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Abstract

In this paper, rather than modeling activities in videos in-
dividually, we propose a hierarchical framework that jointly
models and recognizes related activities using motion and
various context features. This is motivated from the obser-
vations that the activities related in space and time rarely
occur independently and can serve as the context for each
other. Given a video, action segments are automatically
detected using motion segmentation based on a nonlinear
dynamical model. We aim to merge these segments into ac-
tivities of interest and generate optimum labels for the ac-
tivities. Towards this goal, we utilize a structural model in
a max-margin framework that jointly models the underlying
activities which are related in space and time. The model
explicitly learns the duration, motion and context patterns
for each activity class, as well as the spatio-temporal rela-
tionships for groups of them. The learned model is then used
to optimally label the activities in the testing videos using a
greedy search method. We show promising results on the
VIRAT Ground Dataset demonstrating the benefit of joint
modeling and recognizing activities in a wide-area scene.

1. Introduction

It has been demonstrated in [20] that context is signifi-
cant in human visual systems. As there is no formal defini-
tion of context in computer vision, we consider all the de-
tected objects and motion regions as providing contextual
information about each other. Activities in natural scenes
rarely happen independently. The spatial layout of activ-
ities and their sequential patterns provide useful cues for
their understanding. Consider the activities that happen in
the same spatio-temporal region in Fig. 1: the existence
of the nearby car gives information about what the person
(bounded by red box) is doing, and the relative position of
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Figure 1: An example that demonstrates the importance of con-
text in activity recognition. Motion region surrounding the person
of interest is located by red circle and the vehicle with which he
interacts is located by blue bounding box.

the person of interest and the car says that activities (a) and
(c) are very different from activity (b). However, it is hard
to tell what the person is doing in (a) and (c) - getting out of
the vehicle or getting into the vehicle. If we knew that these
activities occurred around the same vehicle along time, it
would be immediately clear that in (a) the person is getting
out of the vehicle and in (c) the person is getting into the
vehicle. This example shows the importance of spatial and
temporal relationships for activity recognition.

Many existing works on activity recognition assume that,
the temporal locations of the activities are known [, 19].
We focus on the problem of detecting activities of interest
in continuous videos without prior information about the
locations of activities. We provide an integrated framework
that conducts multiple stages of video analysis, starting with
motion localization. Then action segments, which are con-
sidered as the elements of activities, are detected using a
motion segmentation algorithm based on the nonlinear dy-
namic model (NDM) in [5]. Finally, we learn a structural
model that merges these segments into activities and gener-
ates the optimum activity labels for them.

Fig. 2 shows the framework of our approach. Given
a video, we detect the motion regions using background
subtraction. The segmentation algorithm aims to divide a
continuous motion region into action segments, whose mo-
tion pattern is consistent and is different from its adjacent
segments. The main challenge now is to develop a repre-
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Figure 2: The left graph shows the video representation of an
activity set with n motion segments and m activities (for testing,
m needs to be determined by inference of the learned structural
model). The right graph shows the graphical representation of our
model. The gray nodes in the graph are the feature observations
and the white nodes are the model variables. The dashed lines
indicate that the connections between activity labels and the ob-
servations of action segments are not fixed, i.e., the structure of
connections is different for different activity sets.

sentation of the continuous video that respects the spatio-
temporal relationships of the activities. To achieve this
goal, we build upon existing well-known feature descrip-
tors and spatio-temporal context representations that, when
combined together, provide a powerful framework to model
activities in continuous videos. Action segments that are re-
lated to each other in space and time are grouped together
into activity sets. For each set, the underlying activities are
jointly modeled and recognized by a structural model with
the activity durations as the auxiliary variables. For the test-
ing, the action segments, which are considered as the basic
elements of activities, are merged together and assigned ac-
tivity labels by inference on the structural model.

