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ABSTRACT OF THE DISSERTATION

Context-Aware Informative Sample Selection and Image Forgery Detection

by

Md Jawadul Hasan Bappy

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2018
Dr. Amit K. Roy-Chowdhury, Chairperson

Most of the computer vision methods assume that data will be labeled and available

beforehand in order to train a good recognition model. However, it becomes infeasible and

unrealistic to know all the labels beforehand with the huge corpus of visual data being

generated on a daily basis. In most image and video analysis tasks, selection of the most

informative samples from a huge pool of training data in order to learn a good recognition

model is an active research problem. Furthermore, it is also useful to reduce the annotation

cost, as it is time-consuming to annotate unlabeled samples. In this thesis, we aim to design

information-theoretic approaches which exploit inter-relationships between data instances

in order to find informative samples in image or videos. Moreover, in recent years, the

advent of high-tech journaling tools facilitates an image to be forged in a way that can easily

evade state-of-the-art image tampering detection approaches. The recent success of the deep

learning approaches in different recognition tasks inspires us to develop a high-confidence

detection framework which can localize forged/manipulated regions in an image. Unlike

semantic object segmentation where all meaningful regions (objects) are segmented, the

vii



localization of image forgery focuses only the possible tampered region which makes the

problem even more challenging.

We present two distinct information-theoretic approaches for selecting samples to

learn recognition models, and a deep learning based method for localizing manipulation

from images. In first approach, we show how models for joint scene and object classification

can be learned online. A major motivation for this approach is to exploit the hierarchical

relationships between scenes and objects, represented as a graphical model, in an active

learning framework. To select the samples on graph, which need to be labeled by a human,

we formulate an optimization function that reduces the joint entropy of scene and object

variables. The second approach we propose is motivated by the theories in data compression,

which exploits the concept of typicality from the domain of information theory in order to

find informative samples in videos. Typicality is a simple and powerful technique which

can be applied to compress the training data to learn a good classification model. Both of

the approaches lead to a significant reduction in the amount of manual labeling effort for

similar or better performance when compared with a model trained with the full dataset. In

the final chapter, we explore a deep learning architecture to localize manipulated regions

from an image. Our proposed framework utilizes resampling features, Long-Short Term

Memory (LSTM) cells, and encoder-decoder network to segment out manipulated regions

from non-manipulated ones. The overall framework is capable of detecting different types of

image forgeries.
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Chapter 1

Introduction

In computer vision, there has been significant effort to train a good recognition

model for different visual recognition tasks such as scene classification, object detection

and activity recognition. Learning the classification model for these tasks requires lot of

data. Most existing methods assume that data will be labeled and available beforehand

in order to train the classification models. It becomes infeasible and unrealistic to know

all the labels beforehand with the huge corpus of visual data being generated on a daily

basis. Moreover, adaptability of the models to the incoming data is crucial too for long-term

performance guarantees. Currently, the big datasets (e.g. ImageNet [39], SUN [153]) are

prepared with intensive human labeling, which is difficult to scale up as more and more

new images/videos are generated. So, we want to pose a question, ‘Are all the samples

equally important to manually label and learn a model? ’. In this thesis, we propose two

different information-theoretic approaches which exploit inter-relationships between the

samples in order to select informative instances to learn recognition model. Moreover, in
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recent years, digital image forensics has been a growing interest in diverse scientific and

security/surveillance applications. With advanced image journaling tools, one can easily

alter the semantic meaning of an image by exploiting certain manipulation techniques such

as copy-clone, object splicing, and removal, which mislead the viewers. In contrast, the

identification of these manipulations becomes a very challenging task as manipulated regions

are not visually apparent. In this thesis, we also aim to develop deep learning architecture

in order to recognize manipulated/forged objects from an image.

Scene classification is a challenging problem due to the severe differences in intra-

class and inter-class scene categories [42]. Most of the feature-based object recognition

algorithms perform poorly in the face of variability of illumination, deformation, background

clutter and occlusion. As scene and objects are interrelated, the performance of both of

these recognition tasks can be further improved by exploiting dependencies between scene

and object deep networks. Recently, there are also a lot of interest in online adaptation of

recognition models as new data becomes available. Active learning [139] has been widely used

to choose a subset of most informative samples that can achieve similar or better performance

than all the data being manually labeled. Most of the existing active learning approaches

consider the individual samples to be independent. However, there are various tasks, such as

document classification [108] and activity recognition [161], where interrelationships between

samples exist. In such cases, it will be advantageous to exploit these relationships to reduce

the number of samples to be manually labeled. Similar to the applications mentioned above,

exploiting mutual relationships between scene and objects can yield better performance

[156] than if no relationships are considered. In our first approach, we propose a novel active
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learning framework which exploits the mutual relationships to jointly learn scene and object

classification models. Using mutual relationships between scene and objects, we can leverage

upon the fact that manual labeling of one reduces the uncertainty of the other, and thus

reduces labeling cost. This is achieved using an information theoretic approach that reduces

the joint entropy of a graph.

Classification task such as activity recognition in videos, relies on labeled data

in order to learn a recognition model. In [77], it has been shown that more labeled data

do not always help a recognition model to learn better; sometimes the performance might

even degrade due to noisy data points. Thus, selection of the most informative samples

to train a recognition model becomes crucial. In information theory, the idea of ‘typical

set’ is successfully applied in compression theory, which is based on the intuitive notion

that not all the messages are equally important, i.e., some messages carry more information

than others. By analogy, we can exploit this concept to reduce the manual labeling cost

by choosing the most informative samples from a large pool of unlabeled data. Typicality

allows representation of any sequence using entropy as a measure of information [34]. We

present our second approach which exploits the concept of typicality from the domain of

information theory in order to find informative samples for activity recognition in videos. In

activity recognition, current activity is strongly correlated with previous activity sample,

thus exhibits Markovian property. We assume that action samples produce a Markov

chain where current sample only depends on the previous sample, and demonstrate how to

utilize typicality for this scenario. Moreover, typicality based sample selection approach is

computationally faster than existing graph-based approaches [9, 118, 60] that exploit the
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correlation between the samples. The notion of typicality can also be utilized for automatic

detection of unusual or abnormal activities in videos.

Digital image forensics is an emerging important topic in diverse scientific and

security/surveillance applications. With the availability of digital image editing tools, digital

altering or tampering of an image has become very easy. In contrast, the identification of

tampered images is a very challenging problem due to the strong resemblance of a forged

image to its original one. There are certain types of forgeries such as copy-move, splicing,

removal, that can easily deceive the human perceptual system. Most of the existing methods

have focused on classifying whether an image is forged or not. However, there are few

methods [130, 50, 17] that localize manipulated regions from an image. Some recent works

address the localization problem by classifying patches as manipulated. Towards the goal

of detecting and localizing manipulated image regions, we present our final framework

which is based on deep learning architecture in order to localize manipulated/forged objects.

The proposed network exploits resampling features, LSTM network, and encoder-decoder

architectures in order to learn the pixel level localization of manipulated image regions. Given

an image, we divide into several blocks/patches and then resampling features are extracted

from each block. LSTM network is utilized to learn the correlation between manipulated

and non-manipulated blocks at frequency domain. We utilize and modify encoder-decoder

network as in [8] to capture spatial information. Each encoder generates feature maps with

varying size and number. The feature map from LSTM network and the encoded feature

maps from encoders are embedded before going through the decoder. We perform end-to-end

training to learn the parameters of the network through back-propagation using ground-truth

4



mask information. As deep networks are data hungry, we create lots of synthesized images

to learn the base model. The proposed model shows promising results in localizing forged

regions at the pixel level, which is demonstrated on different challenging datasets.
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Chapter 2

Online Adaptation for Scene and

Object Recognition Models

2.1 Introduction

Scene classification and object detection are two challenging problems in computer

vision due to high intra-class variance, illumination changes, background clutter and oc-

clusion. Recent efforts in computer vision consider joint scene and object classification by

exploiting mutual relationships (often termed as context) between them to achieve higher

accuracy. Typically, training these recognition models (e.g., scene and objects) require

lot of labeled data. However, this assumption may be too strong in real-life applications.

In this chapter, we aim to develop an information-theoretic framework to select the most

informative samples in order to reduce the annotation cost.
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Figure 2.1: This figure presents the motivation of incorporating relationship among scene and object
samples within an image. Here, scene (S) and objects (O1, O2, . . . , O6) are predicted by our initial
classifier and detectors with some uncertainty. We formulate a graph exploiting scene-object (S-O) and
object-object (O-O) relationships. As shown in the figure, even though {S,O2, O3, O4, O5, O6} nodes
have high uncertainty, manually labeling only 3 of them is good enough to reduce the uncertainty
of all the nodes if S-O and O-O relationships are considered. So, the manual labeling cost can be
significantly reduced by our proposed approach.

In computer vision, researchers exploit active learning [139] to select the most

informative samples to reduce manual labeling cost. In order to identify the informative

samples, most active learning techniques choose the samples about which the classifier is most

uncertain. Expected change in gradients [139], information gain [85], expected prediction

loss [84] are some approaches used in the literature to obtain the samples for query. These

approaches consider the individual samples to be independent. Recognition tasks, such as

document classification [108] and activity recognition [161], share interrelationships between

samples. Some active learning frameworks consider the interrelationship between samples,

and exploit different contextual relations such as link information [140], social relationships

[66], spatial information [81], feature similarity [100], spatio-temporal relationships [60].

We leverage upon active learning for identifying the samples to label in the problem

of joint scene and object recognition. In the context of joint scene-object classification,

7



exploiting mutual relationships between scene and objects can achieve better performance

[156] than if no relationships are considered. For example, it is unlikely to find a ‘cow’ in a

‘bedroom’, but, the probability of finding ‘bed’ and ‘lamp’ in the same scene may be high.

Thus gaining information about a scene can help in enhanced prediction on objects and vice

versa. Previously, research in [151, 5, 148, 114] has shown how to exploit the scene-object

relationships to yield better classification performance. However, these methods require

data to be manually labeled and available before learning. Although there exist some works

involving active learning in scene and object classification [85, 84, 83], they do not exploit

the scene-object(S-O) and object-object(O-O) inter-relationships. This is critical because of

the hierarchical nature of the relationships between objects and scenes. This relationship

can be represented as a graphical model with the samples on the graph, which need to be

labeled by a human, chosen using a suitable criterion. The labeling effort can be significantly

reduced in this process - labeling a scene node in the graph can possibly resolve ambiguities

for multiple object classes. This motivation is portrayed in Fig. 4.1.

Motivated by the above, we present a novel active learning framework which

exploits the S-O and O-O relationships to jointly learn scene and object classification models.

