3 achieves the best
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performance in the third frame. Similar observations can be noticed in the rest of the images. An

example of an ideal detector, which is obtained by switching between the four original detectors, is

shown with green arrows in the left part. It shows the importance of developing an adaptive switch-

ing mechanism between the algorithm-parameter combinations that minimizes the detection error

for each scenario. The algorithm-platform co-design for the left part is based on the performance

constraint. In the right part, with a different performance constraint and other constraints (e.g. en-

ergy consumption), the selected algorithm-platform is different from that of the left part. Although

algorithms 3 and 4 perform well, their processing time is higher than the requirements and thus

can not be used in this application. Such sacrifice on the performance is very necessary for many

real applications when there is a need to find a balance between the performance and computational

demand of algorithms.

5.1.1 Overview and Contributions

Motivated by observations from Fig. 5.1, we propose a switching algorithm which adap-

tively selects the best available algorithm-parameter combination along with a platform for each

scenario based on the characteristics of the video under certain performance constraints. Our input

consists of a set of existing algorithms that are well-known in the community for the specific vision

task, in this case, pedestrian detection and tracking, applications we focus on in this chapter. These

algorithms’ parameters are also known. In addition, we have datasets on which these algorithms

have been tested. Each available algorithm has image frames as inputs and performance results as

outputs. The performance constraints of the algorithms are provided, leading to a choice of the

platforms.
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There are two operating phases in our proposed framework: the training phase and the

test phase. In the training phase, we select a platform that corresponds to a performance require-

ment. we combine every algorithm with a few parameters to generate different algorithm-parameter

combinations under the platform. Every algorithm-parameter combination is applied to a unique

scenario that is composed of a short sequence of frames in the training dataset. The parameters

that we use in this chapter include frames per second (FPS) and image resolutions. The algorithm-

parameter combination that obtains the best performance under the platform is then labeled as the

best algorithm-parameter combination for this training image (or image sequence) under the perfor-

mance constraint.

In the test phase, we segment every video sequence in the test dataset into time windows.

The goal of the proposed algorithm selection process is to choose the “best” algorithm-parameter

combination for each video segment given a performance constraint. This is done by two steps. The

first step is to compute a similarity function between the test video segment and all the training sce-

narios over a learned manifold of image features shared by the training and test dataset. This method

has been referred to as domain adaptation in the literature [47, 48]. The output is the training sce-

nario that the test video is closest to in this space. In the second step, the “best” algorithm-parameter

combination for a video segment is obtained by selecting the algorithm-parameter combination with

best performances in the selected training scenario.

We demonstrate the efficacy of the proposed approach on multiple well-known datasets.

We apply 10 algorithm-parameter combinations on 3 public datasets [3, 38, 103]. We show how to

choose the “best” algorithm-parameter combination for each time window of image frames through

switches from one algorithm-parameter combination to another in a dataset under a performance
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Figure 5.2: Overall Methodology. The algorithms A = {A1, · · · , AK} are combined with a couple

of parameters to generate the algorithm-parameter combinations under certain performance con-

straints. We learn the mapping between the training data and each algorithm-parameter combina-

tion, and obtain the training label Y = {Y1, · · · , YK}. The feature similarity scores between the

training and test datasets are calculated by T andR. A two-step cost function is defined and solved

in Sec. 5.2.4.

constraint. It is proved that the proposed approach is able to obtain the optimal or close-to-the-

optimal performances among all the algorithm-parameter combinations’ performances given certain

performance constraints.

5.2 Methodology

5.2.1 Problem Description

We assume the availability of a number of algorithms for the problem. Representative

parameters of these algorithms are also known. Our goal is to answer the following questions: for

every part of an unknown dataset, is it possible to automatically select an algorithm-parameter com-
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bination along with a platform among all available algorithm-parameter combinations that achieves

the best result under certain performance constraints? And for the entire unknown dataset, what is

the best strategy to switch between algorithms?