1.1. Main Contributions

The main contribution of this work is three-fold. (i)
We combine low-level motion segmentation with high-level
activity modeling under one framework. (ii) We jointly
model and recognize the activities in video using a struc-
tural model, which integrates activity durations, motion fea-
tures and various context features within and between activ-
ities into a unified model. (iii) We formulate the inference
problem as a greedy strategy that iteratively searches for
the optimum activity labels on the learned structural model.
The greedy search decreases computational complexity of
the inference process with negligible reduction to recogni-
tion accuracy.

2. Related Work

Many existing works exploring context focus on interac-
tions among features, objects and actions [26, 23, 12, 2, 1],
environmental conditions such as spatial locations of certain
activities in the scene[ | 6], and temporal relationships of ac-
tivities [24, 17]. Space-time constraints across activities in
a wide-area scene are rarely considered.

The work in [24] models a complex activity by a
variable-duration hidden Markov model on equal-length
temporal segments. It decomposes a complex activity into
sequential actions, which are the context of each other.
However, it considers only the temporal relationships, while
ignoring the spatial relationships between actions. AND-
OR graph [11, 21] is a powerful tool for activity represen-
tation. However, the learning and inference processes of
AND-OR graphs become more complex as the graph grows
large and more and more activities are learned. In[13, 14], a
structural model is proposed to learn both feature level and
action level interactions of group members. This method
labels each image with an group activity label. How to
smooth the labeling results along time is a problem and is
not addressed in the paper. Also, these methods aim to rec-
ognize group activities and are not suitable in our scenario
where activities cannot be considered as the parts of larger
activities. In [27], a structural model is used to integrate mo-
tion features and context features in and between activities.
However, there was no activity segmentation or modeling
of the activity duration; only the regions with activity were
detected. We propose an alternative method that explicitly
models the durations, motion, intra-activity context and the
spatio-temporal relationships between the activities and use
them in the inference stage for recognition.

The inference method on a structural model proposed in
[13, 14] searches through the graphical structure, in order to
find the one that maximizes the potential function. Though
this inference method is computationally less intensive than
exhaustive search, it is still time consuming. As an alter-
native, greedy search has been used for inference in object
recognition [7]. The novelty of this paper lies in develop-
ing a structural model for representing related activities in
a video, and to demonstrate how to perform efficient infer-
ence on this model.

3. Model Formulation for Context-Aware Ac-
tivity Representation

In this section, a structural activity model that integrates
activity durations, motion features and various context fea-
tures within and across activities is built upon automatically
detected action segments to jointly model related activities
in space and time.

3.1. Video Representation

Given a continuous video, background substraction [28]
is used to locate the moving objects. Moving persons are
identified by [9]. The bounding boxes of moving persons
are used as the initialization of the tracking method devel-
oped in [22] to obtain local trajectories of the moving per-
sons. Spatio-temporal interest points (STIP) features [15]
are generated only for these motion regions. Thus, STIPs
generated by noise, such as slight tree shaking, camera jitter



and motion of shadows, are avoided. Each motion region is
segmented into action segments using the motion segmen-
tation based on the method in [5] with STIP histograms as
the model observation. The detailed motion segmentation
algorithm is described in Section 5.2.

3.2. Motion and Context Feature Descriptors

Assume there are M +1 classes of activities in the scene,
including a background class with label 0 and M classes of
interest with labels 1, ..., M. We first define the concepts
we use for the feature development. An activity is a 3D
region consisting of one or multiple consecutive action seg-
ments. An agent is the underlying moving person along a
trajectory. Motion region at frame n is a circular region sur-
rounding the moving objects of interest in the n'" frame of
the activity. Activity region is the smallest rectangular re-
gion that encapsulates the motion regions over all frames of
the activity. Based on this, we can now encode motion and
context information into feature descriptors.

Intra-activity motion feature descriptor Features of an
activity that encode the motion information extracted from
low-level motion features such as STIP features are defined
as intra-activity motion features. We train a multi-SVM
[4] classifier upon the detected action segments to gener-
ate the normalized confidence scores s; g, ..., 5;, pr Of clas-
sifying the action segment ¢ as activity classes 0, 1, ..., M,
such that Z;\io s;,; = 1. We call the classifier as the base-
line classifier. In general, any kind of classifier and low-
level motion features can be used here. Given an activ-
ity, * = [max;en $;,0, ..., MaX;en S5, p] is developed as the
intra-activity motion feature descriptor, where R is a list of
action segments in the activity.