We exploit graphical model in order to relate scene and object samples given an image. We

compute the joint entropy of the graph, which represents the total uncertainty over all the

nodes. In our approach, we observe that manual labeling of one reduces the uncertainty of

the other, and thus reduces labeling cost. This is achieved using an information theoretic

approach that reduces the joint entropy of a graph. As presented in the figure, exploiting
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Figure 2.2: This figure presents a pictorial representation of the proposed framework. At first, initial
classification models and relationship model are learned from a small set of labeled images. Thereafter,
as images are available in batches, scene and object classification models provide prediction scores
of scene and objects. With these scores and the relationship model, the images are represented as
graphs with scene and object nodes. Then, the active learning module is invoked which efficiently
chooses the most informative scene or object nodes to query the human. Finally, the labels provided
by the human are used to update the classification and relationship models.

relationships between scene and objects can lead to lesser human labeling effort, compared

to when relationships are not considered.

Framework Overview. The flow of the proposed algorithm is presented in Fig. 3.1.

We perform two tasks simultaneously:

1. Selection of an image that contains the most informative samples (scene,objects)

2. Given an image, a sample (i.e., a node in the graph representing that image) is chosen in

a way that reduces the uncertainty on other samples.

Our framework is divided into two phases. At first, we learn the initial classification models

as well as the S-O and O-O relationship model with small amount of labeled data. In the

second phase, with incoming unlabeled data, we first classify the unlabeled scene and object

samples using the current models. Then, we represent each incoming image as a graph,

where scene classification probabilities and object detection scores are utilized to represent
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the scene and object node potentials. S-O and O-O relations delineate the edge potentials.

We compute the marginal probabilities of node variables from the inference on the graphs.

Thereafter, we formulate an information-theoretic approach for selecting the most

informative samples. Joint entropy of a graph is computed from the joint distribution of

scene and objects that represents the total uncertainty of an image. For a batch of data,

our framework chooses the most informative samples based on some uncertainty measures

(discussed in Sec. 2.3) that lead to the maximum decrease in the joint entropy of the graph

after labeling. After receiving the label of a node from the human, we infer on the graph

conditioned upon the known label. Due to this inference, the other unlabeled nodes gain

information from the node labeled by human, which leads to a significant reduction in

uncertainties of other nodes. The labels obtained in this process are used to update the

scene and object classification models as well as the S-O and O-O relationships.

2.1.1 Main Contributions.

Our main contributions are as follows.

• In computer vision, most of the existing active learning methods involve learning a

classification model of one type of variable, e.g., scene, objects, activity, text, etc. On the

other hand, the proposed active learning framework learns scene and object classification

models simultaneously.

• In the proposed active learning framework, both scene and object classification models

take advantage of the interdependence between them in order to select the most informative

samples with the least manual labeling cost. To the best of our knowledge, any previous

work using active learning to classify scene and objects together is unknown.
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• Leveraging upon the inter-relationships between scene and objects, we propose a new

information-theoretic sample selection strategy along with inference on a graph based on

the intuition that learning a sample reduces the uncertainties of other samples. Moreover,

our framework facilitates continuous and incremental learning of the classification models as

well as the S-O and O-O relationship models, thus dynamically adapting to the changes in

incoming data.

2.1.2 Related Works

Scene and Object Recognition. Many of the scene classification methods use low di-

mensional features such as color and texture [158], GIST [87], SIFT descriptor [92] and deep

feature [165]. In object detection, current state-of-the-art methods are R-CNN [53], SPP-net

[63] and fast R-CNN [52]. Another promising approach in recognition tasks has been to

exploit the relationships between objects in a scene using a graphical model [30], [167], [156].

A Conditional Random Field (CRF) for integrating the scene and object classification for

video sequences was proposed in [151]. A model for joint segmentation, object and scene

class inference was proposed in [156]. In [5], the spatial relationships between the objects

within an image were exploited to compute the scene similarity score, based on which the

indoor scene categories were predicted. In [148], a CRF model was constructed based on

scene, object and the textual data associated with the images on the web, to label the scenes

and localize objects within the image. In [160], a projection was formulated from images to

a space spanned by object banks, based on which, the image was classified into different

categories. In [114], a framework was developed for multiple object recognition within an

image, where a conditional tree model was learned based on the co-occurrences of objects.
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Active Learning. Although the above mentioned works exploit the contextual rela-

tionships, they assume that all the data are labeled and available beforehand, which is not

feasible and involves huge labeling cost. Active learning has been widely used to reduce the

effort of manual labeling in different computer vision tasks including scene classification [85],

video segmentation [46], object detection [144], activity recognition [60], tracking [147]. A

generalized active learning framework for computer vision problems such as person detection,

face recognition and scene classification was proposed in [43]. They used the two concepts

of uncertainty and sample diversity to choose the samples for manual labeling. Some of the

common techniques to measure uncertainty for selecting the informative data points are

presented in [138]. Active learning has been separately used for scene or object classification

[85, 83, 144, 72], but not in their joint classification.

In [83], a framework for actively learning scene classification model was proposed,

where the authors incorporated two strategies - Best vs. Second Best (BvSB) and K-centroid

to select the informative subset of images. A framework based on information density

measure and uncertainty measure to obtain the best subset of images for querying the human

was proposed in [84]. Although their algorithm can be applied separately for both scene and

object classification, they do not exploit the relationships between scene and objects. An

active learning framework for object categories was proposed in [69] which considers the

case where the labeler itself is uncertain about labeling an image.

In [85], the authors present an active learning framework for scene classification. In

their hierarchal model, they focus on querying at the scene level, and whenever unexpected
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class labels are returned by the human, queries are made at the object level. Thus in their

method, there exists a flow of information from the object level to the scene level. However,

in our method, there is a flow of information from scene to object level and vice versa, in a

collaborative manner, which paves the path for a joint scene-object classification framework.

2.2 Joint Scene and Object Model

In this section, we discuss how we represent an image in a graphical model with

scene and object as hidden variables.

A. Scene Classification Method. In order to represent scenes, we extract features using

Convolution Neural Networks (CNN). Given an image, we get a feature vector f from the

fc7 layer of a CNN architecture, where f ∈ <4096×1. We train a linear multi-class Support

Vector Machine (SVM) [24] to compute the probability of nth class, p(S = sn|f j), where

f j implies the feature vector corresponding to sample j. We denote the learned model for

scene classification as Ps. Given an image, ΦS ∈ <N represents the classification score. N is

the total number of scene categories considered in the experiment.

B. Object Detection Method. We use R-CNN presented in [53] to detect the objects in

an image. In R-CNN, we extract features from deep network for each object proposal. Then,

we train a binary SVM classifier for each object category to get the probability of appearance

of an object. After classifying the region we form a vector that represents the confidence

scores of the binary classifiers for each category. Thus, for each pth region we get ΦOp that

represents the detection score vector. Finally, we use bounding box regression method [47]

for better object localization. We denote the learned model for scene classification as Po.
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C. Graphical Model Representation. In this model, two levels of nodes are used -

one represents scene υs and other set of nodes implies detected objects υo. υo is generally

represented by υo = {υo1 , υo2 , ..υoD}, where D is the number of bounding boxes appearing

in an image. The link between them is depicted by edges. The joint distribution of υs and

υo over the CRF can be written as

P (υs, υo) =
1

Z
Ψξ(υs, υo)

∏
i,j∈D
i6=j

Ψξ(υoi , υoj )
∏

w∈{υs,υo}

Ψv(w) (2.1)

where, Z is normalizing constant. Ψv(.) and Ψξ(.) denote node and edge potentials.

Node Potentials. Given an image, the scene classifier (Ps) produces a vector

that contains the probabilities of all the scene labels. From these probabilities we compute

scene node potential Ψv(υs) as presented in Eqn. 2.2. Similarly, given an image, the object

detection scores are used to model the object node potentials Ψv(υo) as shown in Eqn. 2.3.

Ψv(υs) =
∑
n∈N
I(Sn)βTn ΦS (2.2)

Ψv(υo) =
∑
p∈D

∑
m∈M

I(Opm)ΩT
m ΦOp (2.3)

Here, ΦS is a vector of the probability of the scene labels obtained from multi-class SVM

classifier. βn is the feature weight vector corresponding to scene label Sn and I(.) is the

indicator function, i.e., I(Sn) = 1 when S = Sn, otherwise 0. Ωm is the weight corresponding

to the detection score of the object Om. ΦOp is the score vector of detecting all the objects

in the pth bounding box. M is the number of object Classes.
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Edge Potentials. We use two type of relationships, S-O and O-O. We use

co-occurrence frequencies to represent edge potential. The probability of the presence of an

object in a particular scene is determined by the co-occurrence statistics. For instance, in a

context of ‘highway’ scene, the probability of appearance of ‘car’ will be higher than ‘table’

or ‘chair’. In Eqn.2.4, Ψξ(υs, υo) represents the relationship between S and O. Similarly,

Ψξ(υoi , υoj ) models the O-O relations.

Ψξ(υs, υo) =
∑
p∈D

∑
n∈N

∑
m∈M

I(Sn)I(Opm)Φξ(Sn, Om) (2.4)

Ψξ(υoi , υoj ) =
∑
m′∈M

∑
m∈M

I(Oim′)I(Ojm) Φξ(Om′ , Om) (2.5)

Φξ(Sn, Om) represents the co-occurrence statistics between scene and objects. Larger value

implies higher probability of co-occurrence of Sn and Om. Here, Φξ(O
i, Oj) is the co-

occurrence [126] between the detected objects Oi and Oj . It encodes the information about

how often two objects can co-occur in a scene.

Parameter Learning. The initial model parameters of the CRF model are

learned from a set of annotated images, object detectors and scene classifier. Given the

ground truth object bounding boxes, we use object detectors to obtain detection scores for

the corresponding bounding box region. Similarly, we get the classification score from the

annotated scene label. Thus, we can easily apply maximum likelihood estimation approach

to learn all the parameters {β,Ω, Φξ(Sn, Om), Φξ(Om′ , Om)} in the model.

Inference of Scene and Object Labels. To compute the marginal distributions

of the node and edge, we use Loopy Belief Propagation (LBP) algorithm [86], as our graph
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contains cycles. LBP is not guaranteed to converge to the true marginal, but has good

approximation of the marginal distributions.

