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Abstract— Consensus-based distributed estimation schemes
are becoming increasingly popular in sensor networks due to
their scalability and fault tolerance capabilities. In a consensus-
based state estimation framework, multiple neighboring nodes
iteratively communicate with each other, exchanging their own
local estimates of a target’s state with the goal of converging
to a single state estimate over the entire network. However,
the state estimation problem becomes challenging when a node
has limited observability of the state. In addition, the consensus
estimate is sub-optimal when the cross-covariances between the
individual state estimates across different nodes are not incor-
porated in the distributed estimation framework. The cross-
covariance is usually neglected because the computational and
bandwidth requirements for its computation grow exponentially
with the number of nodes. These limitations can be overcome by
noting that, as the state estimates at different nodes converge,
the information at each node becomes redundant. This fact
can be utilized to compute the optimal estimate by proper
weighting of the prior state and measurement information. Mo-
tivated by this idea, we propose information-weighted consensus
algorithms for distributed maximum a posteriori parameter
estimates, and their extension to the information-weighted
consensus filter (ICF) for state estimation. We show both
theoretically and experimentally that the proposed methods
asymptotically approach the optimal centralized performance.
Simulation results show that ICF is robust even when the
optimality conditions are not met and has low communication
requirements.

I. INTRODUCTION

Distributed estimation schemes are becoming increasingly
popular in the sensor networks community due to their
scalability for large networks and high fault tolerance. Unlike
centralized schemes, distributed schemes usually rely on
peer-to-peer communication between sensor nodes and the
task of information fusion is distributed across multiple
nodes. In a sensor network, each sensor may get multiple
measurements of a target’s state. The objective of a dis-
tributed estimation framework is to maintain an accurate
estimate of the target’s state using all the measurements in the
network without requiring a centralized node for information
fusion.

Among many types of distributed estimation schemes,
consensus algorithms [1] are schemes where each node, by
iteratively communicating with its network neighbors, can
compute a function of the measurements at each node (e.g.
average). The consensus estimates asymptotically converge
to the global result. In practice, only a limited number
of iterations can be performed due to limited bandwidth
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and target dynamics. Thus, true convergence may not be
always reached. In the presence of state dynamics, usually a
predictor-corrector model is used for state estimation, where
a state prediction is made from the prior information and
corrected using new measurements. The Kalman Consensus
Filter (KCF) [2] is a popular distributed state estimation
framework based on the average consensus algorithm. KCF
works well in situations where each node gets a measurement
of the target.

In a sensor network, a node might have limited ob-
servability when it does not have any measurement of a
target available in its local neighborhood (consisting of
the node and its immediate network neighbors). Due to
limited observability and limited number of iterations, the
node becomes naive about the target’s state. A naive node
contains less information about the state. If a naive node’s
estimate is given an equal weight in the information fusion
scheme (as in KCF), the performance of the overall state
estimation framework may decrease. The effect of naivety is
severe in sparse networks where the total number of edges is
much smaller than the maximum possible number of edges.
The Generalized Kalman Consensus Filter (GKCF) [3], was
proposed to overcome this issue by utilizing a weighted-
averaging consensus scheme where the priors of each node
were weighted by their covariance matrices.

The reason that these distributed schemes are usually
sub-optimal is that the cross-covariances between the priors
across different nodes are not incorporated in the estimation
framework. As the consensus progresses, the errors in the
information at each node become highly correlated with
each other. Thus, to compute the optimal state estimate,
the error cross-covariances cannot be neglected. However, it
is difficult to compute the cross-covariance in a distributed
framework. We note that in a consensus-based framework,
the state estimates at different nodes achieve reasonable
convergence over multiple iterations. At this point, each
node contains almost identical/redundant information. This
fact can be utilized to compute the optimal estimate in
a distributed framework without explicitly computing the
cross-covariances.

Motivated by this idea, we propose information-weighted
consensus algorithms for distributed state and parameter
estimation which are guaranteed to converge to the optimal
centralized estimates as the prior state estimates become
equal at different nodes i.e., the total number of iterations
approach to infinity at the previous time step. We also show
experimentally that even with limited number of iterations,
the proposed algorithms achieve near-optimal performance.