Intra-activity context feature descriptor Features that
capture the relationships between the agents, as well as
other interacting objects, are defined as intra-activity con-
text features. Objects including vehicles, opening/closing
entrance/exit doors of facilities, boxes and bags that over-
lap with the motion regions, are detected. Persons and vehi-
cles are detected using the publicly available software [9].
Opening/closing entrance/exit doors of facilities, boxes and
bags are detected using method in [6] with Histogram of
Gradient as the low-level feature and binary linear-SVM as
the classifier. These high-level image features will be used
for the development of the context features within activities.

We define a set GG of attributes related to the scene and
the involved objects in activities of interest. G consists of
Ng¢ subsets of attributes that are exclusively related to cer-
tain image-level features. Since we work on the VIRAT
dataset with individual person activities and person-object
interactions, we use the following (Ng = 6) subsets of at-

Attribute Subset | Associated Attributes
G moving object is a person; moving ob-
ject is a vehicle; moving object is of
other kind.
G the agent is at the body of the interacting

vehicle; the agent is at the rear/head of
the interacting vehicle; the agent is far
away from the vehicle.

G the agent disappears at the entrance of a
facility; the agent appears at the exit of a
facility; none of the two.

Gy velocity of the agent (in pixel) is larger
than a predefined threshold; velocity of
object of interest is smaller than a prede-
fined threshold.

Gs the activity occurs in a parking area; the
activity occurs in other areas.

Gs a bag/box is detected on the agent; no
bag/box is detected on the agent.

Figure 3: Activity classes of interest in VIRAT Dataset used in
the paper. Release 1 defines only the first six activities, while Re-
lease 2 defines all the eleven activities.

tributes for the development of intra-activity context fea-
tures in the experiments as shown in Fig. 3.

For a given activity, the above attributes are determined
from image-level detection results. For frame n of an activ-
ity, we obtain g,;(n) = I(G;(n)), where I(-) is the indicator
function. g,(n) is then normalized so that its elements sum
to 1. Fig. 4 shows an example of g,(n).

Figure 4: The image shows one frame of ‘per-

son unloading an object from a vehicle’. In the
| image, moving objects are the person and the
vehicle, and the person is in the rear of the ve-
hicle. So, for this frame, g,(n) =[1 0 0]
and g,(n) =[0 1 0], where n is the frame
number of this image in the activity.

Letg, = Nif Zﬁzl g;(n), where N is the total number

of frames associated with the activity. The Zficl ng,-bin

histogram g = %G[Q1 S D9 N is the intra-activity
context feature vector of the activity, where @& denotes the
vector concatenation operator.

Inter-activity context feature descriptor Features that
capture the relative spatial and temporal relationships of ac-
tivities are defined as inter-activity context feature. Define
the scaled distance between activity a; and a; at the n'"
frame of a; as

Ts(ai(n)aa.j) = ;a (1)



where O, (n) and R, (n) denote the center and radius of
the motion region of activity a; at its n” frame and O,
and R,; denote the center and radius of the activity region
of activity a;. d(-) denotes the Euclidean distance. Then,
the spatial relationship of a; and a; at the n'" frame is mod-
eled by sc;;j(n) = bin(rs(a;(n),a;)) as in Fig. 5 (a). The
normalized histogram scq, .0, = N1 sei(n) is the
inter-activity spatial feature of activity a; and a;.