Algorithm 1: Online Learning for Scene and Object Sample Selection

INPUTS. 1. Learned scene, object and relation models after processing
images in BatchK−1 : {Ps,Po, Φξ(Sn, Om) & Φξ(Om′ , Om)}

2. Unlabeled BatchK : U
OUTPUTS. Learned Models after processing images in BatchK : {Ps,Po,
Φ′ξ(Sn, Om) & Φ′ξ(Om′ , Om)
Initialize: Ls = {} (Empty set)
Step 1: Compute H(υi) and I(υi, υj) using Eqn. 2.6
Step 2a: Compute vector Jp = [Jp1 , J

p
2 , . . . J

p
Q] containing the node

uncertainties involving entropy and mutual information, for all images.
Step 2b: Obtain vector Ĵ by concatenating the vectors Jp, ∀p, s.t.
Hp(V ) ≥ δ

Step 2c: Ĵs ← sort(Ĵ) in descending order
if length(Ĵs) 6= 0 then

Step 3a: Select nodes for manual labeling to form a set M using Eqn.
2.11

Step 3b: Query the nodes in M to the human
Step 4: Ls = Ls ∪M (Labels provided by human)
Step 5: Infer on the graphs conditioned on the labels provided by human
Step 6: Update Ĵs, S using Steps 1 & 2a-d

else
Step 7: Update models {Ps,Po, Φξ(Sn, Om) & Φξ(Om′ , Om)} with Ls

2.3 Active Learning Framework

In the previous section, we represent an image as a graph containing υs and υo

nodes. If we select a node from a graph, such that querying it will minimize the joint entropy

of the graph maximally, then it means that the classifier will be able to gain maximum

amount of information by labeling that node.
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2.3.1 Formulation of Joint Entropy.

Consider a fully connected graph G = (V,E), where V and E are the set of nodes

and edges respectively. It may be noted that V = {S,O1, O2, . . . , OD}. Let µi(υi) and

µij(υi, υj) be the marginal probabilities of the node and edge of the graph. Let υi and υj

represent the random variables for nodes i, j ∈ V . In our joint scene and object classification,

i ∈ {S,O1, O2, . . . , OD} as discussed in Sec. 2.2. The node entropy H(υi) and mutual

information I(υi, υj) between a pair of nodes are defined as,

H(υi) = E[− log2 µi(υi)] I(υi, υj) = E[log2
µij(υi, υj)

µi(υi)µt(υj)
] (2.6)

Considering Q nodes in the graph, its joint entropy can be expressed as,

H(V ) = H(υ1) +

Q∑
i=2

H(υi|υ1, . . . , υi−1)

= H(υ1) +

Q∑
i=2

[
H(υi)− I(υ1, . . . , υi−1; υi)

]
(2.7)

using I(υ1, . . . , υi−1; υi) = H(υi)−H(υi|υ1, . . . , υi−1). Again, using the chain rule, I(υ1, . . . , υi−1; υi) =∑i−1
j=1 I(υj ; υi|υ1, . . . , υj−1), Eqn. 2.7 becomes

H(V ) =

Q∑
i=1

H(υi)−
Q∑
i=2

i−1∑
j=1

I(υj ; υi|υ1, . . . , υj−1) (2.8)

It becomes computationally expensive to compute the conditional mutual information, as the

number of node increases [157]. As we consider only pair-wise interactions between S-O and

O-O, we approximate the conditional mutual information I(υj ; υi|υ1, . . . , υj−1) ≈ I(υj ; υi).
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Thus, the joint entropy of the graph can be approximated as,

H(V ) ≈
Q∑
i=1

H(υi)−
Q∑
i=2

i−1∑
j=1

I(υj ; υi) =
∑
i∈V

H(υi)−
∑

(i,j)∈E

I(υi; υj) (2.9)

This expression is actually exact for a tree, but approximate for a graph having cycles. The

approximation leads to the expression of joint entropy in Eqn. 2.9, which is similar to the

joint entropy expression in Bethe method [157].

2.3.2 Informative node selection.

In our problem, an image is represented by a graph having several nodes with two

types of hidden variables υs and υo. So, we require not only to find the most informative

image but also need to choose the node to be manually labeled. If we manually label a node,

then we assume that there is no uncertainty involved in that node. Thus, after labeling a

node υi with the label l, the node entropy becomes zero, i,e. H(υi = l) = 0.

Let Hp(V ) be the the joint entropy of image p which can be computed using

Eqn. 2.9. We query the node such that Hp(V ) is maximally reduced after labeling the node

and inferring the graph conditioned on the new label. Then, after labeling υi, we find the

optimal node q of image p to be queried as,

q∗ = arg max
q

[
Hp(υq)−

1

2

∑
j∈N (q)

Ip(υq, υj)
]

(2.10)

where N (q) represents the neighbor nodes of q. For simplicity, let us define the uncertainty

associated with node q of image p as Jpq = Hp(υq) − 1
2

∑
j∈N (q) I

p(υq, υj) where the joint
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entropy for an image p is Hp(V ) =
∑n

q=1 J
p
q from Eqns. 2.9 and 2.10. From Eqn. 2.10, we

choose the node to query, which has the maximum uncertainty considering not only the

node entropy but also the mutual information between the nodes. Next, we explain how to

choose a set of nodes from a batch of images.

2.3.3 Simultaneous Image and Node Selection.

We query the nodes of image p only if its joint entropy Hp(V ) ≥ δ, where δ is a

threshold. Since we have the information about all the node uncertainties of all images, we

can perform multiple queries across multiple different images such that the learner can learn

faster and more efficiently. We consider that there is no relation between the images, thus

the conditional inference on one image is independent of the other images. Thus, graphs of

different images can be conditionally inferred in a parallel manner.

Let, a vector, Jp = [Jp1 , J
p
2 , . . . , J

p
Q]T contain the uncertainty associated with Q

(dependent on the image) nodes for an image p. Consider another vector, Ĵ = [J1 J2 . . . JP ]T

which is obtained after concatenating all the vectors Jp for P images, whose joint entropy is

higher than threshold δ. We sort the vector Ĵ in descending order to obtain a new vector Ĵs.

Then, we perform multiple queries based on Ĵs, which contain uncertainty of nodes from

multiple images of a batch. For each image, we choose the node appearing first in Ĵs for

labeling. We perform conditional inference with the new labels in a parallel manner over all

the images. The Ĵs vector is again obtained using the updated uncertainties of the nodes

and the process is repeated until Hp(V ) ≤ δ, ∀p. It may be noted that P decreases or at

least remains same in succeeding iterations, because nodes belonging to images attaining
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joint entropy less than δ are not queried and thus not included in Ĵs. Inference reduces the

uncertainty on other nodes of the same image.

As uncertainty of nodes decreases, joint entropy is also reduced. Consider a matrix

S having dimension Nn × 2, where Nn is the total number of nodes of all images in the

batch. The first and second columns of S contain the node index of a graph (image) and the

image index respectively. The order in which the elements of S are populated is the same

as that of Ĵs. We refrain from choosing more than one node per image in each iteration

because labeling one node can help the other nodes attain a better decision after inference.

The set of nodes M, chosen for labeling in each iteration can be expressed as,

M∗ = arg max
M

s.t.|M|=P
Si,2 6=Sj,2,i,j∈M

∑
k∈M

[
Ĵs

]
k

(2.11)

where
[
Ĵs
]
k

denote the kth element of Ĵs and Si,m denote the ith row and mth column of

S, where m ∈ {1, 2}. All the steps of active learning are shown in Algorithm 1. The first

column of S is used to identify which node of an image should be labeled. To summarize

Eqn. 2.11, the optimal set M can be obtained by choosing one node which has the highest

entropy from each image.

Classifier Update. To classify scene and objects, we use a linear support vector ma-

chine (SVM) classifier. The probability of predicted label can be defined as ŷ = wT f(x) + b,

where f(x) is the feature of scene or objects and w, b are parameters that determine the

hyperplane between two classes. We use soft margins formulation presented in [24] to find
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the solution of w, b. The solution can be found by optimizing, 1
2w

2 + C
∑n

1 εi subject to

yi(w
T f(xi) + b) ≥ (1− εi) and εi ≥ 0 for all i samples, where εi is the slack variable.

Edge Weight Update. We update the co-occurrence statistics with new manually labeled

data as presented in Eqns. 2.4 and 2.5. lets denote them by Φ′ξ(Sn, Om) and Φ′ξ(Om′ , Om).

The updated co-occurrence matrix will be [Φξ(Sn, Om)]t+1 ← [Φξ(Sn, Om)]t + Φ′ξ(Sn, Om)

and [Φξ(Om′ , Om)]t+1 ← [Φξ(Om′ , Om)]t + Φ′ξ(Om′ , Om), where the subscript t+ 1 indicates

the edge potentials after t updates.

2.4 Experiments

In this section, we provide experimental analysis of our active learning framework

for joint scene and object recognition models on three challenging datasets. For convenience,

we will use terms ‘inter-relationship’ and ‘contextual relationship’ to denote scene-object

and object-object relationship.

Datasets. In our experiments, we use SUN [29], MIT-67 Indoor [125] and MSRC [104]

datasets in order to analyze scene classification and object recognition performance and

compare our results. These datasets are appropriate as they provide rich source of contextual

information between scene and objects. In SUN dataset, we choose 125 scene classes and 80

object categories to evaluate scene classification and object detection performance, as those

contain annotation for both scene and objects. MIT-67 indoor [125] dataset consists of 67

indoor scene categories with large varieties of object categories. For MSRC [104] dataset,

we evaluate our results comparing with the ground truth which is available in [156].
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Experimental Setup. We use a publicly available software- ‘UGM Toolbox ’ [136] to

infer the node and edge belief in image graphs. We use pre-trained model ‘VGG net’ [165]

which is trained on ‘places-205’ dataset to extract the scene features from CNN. For object

recognition, we use the model as presented in [52].

In our online learning process, we perform 5 fold-cross validation, where one fold

is used as testing set and the rest are used as training set. We divide the training set into

6 batches. We assume that human-labeled samples are available in the first batch and we

use it to obtain the initial S and O classification models and the S-O and O-O relations. It

might be possible that we do not have all the classes for scene and objects in the first batch.

So, new classes are learned incrementally as batches of data come in. Now, with current

batch of data we apply our framework to choose the most informative samples to label and

then, update the classification and relationship models with newly labeled data. Finally, we

compute our recognition results on the test set with each updated models.

Evaluation Criterion. In order to train the object detectors, we first choose positive and

negative examples. We apply standard hard negative mining [47] method to train the binary

SVM. We calculate the average precision (AP) of each category by comparing with the

ground truth. Precision depends on both correct labeling and localization (overlap between

object detection box and ground truth box). Let the computed bounding box of an object

be Ob and the ground truth box be Gb, then the overlap ratio, OR = Ob∩Gb
Ob∪Gb

. OR ≥ 0.5 is

considered as correct localization of an object. Before presenting our results, we define all

the abbreviations that will be used hereafter
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� SOAL: proposed scene-object active learning (SOAL) as discussed in Sec. 2.3.