The issue of naivety and optimality is handled by proper
information weighting of the prior and measurement infor-
mation. The communication bandwidth requirement is also
low for the proposed methods.

Related works
Consensus algorithms [1] are one of the many types of dis-

tributed information fusion schemes. Consensus algorithms
are protocols that are run individually by each agent where
each agent communicates with just its network neighbors and
corrects its own information iteratively using the information
sent by its neighbors. The protocol, over multiple iterations,
ensures the convergence of all the agents in the network to
a single consensus.

Consensus algorithms have been extended to perform var-
ious tasks in a network of agents such as linear algebraic op-
erations like SVD, least squares, PCA, GPCA [4], distributed
state and parameter estimation frameworks such as the KCF
[2], the GKCF [3] and the distributed maximum likelihood
estimator (DMLE) [5]. A detailed review of distributed
state estimation methods and comparisons with centralized
and decentralized approaches can be found in [6]. These
distributed state and parameter estimation frameworks have
been applied in various fields including camera networks
for distributed implementations of 3-D point triangulation,
pose estimation [4], tracking [7], action recognition [7], [8],
collaborative tracking and camera control [9] etc.

The issue of limited observability of the individual nodes
has been considered previously in distributed estimation
frameworks. In [10], the authors proposed a hybrid peer-
to-peer/hierarchical framework for state estimation requiring
fusion centers. Thus, the solution was not fully distributed. In
this paper, we propose a fully distributed framework without
the requirement of fusion centers.

Average consensus: Review
Average consensus [1] is a popular distributed algorithm

for computing the arithmetic mean of some values. Suppose,
there are N nodes and each node Ci has the state ai. Using
average consensus, the average value of these states i.e.
1
N

∑N
i=1 ai can be computed in a distributed manner. Here,

ai can be a scalar, a vector or a matrix.
In average consensus algorithm, each node initializes its

consensus state as a0
i ← ai. At the beginning of iteration k,

a node Ci sends its previous state ak−1
i to its immediate

network neighbors Cj ∈ Ni and similarly receives the
neighbors’ previous states ak−1

j . Then it updates its own state
as

aki ← ak−1
i + ε

∑
j∈Ni

(ak−1
j − ak−1

i ). (1)

By iteratively doing so, the values of the states at all the
nodes converge to the average of the initial values. Here ε
is the rate parameter which should be chosen between 0 and

1
∆max

, where ∆max is the maximum degree of the network
graph G. Using a higher value of ε would give a higher rate
of convergence. However, choosing a value greater than or
equal to 1

∆max
would render the system unstable.

II. PROBLEM FORMULATION

Consider a sensor network with N sensors. The communi-
cation in the network can be represented using an undirected
connected graph G = (C, E). The set C = {C1, ..., CN}
contains the vertices of the graph and represents the sensor
nodes. The set E contains the edges of the graph which
represents the available communication channels between
different nodes. The set of nodes having direct communi-
cation channel with node Ci (sharing an edge with Ci) is
represented by Ni.

The true state of the target(s) is represented by x(t) ∈
Rp. For multiple targets x(t) is the concatenation of the
individual state vectors. A data association scheme might
be necessary for multiple targets. As our focus is on the
distributed state estimation problem, we would assume that
the data association is given. For simplicity of notation, time
index t will be dropped where the issue under consideration
can be understood without it. Each node has a prior estimate
of x as x−i ∈ Rp. The error in the prior estimate at Ci is ηi =
x−i −x ∈ Rp with covariance P−i ∈ Rp×p. The information
form of the estimators will be used throughout this paper.
Thus, we will have notations in the inverse covariance form
which is also known as the information/precision matrix. We
denote the prior information matrix of node Ci as Wi ∈
Rp×p, where

Wi = (P−i )−1. (2)

The observation of node Ci is denoted by zi ∈ Rmi with
noise covariance Ri ∈ Rmi×mi , where mi is the length of
the measurement vector at node Ci. The observations from
all the nodes are modeled as,

Z = Hx + ν. (3)

Here, Z = [zT1 , z
T
2 , . . . , z

T
N ]T ∈ Rm and observation matrix

H = [HT
1 ,H

T
2 , . . . ,H

T
N ]T ∈ Rm×p where, Hi ∈ Rmi×p

and m =
∑N

i=1mi. Observation noise ν is assumed to
be Gaussian with ν ∼ N (0,R) ∈ Rm. The inverse of
R ∈ Rm×m is denoted by B ∈ Rm×m. The measurements
are assumed to be uncorrelated across nodes. Thus, the
measurement information matrix is block diagonal and can
be expressed as,

B =


B1 0 . . . 0
0 B2

...
. . .