Temporal context is defined by the following temporal
relationships: nt" frame of a; is before aj, nt" frame of
a; is during a;, and n'" frame of a; is after a;. tc;;(n)
is the temporal relationship of a; and a; at the nt" frame
of a; as shown in Fig. 5 (b). The normalized histogram
tc = Nif 2221 tc;;(n) is the inter-activity temporal con-
text feature of activity a; with respect to activity a;.
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Figure 5: (a) The image shows an example of inter-activity spa-
tial relationship. The red circle indicates the motion region of a;
at this frame while the purple rectangle indicates the activity re-
gion of a;. Assume SC is defined by quantizing and grouping
rs(n) into three bins: rs(n) < 0.5 (a; and a; is at the same spa-
tial position at the nt" frame of ai), 0.5 < rs(n) < 1.5 (a; is
near a; at the n*" frame of a;), and r5(n) > 1.5 (a; is far away
from a; at the n'™ frame of a;). In the image, 75(n) > 1.5, so,
scij(n) =[0 0 1]. (b) The image shows one example of inter-
activity temporal relationship. The n** frame of a; occurs before
aj. SO, tcij(n) = [1 0 0]

3.3. Structural Activity Model

For an activity set a with n action segments, we assign
an auxiliary duration vector d = [dy, -+ ,d,,] O_in, di =
n) and a label vector y = [y1, -+ , Ym]- ¥: € {0,..., M} is
the activity label of the i* activity and d; is its activity du-
ration, fori = 1,--- ,m. Thus, for a = [a1, - , ], a; is
the i*" activity in the set. Assume x; € RP= and g, € RPs
to be the motion feature and intra-activity context feature of
instance a;, and D, and D, to be the dimension of x; and g,
respectively. wq,, € RP*, w, ,. € RP* and w,,, € RPs
are the weight vectors that capture the valid duration, mo-
tion and intra-activity context patterns of activity class y;.
sc;j € RP:c and te;; € RPt are the inter-activity context
features associated with a; and a;. D, and Dy, are the di-
mensions of sc;; and te;; respectively. wecy, .y, € RV
and wic y, y; € RPt are the weight vectors that capture the
valid spatial and temporal relationships of activity classes
y; and y;. In general, dimensions of the same kind of fea-

ture can be different for each activity class/class pairs. Four
potentials are developed to measure the compatibilities be-
tween the assigned variables (y, d) and the observed fea-
tures of activity set a.

Activity-duration potential measures the compatibility
between the activity label y; and its duration d; for activity
a;. It is defined as

Fy (i di) = diwy, 1(d;). 2

If d;q. i the maximum duration of an activity, I(d;) gen-
erates a d,,,q, ¥ 1 vector with one for the (d;)*" element and
zeros otherwise.

Intra-activity motion potential measures the compati-
bility between the activity label of a; and the intra-activity
motion feature x; developed from the associated action seg-
ments as

Fy (yiy d) = diw?., ;. (3)

Intra-activity context potential measures the compati-
bility between the activity label of a; and its intra-activity
context feature g; as

Fy (yi,di) = diw) . g;. 4

Inter-activity context potential measures the compati-
bility between the activity labels of a; and a; and their spa-
tial and temporal relationships sc;; and tc;; as

Fsc,tc (yia Y, di7 d]) = dld] (wT

T
sc,yiy; SCid + Wie,yi,y; tc’J)'

(5)
Combined potential function F'(a,y, d) is defined to mea-

sure the compatibility between (y, d) of the activity set a
and its features:

F(a,y.d)= ZFd (Yi, di) + ZFz (yi,di)
i=1 i=1
+ZF9 (y17d2)+ Z Fsc,tc (yzayjad’udj) (6)
i=1 ij=1

The optimum assignment of (y, d) for a maximizes the po-
tential function F'(a,y, d).

4. Model Learning and Inference
4.1. Learning Model Parameters

We define the weight vector w as the concatenation of all
the weight vectors defined above as

T T T T T
w:[wd Yy W ,Wg™ ,Wse , Wic ] s @)



where wg is obtained by concatenating the wg ,, for all the
M + 1 activity classes. wg, wy, wse and wy. are devel-
oped similarly. Thus, the potential function F'(a,y,d) can
be converted into a linear function with a single parameter
w,

F(a,y,d) = w'T(a,y,d), (8)

where I'(a, y, d), called the joint feature of activity set a,
can be easily obtained from (6).