� Bv2B: Best vs Second Best active learning strategy proposed in [83].

� IL-SO: Incremental learning (IL) approach presented in [59] is implemented for scene and

object (SO) classification.

� No Rel: No relation is considered between scene and objects.

� S-O Rel: Only S-O relations are considered but not O-O relations.

� S-O-O Rel: Both S-O and O-O relationships are considered.

� All+S-O: All samples with S-O relations are considered.

� All+S-O-O: All samples with both S-O and O-O relations are considered.

� All+No Rel: All samples without any relation are considered.

� SO+All: All samples in batch are considered for scene and object classification with

S-O-O relationship.

� NL, AL: NL implies no human in the loop, i.e., we do not invoke any human to learn

labels. AL denotes active learning. For example, S-NL+O-AL means scene nodes are not

queried but object nodes are queried..

Experimental Analysis. We perform the following set of experiments - 1. Com-

parison with other active learning methods, 2. Comparison of the baselines with different

S-O and O-O relations, 3. Comparison against other scene and object recognition methods,

and 4. Recognition performance of scene and object models while labeling either scene or

object.
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2.4.1 Comparison with Other Active Learning Methods.

In Figs. 3.5(a,b,c) and 2.4(a,b,c), we compare our active learning framework with

some existing active learning approaches- Bv2B [83], Random Selection, Entropy [41] and

IL-SO [59]. In the case of random selection, we pick the samples with uniform distribution.

For Bv2B,Entropy and IL-SO, we implement the methods to select the informative samples

for scene and objects. The feature extraction stages are the same as ours. We observe that

our approach outperforms other methods by a large margin in selecting the most informative

samples in both scene and object recognition.

2.4.2 Is Contextual Information Useful in Selecting the Most Informative

Samples?

We conduct an experiment that implements our proposed active learning strategy

by exploiting different set of relations of scene (S) and objects (O). Figs.3.5(d,e,f) and

2.4(d,e,f) show the plots for S and O respectively on three datasets. It is noticed that the

highest accuracy is yielded by S-O-O Rel (proposed), followed by S-O Rel and No-Rel in scene

classification as well as in object recognition. This brings out the advantage of exploiting

both S-O and O-O relations in actively choosing the samples for manual labeling. Moreover,

the manual labeling cost is significantly reduced when we consider more relations. It may

also be noted that our proposed framework achieves similar or even better performance by

only choosing a smaller subset of training data than building a model with full training set

for both scene and objects. For scenes, this subset is 35%, 30% and 42% of whole training
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set on MSRC, SUN and MIT datasets respectively. Similarly, for objects, we require only

39%, 61%, 60% of whole training set to be manually labeled on these three datasets.

2.4.3 Comparison against other Scene and Object Classification Meth-

ods.

We also compare our S and O classification performance with other state-of-the-art

S and O recognition methods. For scene, we choose Holistic [156], CNN [165], DSIFT

[92], MLRep[40], S2ICA [62] and MOP-CNN [56]. Similarly, we compare against Holistic

[156], R-CNN [53], DPM [47] for object detection performance. Holistic approach exploits

interrelationship among S and O using graphical model. We also compare with SO-All.

From Figs. 3.5(g,h,i) and 2.4(g,h,i), we can see that our proposed framework outperforms

the other state-of-the-art methods.

2.4.4 How does scene and object sample selection affect classification

score of each other?

We perform an experiment to observe how S and O recognition performs, when we

implement active sample selection of either scene or object nodes and exploit S-O and O-O

relationships to improve the decisions of the other type of nodes. The results are shown

in Figs. 3.5(j,k,l) and 2.4(j,k,l). Let us consider the first scenario (S-NL+O-AL) where we

perform AL on the O nodes but use relationships to update the classification probabilities

of the S node. We use the first batch to learn the S and O models, but thereafter query to

label only object nodes and not scene nodes. The relationship models are updated based on
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Figure 2.3: In this figure, we present the scene classification performance for three datasets- MSRC
[104], SUN [153] and MIT-67 Indoor [125] (left to right). Plots (a,b,c) present the comparison of
SOAL (proposed) against other state-of-the-art active learning methods. Plots (d, e, f) demonstrate
comparison with different contextual relations. Plots (g,h,i) demonstrate the comparison of other
scene classification methods. Plots (j,k,l) show the classification performance by utilizing our active
learning framework either on scene or objects and both. Please see the experimental section for
details. Best viewable in color.
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Figure 2.4: In this figure, we show the object detection performances on MSRC [104], SUN [153]
and MIT-67 Indoor [125] (left to right). Plots (a, b, c) present the comparison of SOAL with other
state-of-the-art active learning methods. Plots (d, e, f) demonstrate comparison with different
graphical relations. Plots (g, h, i) present the comparison of other object detection methods. Plots
(j,k,l) show the detection performance by implementing our active learning framework either on scene
or objects and both. Please see the experimental section for details. Best viewable in color.

27



the confidence of scene classifier and manual labeling of the objects obtained from a human

annotator. With each update on context model, scene classification accuracy goes up even

though the scene classification model is not updated. Similarly, the second scenario involves

manual labeling of only S nodes but not O nodes. In this scenario, we do not consider O-O

relationships. We can not rely on confidence of object classifiers to model O-O relations as

it might provide wrong prediction of object labels. However, involvement of human in both

scene and objects makes the sample selection even more efficient and outperforms all the

scenarios mentioned above. As shown in Figs. 3.5(j,k,l) and 2.4(j,k,l), S-AL+O-AL achieves

better performance than S-AL+O-NL by approximately 4-5% and 4.5-5.5% in both scene

and objects on three datasets.

0

0.1

0.2

0.3

be
dr

oo
m

liv
in
gr

oo
m

P(ceiling)=0.54

P(floor)=0.68

P(tree)=0.51

P(pillow)=0.52

P(lamp)=.72

P(lamp)=.57

0
0.2
0.4
0.6
0.8

be
dr

oo
m

liv
in
gr

oo
m

P(ceiling)=0.58

P(floor)=0.78

P(tree)=0.36

P(pillow)=0.54

P(lamp)=.74

P(lamp)=.62

0
0.2
0.4
0.6
0.8

be
dr

oo
m

liv
in
gr

oo
m

P(ceiling)=0.55

P(floor)=0.81

P(plant)=0.68

P(pillow)=0.48

P(lamp)=.84

P(lamp)=.66

P(bed)=.84

P(bed)=.90 P(bed)=.92

Batch 1: Object Detection & Scene Prediction Batch 4: Object Detection & Scene Prediction Batch 6: Object Detection & Scene Prediction

0

0.2

0.4

0.6

0.8

1

bo
at

w
at

er

P(boat)=.86

0

0.2

0.4

0.6

bo
at

w
at

er

P(boat)=.84

0

0.2

0.4

0.6

bo
at

w
at

er

P(boat)=.78

P(sign)=.52

Batch 1: Object Detection & Scene Prediction Batch 4: Object Detection & Scene Prediction Batch 6: Object Detection & Scene Prediction

Figure 2.5: Scene prediction and object detection performance on test image with updated model
learned from the data of 1st, 4th and 6th batch.

2.4.5 Some Examples of Active Learning (AL) Performance.

We provide some examples of scene prediction and object detections as shown in

Fig. 2.5. Here, scene prediction and detections are changing as models are learned over
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samples from each batch. Scene and object models are updated continuously with upcoming

batch of data using our AL approach. With each improved model from the batch of data,

classifiers become more confident in predicting scene and object labels on test image. More

such examples are provided in the supplementary material.

2.5 Conclusions

In this chapter, we proposed a novel active learning framework for joint scene and

object classification exploiting the interrelationship between them. We exploit the scene-

object and object-object interdependencies in order to select the most informative samples

to develop better classification models for scenes and objects. Our approach significantly

reduces the human effort in labeling samples. We show in the experimental section that

with only a small subset of the full training set we achieve better or similar performance

compared with using full training set.

29



Chapter 3

Exploiting Typicality for Selecting

Informative Samples in Videos

3.1 Introduction

In most video analysis task, one of the challenges is to learn a good classification

model from a set of labeled examples. Today we live in a time where we have instant

access to huge amount of visual data from online sources such as Google, Yahoo, Bing and

Youtube. It becomes infeasible to label all the unlabeled samples as it is very costly and

time consuming. Moreover, it is not always true that more labeled data can help a classifier

to learn better; in fact, it may as well confuse the classifier [77]. Also, the adaptability of

recognition models is unavoidable in order to achieve good classification performance that is

robust to concept drift. As a result, selection of the most informative samples [139] becomes

critical and has drawn significant recent attention from the vision community in order to
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train recognition models [138, 84]. Furthermore, automatic detection of unusual or abnormal

activities is an area of significant interest in diverse video analysis applications. We address

both these problems in this chapter. We present an information-theoretic approach for

obtaining a subset of informative samples to learn a good classification model for activity

recognition, and for identifying anomalous/irregular activities in videos.

In computer vision, the selection of informative samples [139] has been widely used

to reduce the manual labeling effort for annotation task and to train a good recognition

model. Most of the sample selection methods devise a sample-wise informativeness utility

score based on which the samples are selected for manual labeling [139, 85, 84]. However, they

are highly dependent on classifier uncertainty or diversity in the feature space. Furthermore,

the aforementioned approaches consider the individual samples to be independent. Recent

works [60, 9, 10, 118] exploit the inter-relationships (or contextual information) between

samples in order to reduce the number of labeled samples to train the recognition models

with applications including activity recognition, scene and object classification, document

classification, etc. Most of these approaches involve graphical models to exploit the interre-

lationships between the samples, where inference and joint entropy computation becomes

intractable in the case of acyclic graphs and requires simplifying assumptions. Moreover,

these methods introduce high computational complexity at the inference step as the number

of nodes increases.

The analysis of abnormal activities in videos has been of growing interest in security

and surveillance applications. Most of the anomaly detection methods [121, 28, 166] train

a model to learn the patterns of normal activities and consider an activity as abnormal
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whose pattern is deviated from the normal activities. Some methods [134, 97, 32] exploit

local statistics of low-level features, local spatio-temporal descriptors, and bag-of-word

approach to detect anomalies in videos. Recent efforts [166, 58] in anomaly detection

consider interrelationship between the activities in identifying abnormal activities. In [58],

temporal regularity patterns are learned from the normal activities in order to detect unusual

activity. In this work, we introduce a new way of measuring the irregularity by utilizing

temporal relationship between activities to detect anomalies in video.

In this chapter, we explore whether information theoretic ideas that have been very

successfully applied in data compression can be used to identify the most informative samples

to build a recognition model. We leverage upon the concept of typicality for this purpose.