0 . . . BN

 . (4)

Here, Bi = R−1
i ∈ Rmi×mi .

III. DISTRIBUTED MAP ESTIMATION (DMAP)

In this section, first we will present the centralized so-
lution for our problem and later will derive the distributed
implementation of it.



A. Centralized case

The task in a centralized a posteriori estimation process is
to estimate the state x from the measurements Z and prior
state x−c (with information matrix W−

c ). The centralized
maximum a posteriori (MAP) [11] estimate x+

c and its in-
formation matrix W+

c in information form can be expressed
as,

x+
c =

(
W−

c + HTBH
)−1(

W−
c x−c + HTBZ

)
, (5)

W+
c =

(
W−

c + HTBH
)
. (6)

Let us define Ui = HT
i BiHi and ui = HT

i Bizi. Due to
the block diagonal structure of B, we have

HTBH =

N∑
i=1

HT
i BiHi =

N∑
i=1

Ui, (7)

HTBZ =

N∑
i=1

HT
i Bizi =

N∑
i=1

ui. (8)

Thus, we have the centralized MAP estimate as,

x+
c =

(
W−

c +

N∑
i=1

Ui

)−1(
W−

c x−c +

N∑
i=1

ui

)

=

(
N∑
i=1

(
W−

c

N
+ Ui

))−1N∑
i=1

(
W−

c

N
x−c + ui

)
, (9)

W+
c =

N∑
i=1

(
W−

c

N
+ Ui

)
. (10)

B. Derivation of Distributed MAP

Now, we will derive the distributed implementation of
the centralized MAP estimates of (9-10). In the centralized
case, after the estimation at time t − 1, we have the state
estimate x+

c (t − 1) that is used as a prior (x−c (t)) for the
estimation at time t. For the distributed case, each node will
have its own prior x−i (t). Ideally, for all i, x−i (t) should be
equal to x−c (t). However, in practice, due to limited number
of consensus iterations at previous time steps, there may
be some discrepancies among the priors in the distributed
case. Here, we will derive the distributed MAP estimation
framework for the case where the priors in the distributed
framework have converged to the prior in the centralized
framework. Later in Sec IV, we will discuss the importance
of this case for consensus-based estimation frameworks.

Under this condition, for all i, we have x−i = x−c and
W−

i = W−
c . Thus, from (9) and (10) we have

x+
c =

(
N∑
i=1

(
W−

i

N
+ Ui

))−1N∑
i=1

(
W−

i

N
x−i + ui

)
(11)

W+
c =

N∑
i=1

(
W−

i

N
+ Ui

)
(12)

Intuitively, this division by the number of nodes N is very
important because when all the nodes have the same prior
state, from the centralized perspective, the state information

Algorithm 1 Distributed Maximum A Posteriori (DMAP) at Ci

Input: Prior state estimate x−i , information matrix W−
i , observation

matrix Hi, measurement zi, measurement information matrix Bi, con-
sensus rate parameter ε and total consensus iterations K.
1) Compute initial information matrix and vector

V0
i ←

1

N
W−

i + HT
i BiHi (19)

v0
i ←

1

N
W−

i x−i + HT
i Bizi (20)

2) Perform average consensus on V0
i and v0

i independently
for k = 1 to K do

a) Send Vk−1
i and vk−1

i to all neighbors j ∈ Ni

b) Receive Vk−1
j and vk−1

j from all neighbors j ∈ Ni

c) Update:

Vk
i ← Vk−1

i + ε
∑
j∈Ni

(
Vk−1

j −Vk−1
i

)
(21)

vk
i ← vk−1

i + ε
∑
j∈Ni

(
vk−1
j − vk−1

i

)
(22)

end for
3) Compute MAP estimate and Information matrix

x+
i ← (VK

i )−1vK
i (23)