In our problem, the input is the set of K available algorithms A = {A1, · · · , AK} with

different parameters and the dataset on which they are evaluated. We call this the training dataset

T = {T1, · · · , TM}, where Ti represents the i-th unique scenario in T . The segmentation of T can

be done by any data classification methodology. We combine algorithms with different parameters

to obtain a set of algorithm-parameter combinations, denoted by B = {B1, · · · , BH}.

Given a performance constraint, we select a platform with the corresponding compu-

tation capability. Under this platform, we apply every algorithm-parameter combination Bh =

{B1, · · · , BH} on each Ti in T . We select the algorithm-parameter combination that performs the

best as the training label Yi under the performance constraint.

The unknown dataset is called the test dataset R. In R, we assume that there are totally

N time windows. Every time window of images is denoted as Rj , j = 1, · · · , N . The selection

of algorithms for Rj is represented by Lj . Given the pairs (Ti, Yi) under the same performance

constraint, the problem is how to find the unknown label Lj for each Rj that is in R. All the

notations are highlighted in Table 5.1.

5.2.2 Solution Overview

The overview of our solution is shown in Fig. 5.2. In an unknown test dataset R, every

video sequence/image set is segmented into a sequence of non-overlapping time windows Rj . The

output of the algorithm, the label set L = {L1, · · · , LN}, is obtained by a two-step cost function.

90



A the set of available algorithms A1, · · · , AK

B the set of available algorithm-parameter combinations B1, · · · , BH

T training dataset T1, · · · , TM

R test dataset R1, · · · , RN

Yi the label of the training data Ti ∈ T

Lj the label of the test data Rj ∈ R

ti the feature of Ti, the dimension of which is a

rj the feature of Rj , the dimension of which is a

b the dimension of the subspace of ti and rj

xi the basis of subspace of ti, the dimension of which is a× b

zj the basis of subspace of rj , the dimension of which is a× b

x̃i orthogonal to xi, the dimension of which is a× (a− b)

z̃j orthogonal to zj , the dimension of which is a× (a− b)

Wij geodesic kernel

θ(y) geodesic flow parametered by y in Eq. 5.3

Λi diagonal matrices in Eq. 5.4

Table 5.1: Notation Table.

This cost function is able to automatically select the best algorithm-parameter combination on a

specific time windowRj under certain platform which is determined by the performance constraint.

In the first step, we want to compare Rj with every training scenario, and find the most similar

training scenario toRj . The results depend on the similarity betweenRj and all the unique scenarios

in T . The term of similarity score S(Ti, Rj) needs to be calculated. The output of the first step

of the cost function is the training scenario that is most similar to each time window in R. In the

second step, the “best” algorithm-platform for a training scenario Ti is obtained under a performance
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constraint. Ti shares similar characteristics with Rj , and thus the best algorithm-platform for it

should also provide the best performance for Rj under the same performance constraint.

The structure of our solution is as follows. In Sec. 5.2.3, we introduce how to calculate

the similarity score S(Ti, Rj) between the time window Rj in the test dataset and a unique scenario

Ti in the training dataset. In Sec. 5.2.4, we introduce the overall two-step cost function that is able

to find the best algorithm-parameter selection for every time window inR.

5.2.3 Similarity Scores between Training Scenarios and Test Time Windows

The similarity between Rj and Ti, denoted by S(Ti, Rj), is calculated as

S(Ti, Rj) = e−d(Ti,Rj) (5.1)

where d(Ti, Rj) represents the feature distance between Ti and Rj , whose computation is shown in

below.

Feature Distance Computation

In this section, we provide a solution to d(Ti, Rj) in Eq. 5.1. Different from [10], where

feature distances are directly computed, we consider the mismatch between the training data and the

test data. This mismatch can come from many sources, e.g., pose, illumination, image quality, etc.