Suppose we have P activity sets for train-
ing. Let the training set be (A, Y,H) =
(a*,y',d"), ..., (a®,y",d"), where a’ is the activ-
ity set, y’ is the label vector and d’ is the auxiliary
vector. The loss function for assigning a® with @’,31)

NG 81), equals the number of action segments that
associate with incorrect activity labels (an action segment
is mislabeled if over half of the segment is mislabeled).
The learning problem can now be written as

* . 1 T d T P A 1)

= arg min§ — — r

w agw{2ww C;w (a',y',d") ©)
P . )
+CY max [wTr (a 7, a@) NG Zf)} }
i—1 @'.d")

where where C' controls the tradeoff between the errors in
the training model and margin maximization [3]. The prob-
lem in (9) can be converted to an unconstrained convex op-
timization problem [7] and solved by the modified bundle
method in [25]. It iteratively searches for the increasingly
tight quadratic upper and lower cutting planes of the objec-
tive function until the gap between the two bounds reaches
a predefined threshold. The algorithm is effective because
of its high convergence rate [25]. We set all weights related
to background activities to be zeros.

4.2. Inference

With the learned model parameter vector w, we now de-
scribe how to identify the optimum label vector y,,,, and
duration vector dy.,; for an input instance a;.s:. Suppose
the testing instance has n action segments. Greedy forward
search [7] is used to find the optimum labels and durations
of the targeted activities. The potential function F' is ini-
tialized as 0. We greedily instantiate d; consecutive seg-
ments denoted as a; that, when labeled as a specific activity
class, can increase the weighted value of the compatibility
function, F', by the largest amount. The algorithm stops
when all the action segments are labeled. Algorithm | gives
the overview of the inference process. The time complexity
of the greedy search is O(d,q, Mn?). While this greedy
search algorithm cannot guarantee a globally optimum so-
lution, in practice it works well to find good solutions for
problems of our kinds [7].

Algorithm 1 Greedy Search Algorithm

Input: Testing instance with n action segments

Interested activities A, label vector Y and the du-
ration vector D

Output:

1. initialize (A,Y, D) - {0,0,D} and F = 0.

2. repeat
AF(ai,yi,di) =
aigA
(ai,yi,d;)°P" = arg mEXAF(aivyi,di);
A

ag

(A,Y,D) « (A,Y,D) U (a;,y;, d;)°P%;

F((A,Y,D)U(a;,yi,di)) = F(A,Y,D)

7

3. endif AF(a;,y,d;) <Oor Y., d;°Pt = n.
VaigA

5. Experiment

To assess the effectiveness of our structural model in ac-
tivity modeling and recognition, we perform experiments
on the public VIRAT Ground Dataset [8]. We use the NDM
method in [5] with the SVM classifier as the baseline (re-
ferred to as NDM + SVM) and integrate our context model
with it. We compare our results with the popular activ-
ity recognition method, BOW+SVM [18], and recently de-
veloped methods - string of feature graphs (SFG) [10] and
sum-product networks (SPN) [1].

5.1. Dataset

VIRAT Ground dataset is a state-of-the-art activity
dataset with many challenging characteristics, such as wide
variation in the activities and clutter in the scene. The
dataset consists of surveillance videos of realistic scenes
with different scales and resolution, each lasting 2 to 15
minutes and containing upto 30 events. The activities de-
fined in Release 1 include 1 - person loading an object to a
vehicle; 2 - person unloading an object from a vehicle; 3 -
person opening a vehicle trunk; 4 - person closing a vehicle
trunk; 5 - person getting into a vehicle; 6 - person getting
out of a vehicle. We work on the all the scenes in Release 1
except scene 0002, and use half of the data for training and
the rest for testing. Five more activities are defined in VI-
RAT Release 2 as: 7 - person gesturing; 8 - person carrying
an object; 9 - person running; 10 - person entering a facility;
11 - person exiting a facility. We work on the all the scenes
in Release 2 except scene 0002 and 0102, and use two-third
of the data for training and the rest for testing.