W+
i ← NVK

i (24)

Output: MAP estimate x+
i and information matrix W+

i .

matrix should only be used once in the calculation of the
MAP estimate. However, in the distributed case, if this
division is not performed, the prior information gets N times
more weight than it should. As a result, the estimator gets
more biased towards the prior states and gives less weight
to the new measurement information. Let,

V0
i =

W−
i

N
+ Ui, (13)

v0
i =

W−
i

N
x−i + ui. (14)

Each node can compute V0
i and v0

i from the information
available to it i.e. x−i , W−

i , ui, Ui and N . Then, each
node communicates to its neighbors with its own information
matrix Vk

i ∈ Rp×p and information vector vk
i ∈ Rp,

using average consensus algorithm as described in Sec I to
asymptotically compute the global averages of each of these
two quantities as

lim
k→∞

Vk
i =

∑N
i=1 V0

i

N
, (15)

lim
k→∞

vk
i =

∑N
i=1 v0

i

N
. (16)

Therefore, from (11-16) we have

x+
c = lim

k→∞

(
NVk

i

)−1 (
Nvk

i

)
= lim

k→∞

(
Vk

i

)−1
vk
i (17)

W+
c = lim

k→∞
NVk

i (18)

From (17) and (18) we can see that as k → ∞, the state
estimate and information matrix at each node converges to
the optimal centralized MAP estimate. The DMAP frame-
work is summarized in Algorithm 1.



IV. INFORMATION-WEIGHTED CONSENSUS FILTER
(ICF)

In the previous section, we derived a distributed MAP esti-
mator for the case where each node has the prior information
that equals to the prior in the centralized framework. In this
section, we will extend the DMAP algorithm considering
state dynamics.

The state evolution is modeled using the following linear
dynamical model,

x(t+ 1) = Φx(t) + γ(t). (25)

Here Φ is the state propagation matrix and process noise
γ(t) ∼ N (0,Q). For the centralized case, where the state
estimate at time t is x+

c (t) with information matrix W+
c (t),

we have the Kalman filter [12] state propagation equations
as,

W−
c (t+ 1) =

(
ΦW+

c (t)−1ΦT + Q
)−1

, (26)
x−c (t+ 1) = Φx+

c (t). (27)

Combining this with our distributed MAP estimator in
Sec III-B, we get the information-weighted consensus filter
(ICF). The approach is summarized in Algorithm 2. At each
time step, if k → ∞, the DMAP estimator in Algorithm 1
guarantees that the priors for the next time step at each node
will be equal to the optimal centralized one. This in turn
sets the optimality condition for the next time step. This
guarantees the optimality of Algorithm 2 with k → ∞ at
each time step.

In reality, reaching true convergence may not be possible
due to limited number of consensus iterations. The number of
iterations needed to reach a reasonable convergence depends
on the network size and number and position of naive nodes
in the network graph. In Sec V, we will show experimentally
that in case of only one or a few iterations, ICF is robust
to small discrepancies between the state estimates across the
nodes and achieves near optimal performance.

In a practical implementation scenario, at system startup
or for the first few iterations in a naive node, VK

i in (32) can
be 0 (thus, not invertible), if there is no prior or measurement
information available in the local neighborhood. At that
situation, a node will not perform step 4 and 5 in Algorithm
2 until it receives non-zero information from its neighbors
(through step 3) or gets a measurement itself (through step
1) yielding VK

i to be non-zero.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the pro-
posed ICF algorithm in a simulated environment and com-
pare it with other methods: the Centralized Kalman Filter
(CKF) [12], the Kalman Consensus Filter (KCF) [2] and the
Generalized Kalman Consensus Filter (GKCF) [3].