In other words, even though the training and test data have the features lying in different spaces, a

domain shift might indicate similar distributions of the two sets of features. An example is shown

in Fig. 5.3, where each column of images does not have the same feature distributions in terms of

illumination, size of pedestrians and etc. However, the pedestrian detection experiments show that

the same algorithm should be applied to each column of images to achieve the best performance.
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It represents that directly calculating the feature distance between two data may mislead to wrong

classification results. It is highly likely that there is an underlying space that is shared by features

of both training and test data. If the features of Ti and Rj share similar distributions on such a

space, there is a high chance that the same algorithm can be applied to both Ti and Rj . Finding

such a space is often known as the problem of domain adaptation. Our solution is motivated by the

approaches in [47, 48], where the mapping between the training data and the test data is modeled as

geodesic flow.

The key idea of domain adaptation is to project both the training data and each video

segment of the test data into subspaces to learn domain-invariant features. A challenge is how to

determine and select the subspace that is shared by both training data and test data. We assume that

the features of both training and test data lie in a linear subspace. Denote the features of Ti and

Rj as ti ∈ Ra and rj ∈ Ra individually. We denote b as the dimension of the subspace of ti and

rj . Performing principal component analysis (PCA) on ti and rj , we can obtain xi ∈ Ra×b and

zj ∈ Ra×b which are the basis vectors for the subspaces of ti and rj . The orthogonal matrix of xi is

defined as x̃i ∈ Ra×(a−b), and that of zj is defined as z̃j ∈ Ra×(a−b).

[47] provides a closed loop solution to the kernel inner product between ti and rj , which

is

tTi Wijrj =

∫ 1

0
(θ(y)ti)

T (θ(y)rj)dy. (5.2)

where θ(y) is a geodesic flow function parameterized by a continuous variable y ∈ [0, 1] and Wij

is the kernel function that is defined below. The term θ(y) in Eq. 5.2 projects a feature into the y-th

subspace on the Riemannian manifold, and is defined as
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Figure 5.3: Examples of mismatches between feature distributions. Every column of images do not

share the same feature space. The application of domain adaption indicates that the same pedestrian

detector should be applied to both rows of each column.

θ(y) =



xi, if y = 0,

zj , if y = 1,

xiUΣ1(y)− x̃iV Σ2(y), otherwise

(5.3)

where U , V , Σ1 and Σ2 are obtained by singular value decomposition (SVD) of xTi zj and x̃Ti zj .

Wij in Eq. 5.2 is the kernel between ti and rj and can be calculated by

Wij =

[
xiU x̃iV

]Λ1 Λ2

Λ2 Λ3


UTxTi
V T x̃Ti

 , (5.4)

where the matrices Λ1 to Λ3 are diagonal matrices. The elements of Λ1 to Λ3 come from Σ1 and

Σ2 in Eq. 5.3. The details of the derivation can be found in [47].

This process assumes that the subspaces of ti and rj lie on a Riemannian manifold. Eq.

5.3 constructs geodesic flow between ti and rj , where the correlations between ti and rj are param-
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eterized by the continues variable y. The projection of the feature ti on the Riemannian manifold

is θ(y)ti, and that of the feature rj is θ(y)rj . The kernel inner product of ti and rj essentially

represents how close their subspace projections are.

The feature distance d in Eq. 5.1 can be calculated using kernel distance [84] given the

calculated kernel Wij . The kernel distance is able to calculate the distance between two sets of

points which lie on geometric surfaces, i.e., the Riemannian manifold that ti and rj lies on. The

kernel distance between Ti and Rj is defined as in [84]

d(Ti, Rj) = tTi Wijti + rTj Wijrj − 2tTi Wijrj . (5.5)

In Eq. 5.5, the first two terms are self-similarities between the feature ti of the training

data Ti and the feature rj of the test data Rj individually. The third term, that is defined in Eq. 5.2,

is the inner product of the two features that measures how close they are correlated to each other.