5.2. Preprocessing and Feature Extraction

Motion regions involving only vehicles moving are ex-
cluded from the experiments since we are only interested
in person activities and person-vehicle interactions. For the
development of STIP histograms, & = 500 visual words



and a 9-nearest neighbor soft-weighting scheme are used.
For the SFG-based classifier, the size of each temporal bin
used is 5 frames while other settings are the same as in [10].

A distance threshold of 2 times the height of the person
and a time threshold of 15 seconds are used to group ac-
tion segments into activity sets. We follow the description
in Section 3.2 to develop the feature descriptors for each ac-
tivity set. The first two sets of attributes in Fig. 3 are used
for the experiments on Release 1, and all are used for the
experiments on Release 2.

5.3. Motion Segmentation

We develop an automatic motion segmentation algorithm
by detecting boundaries where the statistics of motion fea-
tures change dramatically, and obtain the action segments.
Let two NDMs be denoted as M7 and M>, and d; be the
dimension of the hidden states. The distance between the
models can be measured by the normalized geodesic dis-
tance dist(Mq, My) = df;—z Z?:l 0,2, where 0; is the prin-
cipal subspace angle (please refer to [5] for details on the
distance computation).

A sliding window of size T, where T is the number
of temporal bins in the window, is applied to each detected
motion region along time. A NDM M (¢) is built for the
time window centered at the #*" temporal bin. Since an ac-
tion can be modeled as one dynamic model, the model dis-
tances between subsequences from the same action should
be small, compared to those of subsequences from a dif-
ferent action. Suppose an activity starts from temporal bin
k; the average model distance between temporal bin j > k
and k is defined as the weighted average distance between
model j and neighboring models of % as

Ty—1

DEy(j) = Y ~i-dist(M(k +1), M(5)),  (10)
=0

where Ty is the number of neighboring bins used, and ~; is
the smoothing weight for model k + ¢ that decreases along
time. When the average model distance grows above a pre-
defined threshold d;j, an action boundary is detected. Ac-
tion segments along tracks are thus obtained. In order to
demonstrate that the segmentation algorithm can automati-
cally detect actions, we evaluate the performance on VIRAT
Release 1. We synthesize continuous videos by concatenat-
ing video clips, each containing an activity.

Defining the segmentation accuracy as twice the absolute
sum of deviations of estimated activity boundaries from the
real ones normalized by the total number of total frames,
the segmentation accuracy on VIRAT dataset Release 1 is
85.5 & 3.8%. We change the window size T from 50 to
70 with step size 5. The smaller the distance threshold d;j,
is the more number of action segments a complex activity
may have.

5.4. Recognition Results on VIRAT Release 1

Fig. 6 shows the confusion matrix for the baseline clas-
sifier and our model with different kinds of features. As an
example of the importance of context features, the baseline
classifier often confuses “open a vehicle trunk™ and “close
a vehicle trunk” with each other. However, if the two ac-
tivities happen closely in time in the same place, the first
activity in time is probably “open a vehicle trunk”. This
kind of contextual information within and across activity
classes are captured by our model and used to improve the
recognition performance.
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Figure 6: Recognition Results for VIRAT Release 1. (a): Con-
fusion matrix for the baseline classifier; (b): Confusion matrix for
our approach using motion and intra-activity context features; (c):
(b): Confusion matrix for our approach using motion and intra-
and inter- activity context features.

We show the results on VIRAT Release 1 using preci-
sion and recall in Fig. 7. We have compared our results
with the popular BOW+SVM approach, the more recently
proposed String-of-Feature-Graphs approach [10] and the
baseline classifier. Our approach outperforms the other
methods. The results are expected since the intra-activity
and inter-activity context give the model additional infor-
mation about the activities beyond the motion information
encoded in low-level features. SFG approach models the
spatial and temporal relationships between the low-level
features and thus takes into account the local structure of
the scene. However, it does not consider the relationships
between various activities and thus our method outperforms
the SFGs. Fig. 8 shows examples that demonstrate the sig-
nificance of context in activity recognition.