According to the theory, there is a set of messages for which the total probability of any of

its members occurring is close to one, which is referred as typical set of messages. Now, we

ask how can we exploit this approach to select the most informative samples, which will be

manually labeled, and classifiers designed on this subset can then be applied to the entire

dataset. The concept of typical set is developed on the basis of asymptotic equipartition

property of sample realization of a random variable, such that a sequence of its realization

is highly likely to belong to the typical set. This concept can be utilized for informative

subset selection, with the labels or a group of labels of samples being a random variable. A

sequence not belonging to the typical set may be termed as informative as it does not follow

the distribution of the random variable learned from the previously labeled instances. For

example, in activity recognition, different activities may be temporally connected, e.g., a

person opening a car trunk followed by the person carrying an object. If a different set of
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semantic entities appear in a particular scene, then the atypical score, computed based on

the deviations in typicality, would be high and will be identified as informative. Thus, the

natural interactions between semantic entities can prove to be a rich source of information

in order to identify informative samples for applications like active learning, and anomaly

detection.

Our previous work [10] showed preliminary results employing the concept of typ-

icality on joint classification tasks, e.g, scene-object for images. In this work, we extend

this idea more thoroughly for a range of computer vision problems in videos, such as

selection of informative samples for training a model, and anomaly detection in videos.

Moreover, [10] employs typicality by utilizing information flow from scene or activity to

objects in a joint classification scenario, by conditioning on the former. However, it does

not deal with the scenario where the scene or activity information is not known precisely.

In activity recognition, the current activity may be strongly correlated with the previous

activity sample, and can be represented as Markovian. In this work, we assume that action

samples produce a Markov chain where the current sample only depends on the previous

sample, and demonstrate how to utilize typicality for this scenario. We design an utility

function which depends on the length of a sequence (please see Sec. 3.3 for more details).

Moreover, we show that typicality based sample selection approach is computationally faster

than existing graph-based approaches [9, 118, 60] that exploit the correlation between the

samples. From the experimental results, we observe that proposed approach outperforms

other state-of-the-art methods by large margin to reduce the manual labeling cost. The

atypical score can also be applied to detect abnormal activities in videos (Sec. 3.3.4).
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Figure 3.1: The figures present how typical set can be applied in vision problems to compute an
atypical score. (a) represents training phase where we learn entropy rate by computing transition
matrix and stationary distribution (please see Sec. 3.3.2). In (b), a sequence is generated from the
prediction of activity labels given a test video. Then, the probability of the sequence is calculated
from the transition matrix and stationary distribution which are learned during the training phase.
Finally, we compute an atypical score for each sample in a video.
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3.1.1 Framework Overview

Fig. 3.1 presents the overview of our proposed method. We can divide the overall

process into two phases: (a) training phase, and (b) testing phase.

Activities in a video are represented as a Markov chain where the current activity

depends on previous activity only. During the training phase, we learn the recognition model

(M) and the temporal relationship model (Tr). Tr could be a simple co-occurrence statistic

that captures the correlation between two consecutive activities. We learn transition matrix

and stationary probability using this temporal co-occurrence. We compute entropy rate

required to define a typical set, details of which are provided in Sec. 3.3.

At test phase, a video clip is fed into the classifierM. M provides predicted labels

with a confidence score. We form a sequence from the predicted labels obtained from M

and compute uncertainty (please see details in Sec. 3.3) of the sequence. We compare this

uncertainty with the entropy of source distribution obtained from Tr in order to compute

the atypical score. We can also calculate entropy from the distribution of predicted scores

for each sample using M. With this uncertainty score and atypical score, we formulate an

optimization function to choose the most informative set of samples to be labeled manually

by a human annotator. We also used the atypical score to detect anomalies in videos.

We applied the proposed approach to two applications- (a) informative sample

selection, and (b) anomaly detection. For the first scenario, we present our approach from the

perspective of batch mode active learning, where the goal is to select the most informative

samples to update the recognition model in an online setting where unlabeled data are
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coming continuously in batches. By solving the optimization function mentioned above,

we can find informative samples which will be considered for manual labeling. With these

newly labeled samples, M and Tr are updated. In this process, we intend to achieve similar

performance with the model which is trained on all the samples (100% manual labeling).

In anomaly detection, we consider whole training set to understand the nature of normal

activities. We learn the typical model and recognition model. Given a test sample, we set a

threshold on atypical score to determine whether an activity samples is abnormal or not.

3.1.2 Contributions

Our major contributions are as follows.

• In this work, we present a new approach to compute an atypical score by exploiting

the concept of ‘typical set’ from information theory. We employ our strategy on a wide

range of computer vision applications such as activity recognition and anomaly detection in

videos.

• Unlike [10], where the variables in a sequence are independent, we show how the

concept of ‘typical set’ can be applied to temporally dependent variables in computer vision

problems. We demonstrate our strategy on videos instead of images as presented in [10].

• We perform rigorous experimentation on two scenarios- (1) sample selection

for activity classification, (2) detection of abnormal activities. Our framework on sample

selection outperforms state-of-the-art methods significantly in reducing the manual labeling

cost while achieving same recognition performance compared with a model trained on all the

samples. We also demonstrate the usefulness of the method in finding anomalies in videos.
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3.2 Related Work

In this section, we will briefly discuss the related work on visual recognition task,

sample selection, anomaly detection, and typicality.

Visual Recognition Task. The proposed framework applies to work in activity

classification. In [122], the paper surveys state-of-the-art feature based activity recognition.

Some promising approaches in computer vision use context model [30, 60] on top of recognition

model in order to achieve higher accuracy. In [60], spatio-temporal relationship and co-

occurrence statistics have been utilized in order to recognize activities in video. Most of the

context based approaches exploit conditional random field (CRF) to interrelate the samples,

which become computationally expensive as nodes in the graph increases. Recently, various

deep learning based models have been presented in [117, 159] for activity classification.

These frameworks show promising performance in recognizing activities.

Sample Selection Methods. Some of the state-of-the-art sample selection

approaches are expected change in gradients [139], information gain [85], expected prediction

loss [84], and expected model change [70] to obtain the samples for querying. Some of

the common techniques to measure uncertainty for selecting the informative samples are

presented in [138, 84]. Along with classifier uncertainty, diversification in the chosen samples

is introduced by using k-means [83] or sparse representative subset selection [43]. In [83],

the authors incorporated two strategies - best vs. second best and K-centroid to select

the informative subset. The afore-mentioned approaches consider the individual samples

to be independent. Recent advances [9, 118, 60] in active learning incorporate contextual

relationships to reduce manual labeling cost without compromising recognition performance.
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Most of these approaches involve graph-based models where the belief is propagated through

nodes using inference algorithm. These approaches might be computationally expensive as

the number of nodes increases.

Anomaly Detection. Several works [166, 155] have exploited semantically mean-

ingful activities in order to detect anomalies. A comprehensive review of anomaly detection

is provided in [121]. [28] presents a hierarchical framework for identifying local and global

anomalies utilizing hierarchical feature representation and Gaussian process. In [162], the

authors present a method that exploits Locality Sensitive Hashing Filters (LSHF), which

hashes normal activities into multiple feature buckets. [74] proposes a space-time Markov

Random Field (MRF) model to identify abnormal activities in videos. Some works [154, 166]

exploit spatio-temporal context in order to detect anomalous activities. In [129], the authors

present an approach that learns both dominant and anomalous behaviors in videos of different

spatio-temporal complexity. In anomaly detection, deep learning based approaches such as

sparse auto-encoder [132] and fully convolutional feed-forward network [58] are also utilized.

Typicality. The concept of ‘typical set’ [101] has widely been used in compression

theory as it demonstrates a theoretical justification for compressing data. Recent works

[89, 115] exploit typical set in applications like multi-terminal source coding, and multiple

access channel. In [65], the authors define atypicality as the deviation of the information

from average. Then, it is applied in universal source coding and a number of real world

datasets. In computer vision, the term ‘typicality’ is mentioned in some research papers for

several tasks such as category search [106], object recognition [133], and scene classification

[146]. However, they do not exploit the notion of information-theoretic typical set. In [10],

38



Typical Set

𝑷𝒓~𝟐−𝒏𝑯(𝑿)

Figure 3.2: This figure presents the idea of typical set of sequences used in information theory.

a novel active learning method was proposed exploiting the theory of typical set. In this

chapter, we extend the work presented in [10] by demonstrating its generalizability across a

variety of computer vision problems.

3.3 Typicality and Its Application in Videos

In information theory, a typical set represents a set of sequences drawn from an

i.i.d distribution, whose total probability of occurrence is close to one as shown in Fig. 3.2. A

sequence can be categorized into either typical or atypical, depending on whether it belongs

to the typical set or not. There are two kinds of typicality, namely, weak and strong. In this

problem, we focus on weak typicality to develop our sample selection framework. Next, we

will briefly show the concept of weak typicality and then, demonstrate how typicality can be

used in different computer vision tasks.
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a1(t=6s) a2(t=11s) a3(t=18s) a4(t=35s)

Temporal Relationships

X

Figure 3.3: The figure presents how different activities in a video share temporal relations. Here,
the temporal link between a3 and a4 is discarded due to long time interval.

3.3.1 Typicality in Information Theory

Let us consider xn to denote a sequence x1, . . . , xn drawn from an i.i.d distribution

PXn(.), whose empirical entropy can be expressed as,

− 1

n
log2 PXn(xn) = − 1

n
log2

n∏
i=1

PXi(xi)

= − 1

n

n∑
i=1

log2 PXi(xi) (3.1)

By the weak law of large numbers Eqn. 3.1 can be written as

− 1

n

n∑
i=1

log2 PXi(xi)→ E[− log2 PXn(xn)] = H(X) (3.2)
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Definition. A set of sequences with probability distribution PXn(.) can be considered as

weakly typical set if it satisfies the following criteria:

∣∣∣− 1

n
log2 PXn(xn)−H(X)

∣∣∣ ≤ ε (3.3)

Next, we will demonstrate how this typical set [34] concept can be exploited to compute

atypical score for Markov chain.

3.3.2 Asymptotic Equipartition Property for Markov Chain

In this section, we will show how to compute the atypical score for a Markov chain,

motivated by the assumption that sequential activities exhibit Markovian property. We aim to

exploit the Asymptotic Equipartition Property (AEP) for Markov Chain in computer vision

problem. This has been a well-established theorem [33, 3] applied to several other domains

such as data compression, and data transmission. Fig. 3.3 shows an example of different

activities in a video that are connected via a temporal link. We can assume this temporal

ordering in terms of Markov chain, where current activity only depends on previous activity.