5.2.4 Adaptive Algorithm-Parameter Selection Cost Function

The ultimate goal of our proposed approach is to automatically select an algorithm-

platform for a time window of images Rj in the test data under a performance constraint. We

formulate the selection process in the test datasetR as a two-step optimization function.

Step 1 of the Cost Function

We obtain the training scenario that is closest to the test time window Rj . This training

scenario Ti∗ is obtained by finding the maximum similarity between all the training scenarios and

Rj
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Ti∗ = max
i
S({T1, · · · , Ti, · · · , TM}, Rj), (5.6)

where S denotes the similarity function that is defined in Eq. 5.1.

Step 2 of the Cost Function

An algorithm has different parameters, e.g. FPS, image resolution and etc. We can ob-

tain a set of algorithm-parameter combinations that are suitable for different platforms, which are

determined by the performance constraints. In the first step of the cost function, we have obtained

Ti∗ , which is the closest training scenario to Rj . In the second step of the optimization process,

we find the algorithm-parameter combination that performs the best in Ti∗ given a platform. This

algorithm-parameter combination is the output of the algorithm.

The algorithm-parameter selection, which is essentially the output label Lj , is obtained

by selecting the best performance P of the training scenario Ti∗ under the selected platform

Lj = max
h

P (Bh|Ti∗ , C), (5.7)

where the superscript h denotes the h-th algorithm-parameter combination, and C represents the

selected platforms.

The calculation of Eq. 5.7 is solved in the training process. In the training dataset T , we

exhaustively apply every algorithm-parameter combination Bh on each training scenario Ti. The

algorithm-parameter combination that obtains the minimum error (best performance) is selected as

the solution to Eq. 5.7. The details of computation parameter selections are shown in Sec. 5.3.1.
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5.3 Experiments

5.3.1 Experimental Setup

In the experiments, we show results of our method on two applications: pedestrian detec-

tion and pedestrian tracking. There are 5 state-of-the-art available detection algorithms: HOG [30],

PartBased [39], Cascades [22], ACF [36], and LDCF [75]. The public datasets that are used as the

test datasets are: INRIA [30], ETHMS [38], and TUD Stadtmitte [9].

In the application of pedestrian tracking, we adopt the baseline algorithm shared by

[27, 88, 94, 105, 111], due to its computation efficiency. This algorithm is based on the detec-

tion association methodology. Thus the effects of different detection results on tracking can be

demonstrated by using the same tracking module. Any other detection association algorithm can be

adopted, as long as the computation requirements are satisfied. Among the detection datasets, we

use all the datasets expect for the INRIA dataset and the TUD-Brussels dataset for tracking. The

reason is that the INRIA dataset is not composed of consecutive image frames and thus is not suit-

able for the problem of tracking, and that the TUD-Brussels dataset was recorded by a fast-moving

platform, which makes every pedestrian only exist 1-2 frames.

We extract four different features that are used for distance calculation in the experiments:

HOG features [30], SIFT features [67], gradient features [79], and texture features [2]. We resize

every image frame to 64 × 128 and use the methodology of Principle Component Analysis (PCA)

to reduce the dimension of the feature combinations to 1288, where the HOG features have the size

of 800 due to its dominance in pedestrian detection.
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Table 5.2: Algorithm-parameter combinations under two platforms.

Platform 1 Platform 2

FPS / Resolution FPS / Resolution FPS / Resolution FPS / Resolution

HOG 15 / 240x320 8 / 480x640 30 / 240x320 15 / 480x640

ACF 10 / 240x320 5 / 480x640 20 / 240x320 10 / 480x640

In the training dataset T , all the scenarios are clustered into 15 unique scenarios. The

number of unique scenarios is determined based on the observation of the characteristics of the

training data, e.g. the lighting condition, the density of the scenarios and etc. In the test dataset

R, all the videos/image frames are segmented into different time windows. The length of a time

window is set to be 30 frames except for the INRIA dataset. The reason is that the INRIA dataset is

composed of non-consecutive image frames, and we set the length of a time window to be 10.