We simulate a camera network in this experiment, where
the state estimation algorithms are used for tracking a target
roaming within a 500× 500 space. The target’s initial state
vector is random. The target’s state vector is a 4D vector,
with the 2D position and 2D velocity components. The

Algorithm 2 ICF at node Ci at time step t

Input: Prior state estimate x−i (t), prior information matrix W−
i (t),

observation matrix Hi, consensus rate parameter ε, total consensus
iterations K, state transition matrix Φ and process covariance Q.
1) Get measurement zi and measurement information matrix Bi

2) Compute initial information matrix and vector

V0
i ←

1

N
W−

i (t) + HT
i BiHi (28)

v0
i ←

1

N
W−

i (t)x−i (t) + HT
i Bizi (29)

3) Perform average consensus on V0
i and v0

i independently
for k = 1 to K do

a) Send Vk−1
i and vk−1

i to all neighbors j ∈ Ni

b) Receive Vk−1
j and vk−1

j from all neighbors j ∈ Ni

c) Update:

Vk
i ← Vk−1

i + ε
∑
j∈Ni

(
Vk−1

j −Vk−1
i

)
(30)

vk
i ← vk−1

i + ε
∑
j∈Ni

(
vk−1
j − vk−1

i

)
(31)

end for
4) Compute a posteriori state estimate and information matrix for time t

x+
i (t) ← (VK

i )−1vK
i (32)

W+
i (t) ← NVK

i (33)

5) Predict for next time step (t+ 1)

W−
i (t+ 1) ←

(
Φ(W+

i (t))−1ΦT + Q
)−1

(34)

x−i (t+ 1) ← Φx+
i (t) (35)

Output: State estimate x+
i (t) and information matrix W+

i (t).

initial speed is uniformly picked from 10−20 units per time
step, with a random direction uniformly chosen from 0 to
2π. The targets evolve for 40 time steps using the target
dynamical model of (25). The state transition matrix Φ and
process covariance Q are chosen as the following

Φ=


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

, Q=


10 0 0 0
0 10 0 0
0 0 1 0
0 0 0 1

.
The target randomly changes its direction and is reflected
back when it reaches the grid boundary.

A set of N = 5 camera sensors monitor the area. The
observations are generated using (3). The observation matrix
Hi and the communication adjacency matrix A are set as
the following

Hi=

[
1 0 0 0
0 1 0 0

]
, A=


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

.
If a camera has a measurement, measurement information
matrix Bi = 0.01I2 is used. Otherwise, Bi is set to 0I2.
The consensus rate parameter ε is set to 0.65/∆max where
∆max = 2.

For the first experiment, the initial prior state x−i (1) and
prior covariance P−i (1) is set equal at each node. A diagonal



KCF at C1 KCF at C2 KCF at C3 KCF at C4 KCF at C5

ICF at C1 ICF at C2 ICF at C3 ICF at C4 ICF at C5

Fig. 1: Here the simulation framework is shown along with the tracking results for KCF and ICF for K = 2. The rectangular boxes
represent the same simulation area from each camera’s perspective. Within each rectangle, the blue triangles represent a camera’s field of
view (FOV). The green line represents the ground truth track and the blue dots represent the observations at the individual cameras. The
state estimates of KCF and ICF are shown in black and red lines respectively. The gray ellipses depict the covariances of the estimates.
It shows that even for K = 2 and the presence of naivety, ICF performs significantly better than KCF.

matrix is used for P−i (1) with the main diagonal elements as
{100, 100, 10, 10}. The initial prior state x−i (1) is generated
by adding zero-mean Gaussian noise of covariance P−i (1)
to the ground truth state. The tracking results for KCF and
ICF is shown in Fig. 1. In this experiment, the total number
of consensus iterations K is set to 2. The cameras C3,
C4 and C5 is naive about the target’s state for most of
the time steps. Compared to the state estimates of KCF,
in all the cameras, especially in the naive nodes, the state
estimates of ICF are much closer to the ground truth. As a
measure of performance, we compute the estimation error e,
defined as the Euclidean distance between the ground truth
position and the estimated posterior position. The mean error
ē is computed by averaging the errors over all cameras and
time steps. In this experiment, the mean error ē for KCF is
69.0376 and for ICF is 23.251.