Let us consider a stochastic process, where states can be denoted as {X1, X2, . . . , Xn} and

each state Xi ∈ X . If a source X1, X2, . . . Xn, produces a sequence, we can characterize

the distribution of a sequence as p{(X1, . . . , Xn) = (x1, . . . , xn)} = p(x1, . . . xn). Since we

assume the temporal link as Markov chain, we can write the conditional independence as

follows.

P (xn+1|xn, . . . , x1) = p(xn+1|xn) (3.4)
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In Markov chain, one state moves successively to next state with a probability. Let us denote

current state Xi which moves to next state Xj with probability pij . The probability pij is

called transition probability. In activity recognition, we assume that the transition probability

does not change over time. So, the Markov chain becomes time-invariant (stationary) where

the conditional probability p(xn+1|xn) does not rely on n. This can be written as

pX1...Xn(x1, . . . , xn) = pX1+t...Xn+t(x1, . . . , xn). (3.5)

Here, t denotes time shift. For stationary Markov chain, we can define a transition matrix

Ts, where each entry represents the probability of jump from one state to another. The

transitional matrix Ts can be written as

Ts =



p11 p12 p13 . p1n

p21 p22 p23 . p2n

. . . . . . . . . . . . . . . . . . . . . .

pn1 pn2 pn3 . pnn



where, each pij > 0 and for all states Xi,

n∑
m=1

pim =

n∑
m=1

p(xm|xi)

= 1. (3.6)
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Now, we can compute the probability of seeing a sequence, p(X1, X2, . . . , Xq) as

p(X1, X2, . . . , Xq) = p(X1)p(X2|X1) . . . p(Xq|Xq−1) (3.7)

Here, q is the number of elements in a sequence. If the Markov chain is stationary, then

we can define a stationary distribution µ over all Xi. The stationary distribution can be

computed as

µ = µTs (3.8)

where, each element of µ would be µi =
∑n

j µjpji, and
∑n

i=1 µi = 1. If we transpose Eqn. 3.8,

we obtain

(µTs)
ᵀ = µᵀ

T ᵀ
s µ

ᵀ = µᵀ (3.9)

Thus, stationary distribution can be obtained from the eigenvector of T ᵀ
s with eigenvalue 1

by utilizing eigen value decomposition. If the transition matrix Ts is known, we can easily

compute stationary distribution. It could be possible to have multiple eigenvectors associated

to an eigenvalue of 1 where each eigenvector gives rise to an associated stationary distribution.

In this case, the Markov chain becomes reducible, i.e. has multiple communicating classes

[3].
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Entropy Rate: The entropy rate of a stochastic process {X1, X2, . . . , Xn} can be

written as

H(X ) = lim
n→∞

1

n
H(X1, X2, . . . , Xn) (3.10)

For stationary process, the entropy rate [93] becomes

H(X ) = lim
n→∞

1

n
H(X1, X2, . . . , Xn)

= lim
n→∞

1

n
H(Xn|Xn−1, . . . , X1). (3.11)

H(Xn|Xn−1, . . . , X1) is non-increasing as n increases and the limit must exist [93]. For

Markov chain, the above equation 3.11 would be H(X ) = limn→∞H(Xn|Xn−1, . . . , X1) =

limn→∞H(Xn|Xn−1). If X1 ∼ µ, then the entropy rate is

H(X ) = −
∑
ij

µipij log pij (3.12)

Using Eqns. 3.9 and 3.12, we can compute stationary distribution and entropy rate. From the

Asymptotic Equipartition Property (AEP) theorem, the probability of a sequence (Eqn. 3.7)

becomes

p(X1, . . . , Xq)→ 2−qH(X ). (3.13)

Now, we introduce a notation E , which represents atypical score. E can be computed as

E = −1
q log p(X1, . . . , Xq)−H(X ). Next, we will demonstrate how this atypical score can

be utilized in a couple of applications- (a) sample selection and (b) anomaly detection.
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3.3.3 Computation of Atypical Score in Video Applications

In activity classification, an activity generally shares the temporal relation with

past activities. An activity might be strongly correlated with its previous activity, and it

is also possible that two consecutive activities are uncorrelated. Thus, we consider that a

temporal link is established if the time interval between current and previous activities is

below a threshold τ , else it is possible that two consecutive activities are not temporally

related. Fig. 3.3 shows an example of such scenario. From the figure, we can see that

temporal link between last two activities is not established due to a long time interval.

In this work, we assume that the current activity only depends on previous activity, thus

p(a3|a2, a1) = p(a3|a2) as shown in Fig. 3.3.

As the activities form a sequence and generate Markov chain for a video clip, we

can compute atypical score by computing entropy rate and the probability distribution of a

sequence. For transition matrix, we simply count the frequency of an activity appearing

given the previous activity. Consider, ith row vector ri of matrix Ts shown in Eqn. 3.6,

which can be written as

ri =
1∑Na

k=1 φ
m
k

[φi1, . . . , φ
i
n]. (3.14)

Here, Na represents the number of activity classes. φkj implies the number of appearing

activity class aj with previous activity ak. Thus, each (i, k)-th entry of ri represents the

transitional probability from ai to ak. After obtaining the transition matrix, we can easily

compute stationary probability µa using Eqn. 3.9 by utilizing eigen value decomposition.

Let us define the states A1, . . . , Ap and each state Ai ∈ A. Each of these states can have
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outcome a1, . . . , aNa . So, we can compute the entropy rate as follows.

H(A) = −
∑
ij

µair
i
j log rij (3.15)

Given a video, set of activity sequences A1, . . . , Ap are observed. p is the number

of appearing objects in a video. The probability of a sequence would be p(A1, . . . , Ap) =

p(A1)p(A2|A1) . . . p(Ap|Ap−1) = p(Ap). It can be calculated from µa and rij . We can

compute the atypical score of the sequence as follows.

E = −H(A)− 1

P
log2 p(AP ) (3.16)

Now, in order to compute the atypical score for each of the samples, we remove

a tuple from the sequence associated with activity sample at and observe the deviation of

atypical score as similar to Eqn. 3.16. It might be possible that activity label at time t

(at) is excluded as because it appears very far from activities before and after it. In an

extreme case, we only compute the entropy of that activity sample, which will be discussed

in Sec. 3.3.4. If we remove qth sample from the sequence, then we compute the probability

of a new sequence as p(Ap′) = p(A1)p(A2|A1)...p(Aq−1|Aq−2)p(Aq+2|Aq+1)...p(AP ). Thus,

p(Aq|Aq−1) and p(Aq+1|Aq) are eliminated from the distribution function. The length of

new sequence would be P − 2. So, the atypical score of new sequence would be Eq, which

can be written as

Eq = −H(A)− 1

P − 2
log2 P (AP−2) (3.17)
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We can now measure the deviation between E and Eq.

Ẽq = |E − Eq|

= | − 1

P
log2 p(AP ) +

1

P − 2
log2 p(AP−2)|

= | 2

P (P − 2)

P∑
m=1

m6={q−1,q}

log2 p(Am+1|Am)−

1

P
(log2 p(Aq|Aq−1)− log2 P (Aq+1|Aq)| (3.18)

In case of first and last activity samples in a video, we only remove one element (either

p(A1) or p(Ap|Ap−1)). Finally, we compute an atypical score for each activity sample as,

Ẽq
Nt

, where Nt denotes the number of tuple removed from the original sequence. Using the

atypical scores, we can formulate our optimization problem to select the informative samples

for manual labeling as discussed next.

Algorithm 2: Computation of Atypial Score and Uncertainty for Sample
Selection

INPUTS. 1. Learned models from training data L: Classification Model M
and Transition Matrix Ts

2. Unlabeled Video Clips: U
OUTPUTS. The vectors for atypical Score T and entropy h for the
unlabeled data U
Step 1: Compute Stationary Probability µ as shown in Eqn. 3.9 using Ts.
Step 2: Compute Entropy Rate H(A) using µ and Ts as in Eqn. 3.15.
Step 3: Obtain an activity sequence from the predicted labels provided by
M for a video clip in U .

Step 4: Compute the probability of sequence p(AP ) using µ and Ts as in
Eqn. 3.7

Step 5: Compute atypical score Ẽq using Eqn. 3.18 and entropy hq
associated with qth sample.

Step 6: Calculate vectors T and h as discussed in Sec. 3.3.4
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3.3.4 Informative Sample Selection for an Activity Sequence

In this section, we will formulate an objective function from the atypical score

of samples as discussed before. This objective function will be optimized to select the

most informative samples. Let us consider that we have a batch of N unlabeled instances

and we need to select the optimal instances for manual labeling. Let us define a vector

T j = [Ẽ1 Ẽ2 . . . ]T , containing the atypical score of each sample of the jth video depending

on the recognition task (e.g., activity recognition) as in Eqn 3.18.

Consider a vector T which represents the atypical scores of the samples for all

videos. We can write T in terms of T j as follows.

T = [T 1 T 2 . . . ]T (3.19)

We also incorporate the uncertainty of current baseline classifier on the unlabeled

samples. We define a vector that denotes the entropy of all samples as h = [h1 h2 . . . ]T ,

where hj = E[− log2 pj ], and pj is the p.m.f. of prediction scores by the current baseline

classifier on the jth unlabeled sample. We aim to choose a subset of the samples which

are informative based on the two criterion, namely atypical score and the entropy of each

sample obtained from the classifier. We can write the optimization function in vector form

as follows,

y∗ = arg max
y

yT (h + λT )

s.t. y ∈ {0, 1}N , yT1 ≤ η (3.20)
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Here, λ is a weighting factor. The term yT1 represents the number of samples will be chosen

which is bounded by η. Let us denote f = −(h + λT ). Maximization of the objective

function in Eqn. 3.20 is the same as minimization of yTf . It is a binary linear integer

programming problem and can be solved by CPLEX [37]. Algorithm 2 shows the steps

of our proposed method for selecting informative samples. Next we show how the sample

selection strategy can be used for active learning and anomaly detection as two applications

for the experiments.

Algorithm 3: Sample Selection for Active Learning with Continuous Data

INPUTS. 1. Learned models at Batchk−1 : Classification Model Mk−1 and
Transition Matrix T k−1s

2. Unlabeled Video Clips at BatchK : Uk
OUTPUTS. Learned Models after processing videos in BatchK : Mk and T ks
Initialize: L = {L0} (Initial Set of Data)
Step 1: Calculate vectors T and h using Algorithm 2
Step 2: Find optimal set of samples y∗k using Eqn. 3.20 for Batch k
Step 3: L = L ∪ y∗k
Step 4: Update models Mk−1 and T k−1s with L.