5.3.2 Results of the Adaptive Selection of Algorithm-Parameter Combination

We investigate the effects of algorithm-parameter combination switches in every dataset.

In the training phase, we estimate the classification threshold of each detection algorithm that leads

to FPPI = 1. In the test dataset, we keep the detections with the scores greater than this threshold

for each algorithm. We evaluate the detections for each time window, where the number of missed

detections is used as the evaluation metrics. The reason of using missed detections as evaluation

metrics is that the overall FPPI of every algorithm is fixed to be around 1, and the number of missed

detections is assumed to be dominant in determining the performance for each time window of the

test dataset. In the problem of tracking, we adopt four evaluation metrics: mostly tracked (MT),

mostly lost (ML), number of ID switches (IDS) and false positive (FP).
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We show the validation and importance of the algorithm selection process in Fig. 5.4,

where the numbers of missed detections of the INRIA dataset are shown under two platforms. 4

algorithm-parameter combinations are used under each platform. In each subfigure, x-axis repre-

sents time windows and y-axis represents the number of missed detections. The selected algorithms

are shown by pink curves. Overall, our approach selects the best algorithm-parameter combinations

in most time windows for both datasets under both platforms. It is also noted that the selected

algorithms are not the same under different platforms, where each algorithm-platform meets its per-

formance constraint. For instance, ACF-240x320 performs well in most time windows with FPS=10

under the first platform, while HOG-480x640 obtains the best results in most time windows with

FPS=15 under the second platform. Our algorithm selection process successfully captures such al-

gorithm changes within a platform and between platforms. The results of (b) are better than that

of (a) because the designed platform is more powerful than that of (a), and thus makes the FPSs of

each algorithm higher than (a). A detailed description of Fig. 5.4 is shown in the figure caption.

In Fig. 5.5, we show both detection and tracking results on the TUD-Stadtmitte dataset,

where the top two subfigures show the detection results while the bottom two show the tracking

results. The detection algorithm-parameter selections are different under the two platforms, lead-

ing to different tracking results. In (a), the detection algorithm-parameters switch between ACF-

RES:240x320 and HOG-RES:480x640 with the corresponding FPSs under the platform 1. In (b),

the selection mostly lies in HOG-480x640 with FPS=15 under the platform 2. It is reasonable

because the performance requirement is strict in (b). Such a performance requirement leads to

a powerful platform selection that allows a high resolution and FPS of an algorithm. In (c) and
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Figure 5.4: Algorithm-parameter selection results with the application of pedestrian detection on

INRIA dataset with four algorithm-parameter combinations under two platforms. In each subfigure,

x-axis represents the time window and y-axis represents the number of missed detections. Each sub-

figure shows the results under a platform. It is shown that our algorithm-parameter selection process

can select the low-error results in most time windows under both platforms. For instance, in (a), the

selected algorithm-parameter only fails to select the best performance at the time window 13, 14, 17,

24, 25, and 27 among totally 29 time windows. The selected algorithm-parameter switches between

HOG-RES:480x640-FPS:8 and ACF-RES:240x320-FPS:10, each of which obtains the best results

on some time windows. ACF-RES:240x320-FPS:10 obtains the best results in most time windows

under the platform 1. Given a stricter performance constraint, the platform 2 is selected in (b).

Although the selected algorithm-parameter still switches between these two algorithm-parameter

combinations with different FPSs, it mostly lies in HOG-RES:480x640-FPS:15, which obtains the

best results in most time windows. It is because the low performance requirement leads to a power-

ful platform selection, which is easily to process high FPSs and high resolutions.
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Figure 5.5: Algorithm-parameter selection results on TUD-Stadtmitte dataset with four algorithm-

parameter combinations under two platforms. In the top subfigures, x-axis represents the time

window and y-axis represents the number of missed detections. The left subfigures show the results

under the first platform and the right subfigures show the results under the second platform. The

top subfigures demonstrate the detection results under different platforms given performance con-

straints. In (a), the selected algorithm-parameter only fails to select the best algorithm-parameter

at the second time window. Given a new performance constraint, the platform is chosen as (b),

where the selected algorithm-parameter does not lie in ACF-RES:480x640 as the first platform. (c)

and (d) show the tracking results. In (c), the selected algorithm-parameter obtains better MT, ML

and FT than any single algorithm-parameter. Though its IDS is a little higher than other two algo-

rithms, its overall performance is the best. In (d), the tracking performance is also similar to that of