Next, we compare the performance of KCF, GKCF and
ICF with CKF after convergence. The simulation is run

Method Mean error Standard deviation of error
KCF (K=100) 23.8389 8.5846
GKCF (K=100) 15.2794 3.5737
ICF (K=1) 13.6672 2.5332
ICF (K=4) 12.2227 2.2702
ICF (K=10) 11.6551 2.2055
ICF (K=100) 11.5361 2.1931
CKF 11.5361 2.1931

TABLE I: Mean and standard deviation of the errors of
different methods for different total number of consensus
iterations K.
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Fig. 2: Mean error of the converged estimates of different al-
gorithms at multiple independent simulation runs. It supports the
theory that with high number of consensus iterations (e.g., K =
100), ICF approaches the optimal centralized performance.

15 times with different randomly generated tracks. The
convergence was assumed after 100 consensus iterations. The
results of this experiment are shown in Fig 2. It is apparent
from this figure that ICF performs better than KCF and
GKCF and achieves optimal centralized performance (with
high number of consensus iterations). In Table I, the mean
and standard deviation of the errors for each method in this
experiment are shown.



Finally, to show the robustness of ICF, we conduct an
experiment by relaxing the optimality condition where the
initial prior states and covariances are different at different
nodes. The prior states are initialized by adding Gaussian
noises (generated using the corresponding prior covariance
matrices) to the initial ground truth states. The initial prior
error across different cameras are correlated with correlation
coefficient ρ = 0.5. The total number of consensus iterations
K is varied from 1 to 20 with increments of 1. A total of
15 cameras are used and the camera locations, orientations,
network topologies and ground truth tracks are generated
randomly.

The results of this experiment is shown in Fig 3. The
simulation results are averaged over 400 independent sim-
ulation runs. The mean error (solid lines) and the standard
deviation (±0.2σ with dotted lines) for different methods
are shown using different colors. The results show that ICF
achieves near-optimal performance even when the optimality
conditions are not met. This is because ICF is a consensus
based approach and irrespective of the initial condition,
after several time steps or consensus iterations, the states
reach a reasonable converge. ICF was proved to be optimal
with converged prior states. Thus, after a few time steps it
achieves near-optimal performance as the system approaches
the optimality conditions.

Comparing Fig 2 and 3 we can see that the performance of
KCF deteriorated in the latter but the performance of GKCF
and ICF was not affected much. As the number of cameras
was increased from 5 to 15 in Fig. 3 (with the same number
of neighbors per node), the number of naive nodes increased.
This shows that unlike KCF, ICF handles the issue of naivety
well. The issue of naivety in distributed frameworks was
one of the main motivations for the derivation of the ICF
approach.

ICF requires low communication bandwidth which is half
the required bandwidth of GKCF and comparable with that
of KCF. The information sent from each node to a neighbor
at each iteration for various methods is shown in Table II.

Method Message content
KCF For 1st consensus step: ui ∈ Rp, Ui ∈ Rp×p, xi ∈ Rp

For additional consensus steps: xi ∈ Rp

GKCF ui ∈ Rp, Ui ∈ Rp×p, xi ∈ Rp, Wi ∈ Rp×p

ICF vi ∈ Rp, Vi ∈ Rp×p

TABLE II: Information sent at each consensus step

VI. CONCLUSION

In this paper, we proposed information-weighted con-
sensus algorithms, i.e., a distributed maximum a posteriori
(DMAP) estimation framework for parameter estimation
and its extension to a information-weighted consensus filter
(ICF) for state estimation. We showed both theoretically and
experimentally that ICF approaches the optimal centralized
performance even in the presence of naive nodes as the
total number of consensus iterations K increases. Simulation
results showed that ICF is robust even when the optimality

100

200

300

400

500

600

 

 

2 4 6 8 10 12 14 16 18 20

10

20

30

40

Number of Consensus Iterations, K

M
ea
n
E
rr
o
r,
ē
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Fig. 3: Performance comparison of different approaches by varying
the total number of consensus iterations, K. Each line represents
the mean error ē for each method. The dotted lines represent the
standard deviation (±0.2σ). The priors at t = 1 were set to be
different and correlated with ρ = 0.5. This figure shows that ICF
is robust and achieves near-optimal performance even when the
optimality conditions are not met.

conditions were not met and has near-optimal performance
while requiring low communication resources.
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