5.5. Recognition Results on VIRAT Release 2

We work on VIRAT Release 2 to further evaluate the
effectiveness of the proposed approach. We follow the
method defined above to get the recognition results on this
dataset. Fig. 9 compares the recognition accuracy using
precision and recall for different methods. We can see that
the performance of our method is comparable to that in [1].
In [1], an SPN on BOW is learned to explore the context
among motion features. However, [ 1] works on video clips,
each containing an activity of interest with additional 10
seconds occurring randomly before or after the target activ-
ity instance, while we work on continuous video.



Activity Class BOW+SVM [18] | SFG[10] | Baseline (NDM+SVM) | Our Method (1) | Our Method (2)
loading-object 44.2(42.8) 50.7(52.3) 43.6(41.7) 42.1(47.5) 51.6(52.1)
unloading-object 51.1(57.2) 57.1(55.4) 34.9(52.8) 61.3(56.4) 62.7(57.5)
opening-trunk 58.5(39.3) 38.4(50.3) 59.7(36.8) 64.2(63.9) 68.5(69.1)
closing-trunk 47.2(33.4) 60.0(61.2) 40.6(29.8) 44.4(50.6) 55.2(72.8)
getting-into-vehicle 40.4(48.2) 61.8(59.2) 32.7(45.0) 53.0(49.8) 67.5(61.3)
getting-out-of-vehicle 42.2(53.8) 41.6(68.0) 32.1(49.3) 49.6(55.7) 65.2(64.6)
Average 47.2(45.8) 51.6(57.8) 40.6(42.5) 52.4(53.8) 61.7(62.9)

Figure 7: Precision and recall (in parenthesis) for the six activities defined in VIRAT Release 1. Our method (1): the proposed structural
model with motion feature and intra-activity context feature; our method (2): the proposed structural model with motion feature, intra-
activity and inter-activity context features. Note that SVM+BOW works on video clips; while other methods work on continuous videos.

getting out of vehicle opening trunk getting into vehicle

> 4

Figure 8: Example activities (from VIRAT Release 1) correctly
recognized by baseline classifier (top), incorrectly by baseline
classifier but corrected using intra-activity context (middle), and
incorrectly recognized by baseline classifier and intra-activity con-
text, but rectified using inter-activity context (bottom).

BOW+SVM[18] | SPN[I] | Our Method
Precision 52.3 72 71.8
Recall 55.4 70 73.5

Figure 9: Precision and recall (in parenthesis) for different meth-
ods (averaged across activities).

Fig. 10 compares the precision and recall for the eleven
activities defined in VIRAT Release 2 for BOW+SVM
method, the baseline classifier, and our method. We see that
by modeling the relationships between activities, those with
strong context patterns, such as “person closing a vehicle
trunk”(4) and “person running”(9), achieve larger perfor-
mance gain compared to activities with weak context pat-
terns such as “person gesturing”(7). Fig. 11 shows example
results on activities in Release 2.

1 2 3 4 5 6 7 8 9 10 11

HBOW+SVM  E NDM+SVM ki Our Method

(@)

ekl

HBOW+SVM M Baseline (NDM+SVM) ki Our Method

()

Figure 10: Precision (a) and recall (b) for the eleven activities
defined in VIRAT Release 2.

6. Conclusion

In this paper, we present a novel approach to jointly
model a variable number of activities in continuous videos.
We have addressed the problem of automatic motion seg-
mentation based on low-level motion features and the prob-
lem of high-level representations of activities in the scene.
Upon the detected activity elements, we can build a high-
level model that integrates various features within and be-
tween activities. It is expected that the proposed structural
model can work with any other baseline classifiers. Our
experiments demonstrate that joint modeling of activities,
encapsulating object interactions and spatial and temporal
relationships between activity classes, can significantly im-
prove the recognition accuracy.



person running

carrying an object

Figure 11: Examples (from VIRAT Release 2) in the bottom row show the effect of context features in correctly recognizing activities
that were incorrectly recognized by the baseline classifier, while other examples of the same activities correctly recognized by the baseline
classifier are shown in the top row.
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