HOG-RES:480x640-FPS:15 .
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Figure 5.6: Algorithm-parameter selection results on ETHMS dataset with four algorithm-

parameter combinations under two platforms. Note that we only show parts of the time windows

of ETHMS dataset to clearly denote how the results switch. In the top subfigures, x-axis repre-

sents the time window and y-axis represents the number of missed detections. The left subfigures

show the results under the first platform and the right subfigures show the results under the second

platform given a new performance constraint. The top subfigures demonstrate the detection results

under different platforms. The selected algorithm-parameter can capture the lowest detection errors

in most time windows under the two platforms given different performance constraints. Different

from Fig. 5.4 and Fig. 5.5, where the selected algorithm-parameter mainly switches between HOG-

RES:480x640 and ACF-RES:240x320 with different FPSs under the two platforms, the selected

algorithm-parameter of ETHMS dataset also selects ACF-RES:480x640 with different FPSs under

different platforms. In the tracking results of both (c) and (d), the selected algorithm-parameter can

obtain the best performance, which also supports the detection algorithm selection.
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(d),we show the tracking results with the four evaluation metrics: MT, ML, FT and IDS. A good

tracker should have high MT and low ML, FT, and IDS. In (c), the selected algorithm-parameter

obtains better results than any single algorithm-parameter combination under the first platform. It is

demonstrated that the tracking performances of the selected algorithm follow the trend of the detec-

tion performances. The results prove the effectiveness of adaptively selecting algorithm-parameters.

In (d), the results of the selected algorithm are similar to that of (a), which is because of the simi-

larity between the selected algorithm and HOG-RES:480x640. Similarly, we also show results on

ETHMS dataset under the same platforms in Fig. 5.6. Detailed descriptions of Fig. 5.5 and 5.6 are

illustrated in their captions.

Different performance constraints may lead to different algorithm-platform selections. In

our experiments, we consider two parameters of each algorithm: FPS and image resolutions. If per-

formance requirement is moderate, a platform with low computation capability may be chosen, and

the most suitable algorithm and its parameters should be decided accordingly. If the performance re-

quirement is high, a platform with high computation capability may be needed, and correspondingly

a different set of algorithms and parameters may be chosen. This is the essence of co-designing plat-

form and algorithm (including parameters) based on design requirements (including performance

requirement and other constraints such as energy consumption or cost).

In the experiments, we consider different performance requirements that lead to two dif-

ferent platform selections. Then, for each platform, we consider the set of algorithm-parameter

combinations that are computationally feasible on the platform and select the one that provides the

best performance for pedestrian detection. The algorithm-parameter combinations under each plat-

form are shown in Table 5.2. In Fig. 5.4, we can see that for platform 1, ACF-RES:240x320-FPS:10
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provides the best performance while for platform 2, HOG-RES:480x640-FPS:15 provides the best

performance. Note that we have also tested the algorithms PartBased, Cascades, and LDCF. How-

ever, because of the low FPSs of these algorithms yielding bad performances, we only show results

of HOG and ACF, which obtain reasonable results with the co-design of the algorithm-platforms

under performance constraints.