Active Learning

The sample selection strategy discussed above can be used in an active learning

framework to update a classification model online. The adaptability of recognition models

to the continuous data stream becomes important for long-term performance. Given a set of

data at particular time, the proposed sample selection approach can be utilized to select the

most informative samples in order to update the model. After obtaining a set of samples y∗

from Eqn. 3.20, we can ask a human to label these samples. With newly generated labeled

data, the classification model M, and the temporal relationship model need to be adjusted.

49



Update M. For classification task, we use softmax classifier to predict the labels. If

the feature vector is Fk for kth sample, then predicted probability for the jth class can be

written as, P (l = j|Fk) = eF
T
k wj∑K

k=1 e
FT
k

wk
. Here, K is the number of classes, wj represents the

weights corresponding to class j. We optimize the cross entropy loss function to estimate

the parameters as presented in [38]. For the current batch, we update the parameters with

the newly labeled data samples.

Update Temporal Relationship Model. Let us consider a matrix Φ that represents the

temporal statistics between activities. Φ will be updated based on the newly acquired labels.

The updated statistics can be written as, Φ′ ← Φ + Φ̃, where Φ̃(.) represents the statistics

with the newly labeled samples and Φ′ is the updated statistics. With updated Φ, transition

matrix Ts is modified.

Algorithm 4: Algorithm of Proposed Method for Anomaly Detection

INPUTS. 1. Learned models with normal activities : Classification Model
M and Transition Matrix Ts

2. Test Video Clip Vt.
OUTPUTS. Set of binary labels C for anomaly and normal activities for Vt.
Step 1: Compute atypical score Ẽj using Eqn. 3.18 and entropy hj
associated with jth sample using Algorithm 2.

Step 2: Calculate irregularity score Dj using Eqn. 3.21.
Step 3: Assign class labels C for all the activities in Vt based on threshold τ
as discussed in 3.3.4.

Anomaly Detection

In anomaly detection, we consider an activity as abnormal if it is an outlier with

respect to the learned model. Thus, any prior information on anomalous activity at training

time is unknown. We learn the recognition model M from the regular activities. The
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temporal relationship between the activity samples is also exploited during the learning

process. We compute transition matrix Ts from this temporal relations. We calculate

stationary distribution µ followed by entropy rate H(X ) using Eqns. 3.9 and 3.12.

Given a test video,M predicts the activity labels, from which a sequence is formed.

We can compute atypical score Ẽj associated with jth sample as discussed in Sec. 3.3.3 using

Eqn. 3.18. We also compute the entropy hj = E[− log2 pj ] from the distribution of confidence

score provided by M. We can now define irregularity score Dj which can be written as

Dj = Ẽj + βhj . (3.21)

β represents weighting factor. We also consider entropy along with the atypical score in

order find an anomaly. Given an anomaly class, entropy should be high as it exhibits high

uncertainty. All the steps are demonstrated in Algorithm ??. If Dj is larger than a threshold

τ then it is considered as an abnormal class, or normal otherwise. The class of a sample Cj

can be determined as follows.

Cj =


1, if Dj > τ

0, otherwise

Here, 1 represents abnormal activity and 0 denotes normal class. Next, we will demonstrate

the experimental analysis of our proposed approach to sample selection and anomaly

detection.
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(a) MPII-Cooking Dataset (b) VIRAT Dataset

Figure 3.4: This figure illustrates the recognition performance of the proposed method for the tasks
of informative sample selection and active learning, on (a) MPII-Cooking, and (b) VIRAT datasets.

3.4 Experiments

In this section, we evaluate our proposed method on two distinct applications such

as informative sample selection for recognition model, and anomaly detection, for activity

recognition task. We also compare our methods with state-of-the-art approaches on two

challenging datasets.

Datasets. We demonstrate the performance of our proposed method on two video

datasets. We evaluate our results on VIRAT [116] and MPII-Cooking [128] datasets for

activity classification task. VIRAT is a video dataset which provides temporal relations

between different activity samples. This dataset has 329 video clips consisting of 11 different

activities [116]. MPII-Cooking dataset presents 65 cooking activities, e.g., cut slices, pour,

or spice [128]. It has 44 videos in total. Since videos are usually long, we follow sliding

window approach for cropping short video clips in order to create more video instances.

Feature Extraction. For activity recognition model, we adopt the classification

model described in [142]. We utilize the final layer of 3d convolutional neural network
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Figure 3.5: The figure presents the performance of proposed active learning method for activity
recognition task on two datasets - MPII-Cooking [128] (first column) and VIRAT [116] (second
column) datasets. Plots (a,b) present the comparison against other state-of-the-art sample selection
methods. Plots (c,d) demonstrate comparison with BM-All method. Plots (e,f) demonstrate the
sensitivity analysis of our framework. Best viewable in color.
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to extract features. Finally, we have 4096 dimensional c3d [142] feature for an activity

sample (small clip of a video). These features are used to train softmax classifier for activity

recognition.

Evaluation Criterion. In order to evaluate active learning (AL) methods, we

generate a plot of recognition accuracy vs percentage of manual labeling. We aim to achieve

the same performance with less manual labeling effort. We utilize percentile (%) accuracy

for activity recognition. For anomaly detection, we use ROC curve which measures the

performance of binary classification task with varying threshold on prediction score. Finally,

we calculate the area under the curve (AUC) to assess the performance. The value of AUC

generally lies in between 0 and 1. We aim to achieve higher AUC value.

Experimental Setup. Our goal is to demonstrate two applications- (a) informa-

tive sample selection, and (b) anomaly detection, using proposed method discussed in Sec. 3.3.

In order to choose the most informative samples, we consider two scenarios- (1) sample

selection from fixed data, (2) batch-mode active (online) learning. In first scenario, we fix

the percentage of manual labeling from the whole training set and measure the performance

on test set. In this setting, proposed framework inspects all the samples while selecting the

informative samples. We learn the initial model from very few samples which are excluded

from the training set. In batch-mode active learning, we consider same experimental setting

as [10], where data samples (videos) are continuously coming in batches. We first divide

the dataset into training and testing set. We create 5/6 batches from the training set.

We evaluate the recognition performance on the test set after processing of each batch.

Initial models (classification and temporal relations) are learned from the first batch of data.
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Typically, the first batch is smaller than other batches. Next, we apply sample selection

strategy on next batches to choose the most informative samples. From the newly learned

samples, models are updated. We also incorporate incremental learning to update the model

as new classes can come in new batches. For anomaly detection, we learn the recognition

and temporal relations from the normal activities. Now, given a test video, we compute

irregularity score as discussed in Sec. 3.3.4, on which we determine whether an activity is

anomalous or not.

State-of-the-art and Baseline Methods: In the experiment, we compare

against different existing approaches and some baseline methods. These methods are

as follows.

� Typicality-SS: Proposed approach applied to informative subset selection.

� Typicality-AL: Typicality based sample selection strategy for active (or online) learning

task.

� Bv2B: Best vs Second Best active learning strategy [83].

� IL: Incremental learning approach presented in [59].

� Full-set: Entire training is used to obtain the accuracy from baseline classifiers.

� BM-All: All the samples in current batch are considered.

The baseline methods mentioned above are implemented on our training and testing set for

fair comparison.

3.4.1 Informative Subset Selection from Fixed Data

In order to evaluate the performance of our sample selection strategy discussed in

Sec. 3.3.4, we vary the percentage of manual labeling from the training set, and measure the
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performance on test set. We keep the initial set fixed which is learned from very few samples.

In this experimental setup, whole training set is observed in sample selection process. On

the contrary, data are coming into batches for active learning. In our experiment, we choose

10% to 60% with 10% increment as the percentage of manual labeling, and compute the

recognition accuracy for activity recognition. Fig. 3.4 illustrates the performance of our

proposed method on sample selection. In this figure, we plot the classification accuracy of

our proposed method with varying the percentage of manual labeling on two applications-

sample selection and active learning. Typicality-SS and Typicality-AL represent the proposed

approach for sample selection and active learning respectively. From this figure, we observe

that the recognition performance of typicality-SS outperforms typicality-AL as the percentage

of manual labeling decreases. The underlying reason is that typicality-SS considers the

whole training set during the sample selection process unlike typicality-AL where active

learner only utilize small portion of full dataset.

3.4.2 Performance of Batch-Mode Active Learning

We perform a various set of experiments to evaluate our proposed framework for

online learning. We analyze the following experiments: 1. Comparison with existing active

learning approaches, 2. Comparison against baseline methods, 3. Sensitivity analysis of the

parameters, and 4. Time complexity of the proposed method, and 5. Performance with

varying sequence length.
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Comparison With Other Active Learning Methods

We compare our active learning (AL) approach with other state-of-the-art methods

and baseline approaches as mentioned above. Figs. 3.5(a,b) show the recognition performance

with respect to the percentage of manual labeling. We observe the performance on test

set with updated recognition model after processing each batch of data. The straight line

presented in the figures implies recognition accuracy of the model with 100% manual labeling

(whole training set). We compare with some of the existing AL approaches such as Bv2B

[83], random sample selection, Entropy [41] and IL [59]. For comparison, we first run our AL

method to obtain the number of samples, which will be manually labeled. Then, we fix the

number of samples for each batch and obtain the accuracy for other AL methods. In other

words, different AL methods select the different subset of samples from each batch, where

the size of subsets would be same. The performance will vary due to the selection of different

subsets. For a fair comparison, we also keep same features and baseline classifiers for all the

methods. From Figs. 3.5(a,b), we can see that the proposed framework outperforms other AL

methods to reduce the manual labeling cost by a large margin in activity classification. Our

method requires only 54%, and 40% of manual labeling to achieve the optimal recognition

performance on VIRAT [116] and MPII-Cooking [128] datasets respectively as shown in

Figs. 3.5(a,b). From Figs. 3.5(a,b), we can also see the performance gap between our

method and other approaches. In MPII-Cooking [128] dataset, our approach outperforms

Bv2B [83], random sample selection, Entropy [41] and IL [59] by 0.89%,0.67%,0.97%

and 2.00% respectively with 54% manual labeling. Similarly, for VIRAT [116] dataset,

proposed method surpasses Bv2B [83], random sample selection, Entropy [41] and IL [59]
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by 5.12%,3.07%,5.80% and 4.78% respectively with 40% annotation effort as shown in

Fig. 3.5.