5.4 Conclusion

In this chapter, we present a novel approach to co-design the “best” algorithm-platform

among existing algorithms with different parameters for each scenario of a video sequence under

certain performance constraints. The algorithm-parameter combination selection process is based

on the video characteristics. We calculate the feature similarity on the manifold that is shared be-

tween training and test data. The more similar they are, the higher the possibility that they share the

same algorithm-parameter combination. We propose a cost function to obtain the “best” algorithm-

parameter combination under a certain computation constraint. We show the efficacy of the pro-

posed method on the application of pedestrian detection and tracking. Our promising experimental

results have demonstrated that adaptively selecting the algorithm-parameter combinations for each

scenario is able to obtain the best or is close to the best performance under a certain performance

constraint.
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Chapter 6

Conclusions

6.1 Thesis Summary

In this thesis, we study the video analysis problems in a wide-area scene. Three prob-

lems have been investigated: multi-target tracking, video summarization, and constrained adaptive

algorithms. In Chapter 2, we address the problem of tracking in a overlapping camera network.

We discriminate between interacting individuals and groups using the context information. Ob-

servations in overlapping cameras are fused, and associations between those in a camera network

are calculated. Formulating the problem of the camera network tracking as a network flow model,

a standard linear program problem is obtained. We adopt the K-shortest paths algorithm to per-

form robust association process. Experimental results on a very challenging public dataset show the

robust performance of our tracking system.

In Chapter 3, we provide a new non-overlapping multi-camera dataset (CamNeT) for

tracking. This dataset has 5 to 8 non-overlapping cameras, which cover around 20% to 30% of

the open area. Due to the lighting conditions variations and crowded scenarios, this dataset is very
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challenging and can be seen as a standard dataset to work with. We also present a baseline camera

network tracking system where the context information is considered. We show results on our

datasets which can be compared against any other methods.

In Chapter 4, we present a context-aware methodology to summarize the most informative

video portions. Both individual local motion regions and interactions between these motion regions

are taken into consideration in our framework. We formulate the video summarization problem

as the problem of sparse feature reconstruction with generalized sparse group lasso. To solve the

overall problem, we propose an algorithm to learn and update dictionaries of video features along

with feature correlations. Our promising experimental results on two public datasets have shown

that encapsulating the spatio-temporal correlations between events can be used to tell analysts a

story of global events.

In Chapter 5, we present a novel approach to adaptively select the “best” algorithm among

existing algorithms for each scenario of a video sequence under certain computation constraints.

The algorithm selection process is based on the video characteristics. We calculate the feature

similarity on the manifold that is shared between training and test data. The more similar they are,

the higher the possibility that they share the same algorithm. We propose a cost function to obtain

the “best” algorithm under a certain computation constraint. We show the efficacy of the proposed

method on the application of pedestrian detection and tracking. Our promising experimental results

have demonstrated that adaptively selecting the algorithms for each scenario can generate an optimal

algorithm.
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6.2 Future Work

Although the problem of multi-target tracking in a wide-area scene has been studied in

this thesis, more high-level computer vision problems can be investigated. For instance, activity

analysis in a wide-area scene is an important problem in understanding a scene. The activity analysis

performances usually depend on the motion segmentation results. With the help of context-aware

tracking scheme in a camera network, the interactions between motions will be very helpful in

obtaining good activity analysis results.

We would also like to apply the current context-aware video summarization problem into

a camera network. The spatio-temporal relationships between activities are of importance in under-

standing scenes in a larger area. For example, in a non-overlapping camera network, the activities in

blind areas are often unknown. With the help of context information, the long-term spatio-temporal

relationships between activities can be obtained. If there is an activity change in blind areas, e.g.

group merge or split, the context information is useful to capture such informative information.

In addition, although many our developed algorithms adopt different learning schemes,

e.g. structural SVM in multi-target tracking, they need an intensive training stage and assume that

all of the training examples are labeled. In a wide-area scene, the labeling process is usually tedious

and inefficient. In the future, some other learning algorithms such as active learning can be adopted

to reduce the labeling effort. Our goal is to incrementally learn the models, thus allowing them to

be continuously updated. Both the tracking and video summarization problems will benefit from

the active learning methodology.
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