Comparison Against Other Baseline Methods

To evaluate proposed approach, we compare against BM-All method for activity

classification. BM-ALL represents all the samples in a current batch, thus for Nb batches

we have Nb accuracy values. Figs. 3.5(c,d) show the plots of our proposed model and

BM-All method. BM-ALL helps us to understand the effectiveness of proposed method

in selecting the most informative samples. We aim to achieve similar performance with

BM-All with less manual labeling effort. From the comparison of BM-ALL and proposed

method, we can observe that a good recognition model can be learned from a small set

of informative samples. Figs. 3.5(c,d) demonstrate that the proposed framework achieves

similar or better performance with fewer informative samples when compared to BM-All

method. In Fig. 3.5(d), we can also see that the proposed method outperforms the model

with 100% labeling (red straight line). This also attests that informative (quality) data is

often more useful than simply more data (quantity).

Sensitivity Analysis of the Parameters.

In the proposed framework, we use the parameter λ as discussed in Sec. 3.3.4. In

order to understand the efficacy of typicality, we show different plots with varying λ in

Figs. 3.5(e,f). We set the values of λ ranging from 0.7 to 2.0. We empirically choose these

values to observe the change in plots. Figs. 3.5(e,f) illustrate the variation of performance

due to change in hyperparameter λ. With high value of λ, we put more weight on atypical
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Method Cooking [128] VIRAT [116]
Time(s) Time(s)

Proposed Method 62.75s 69.84s

BM-All Method 2498.32s 3281.08s

Table 3.1: Analysis of computation time on MPII-Cooking [128] and VIRAT [116] datasets. We can
see from the table that our approach reduces computation time during training of recognition model.

score (Sec. 3.3.4). From figures, we can see that the performance degrades with the smaller

value of λ.

Time Complexity.

The proposed method also reduces computation time to adapt the recognition

model. Table. 3.1 shows the computational time on MPII-Cooking [128] and VIRAT [116]

datasets. We compute the time to query the samples, and time to train recognition models

for a dataset. We also compute the time to train a recognition model with all the samples in

a batch (BM-All method). As we can see that total time to train activity model with all the

samples is 3281.08s for MPII-Cooking [128], and 69.84s for VIRAT [116] dataset. On the

other hand, the total time for querying and training with samples selected by our approach is

2498.32s, and 62.75s for MPII-Cooking [128] and VIRAT [116] datasets respectively. From

the Table. 3.1, we can see that the proposed AL method helps to save a significant amount

of computational time, especially in a big dataset.

Performance with Varying Sequence Length

We also set up an experiment in order to observe the effect of varying sequence

length on recognition performance for active learning. We consider both MPII-Cooking and
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Figure 3.6: This figure illustrates the recognition performance with varying sequence length on (a)
MPII-Cooking, and (b) VIRAT datasets.

VIRAT datasets to run this experiment. Sequence length represents the number of activities

in a video clip. In order to prepare the data, we extract video clip with varying sequence

length from the original video by following sliding window. For MPII-Cooking dataset, we

vary the sequence length to 10, 8 and 5. We consider the whole video (length=VL) and

two different lengths (4 and 5) for VIRAT dataset. The performance of proposed method

with varying sequence length on MPII-Cooking and VIRAT datasets is demonstrated in

Fig. 3.6(a) and 3.6(b) respectively. From the figures, higher performance is observed for

longer sequence.

3.4.3 Anomaly Detection

In this section, we will show how atypical score (discussed in Sec. 3.3.3) can be

utilized to detect anomaly activities. In order to evaluate the performance in anomaly

detection, one class is randomly chosen as abnormal, and rest are considered as normal

activities. We perform cross-validation to assess the performance. We learn the temporal
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Figure 3.7: The figure shows ROC plots for anomaly detection on VIRAT [116] dataset. Different
colors represent baseline methods. Best viewable in color.

relations from normal activity classes. To train the recognition model, we train multi-class

softmax classifier with normal activities. We exclude the abnormal class during the learning

process. Given a test video, recognition model provides a probability distribution over the

classes. We compute entropy from this distribution. If the activity class belongs to normal

activities, recognition model shows low uncertainty. For abnormal class, the uncertainty

goes high. We also calculate the atypical score for the activity samples in test video. After

computing the uncertainty and atypical score, we calculate the irregularity score using

Eqn. 3.21. Based on this irregularity score, we determine whether an activity is abnormal or

not.

In order to evaluate our framework, we plot ROC curve by varying the threshold

on irregularity. Fig. 3.7 shows ROC plots for different methods. We consider One-class SVM
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Method AUC Score

typ-AD with β = 1.0 0.70

typ-AD with β = 0.5 0.75

One-Class SVM [137] 0.57

Context-Aware Model [166] 0.685

typ-AD with β = 0 0.76

Table 3.2: Analysis of computation time on MPII-Cooking [128] and VIRAT [116] datasets. We can
see from the table that our approach reduces computation time during training of recognition model.

[137] as the baseline method to detect anomalous activity. For convenience, we refer our

proposed method as ‘typ-AD’ (i.e, typicality for Anomaly Detection) in Fig. 3.7. In typ-AD,

we change the value of β as discussed in Sec. 3.3.4 ranging from 0 to 1.0 to observe the

effect on uncertainty score. From the figure, we can see that the proposed method with only

atypical score (β = 0) outperforms all other methods. As the value of β increases, we put

more weights on entropy hj as shown in Eqn. 3.21. We can see from the Fig. 3.7 that the

performance of anomaly detection is improved as the value of β decreases.

We also provide area under the curve (AUC), which is computed from ROC curves

as shown in Fig. 3.7 to measure the performance of anomaly detection. Table 3.2 illustrates

the value of AUC for different methods. As we change the value of β, we observe different

performance. With values of β = 0.5 and β = 1.0, we obtain AUC of 0.75 and 0.70

respectively. We observe the best performance with β = 0, which achieves 0.76 in AUC

value. We also compare against baseline (one-class SVM [137]) and other existing method

(Context-Aware Model [166]). The AUC values for One-class SVM [137] and Context-Aware

Model [166] are 0.57 and 0.685 respectively.
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3.5 Conclusions

In this paper, we presented a subset selection method by exploiting information-

theoretic ‘typical set’ to adaptively learn the recognition models. We show that ‘typical

set’ is a powerful tool which has been successfully used in data processing and can also be

utilized in informative subset selection problem for visual recognition tasks. Our method

is applied to various applications including sample selection and anomaly detection. The

notion of typicality is used for a sequence of activities that can be represented as a Markov

chain. Our approach significantly reduces the human load in labeling samples for visual

recognition tasks. We demonstrate that our method achieves better or similar performance

with only a small subset of the full training set compared with a model using full training

set. Our model also shows good performance in anomaly detection in a video. As a future

direction, we will study how typicality can be utilized to transfer knowledge from one domain

where data is available to another where there is limited labeled data.
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Chapter 4

Deep Learning Architecture for

Detection of Image Forgeries

4.1 Introduction

The detection of image forgery has become very difficult as manipulated images are

often visually indistinguishable from real images. With the advent of high-tech image editing

tools, an image can be manipulated in many ways. The types of image manipulation can

broadly be classified into two categories: (1) content-preserving, and (2) content-changing

[68]. The first type of manipulation (e.g., compression, blur and contrast enhancement)

occurs mainly due to post-processing, and they are considered as less harmful since they

do not change any semantic content. The latter type (e.g., copy-move, splicing, and object

removal) reshapes image content arbitrarily and alters the semantic meaning significantly

[68]. The content-changing manipulations can convey false or misleading information. As
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the number of tampered images grows at an enormous rate, it becomes crucial to detect the

manipulated images to prevent viewers from being presented with misleading information.

Recently, the detection of content-changing manipulation from an image or a video has

become an area of growing interest in diverse scientific and security/surveillance applications.

In this chapter, we present a novel framework to localize manipulated regions at pixel level

for content-changing manipulation.

Over the past decades, there have been lot of works to classify image manipulation,

i.e., whether an image is tampered or not [110, 17, 79, 67, 123, 130, 50]. However, only few

works [11, 18] attempt to localize image manipulation at pixel level. Some recent works

[21, 44, 95] address the localization problem by classifying patches as manipulated. The

localization of image tampering is a very challenging task as well-manipulated images do not

leave any visual clues, as shown by the following examples. Some of the content-changing

manipulation techniques are removing objects from an image, copy-clone, and splicing objects

into image. Fig. 4.1 shows some examples of different techniques to tamper an image that

changes the semantic meaning. In Fig. 4.1(a), copy-move manipulation is illustrated where

one object is copied to another region of the same image leading to two similar objects, one

originally present, and another manipulated. However, only the latter needs to be identified.

Fig. 4.1(b) illustrates object splicing manipulation, where an object from a donor image has

been spliced into other image. As another example, if an object is removed as shown in

Fig. 4.1(c), the region may visually blend into the background, but needs to be identified as

manipulated.

65



(a)

(b)

(c)

Figure 4.1: The figure demonstrates some examples of content-changing manipulations. (a), (b),
(c) illustrate copy-clone, splicing and object removal techniques to manipulate an image. First and
third columns are tampered images and corresponding ground-truth masks are shown in second and
fourth columns.
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Most of the state-of-the-art image tamper classification approaches utilize the frequency

domain characteristics and/or statistical properties of an image [78, 98, 102, 149]. The

analysis of artifacts by multiple JPEG compressions is also utilized in [25, 149] to detect

manipulated images, which are applicable only to the JPEG formats. In [113, 112], noise

has been added to the JPEG compressed image in order to improve the performance of

resampling detection. In computer vision, deep learning has shown promising performance

in different visual recognition tasks such as object detection [52], scene classification [165],

and semantic segmentation [96]. Some recent deep learning based methods such as stacked

auto-encoders (SAE) [163] and convolutional neural networks (CNN) [127, 12, 26] have

also been applied to detect/classify image manipulations. In media forensics, most of the

existing forgery detection approaches focus on identifying a specific tampering method, such

as copy-move [23, 61, 80], splicing [105], etc. Thus, one approach might not do well on other

types of tampering. Moreover, it seems unrealistic to assume that the type of manipulation

will be known beforehand. Our recent paper [11], upon which this particular work builds,

presents a general detection framework for different content-changing manipulations.

Unlike semantic object segmentation where all meaningful regions (objects) are

segmented, the localization of image manipulation focuses only the possible tampered region

which makes the problem even more challenging. In computer vision, recent advances in

semantic segmentation methods [164, 96, 8] are based on convolutional neural networks

(CNN). In CNN, the hierarchical features extracted at different levels help understand the

content of the objects or shape of a region. In object detection [52] and segmentation [96, 8],

CNN based architectures demonstrate very promising performance in understanding visual
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concepts by analyzing the content of different regions. In contrast to semantic segmentation,

manipulated regions could be removed objects, or copied objects from other parts of the

image. Well-manipulated images usually show strong resemblance between fake and genuine

objects/regions (i.e. content is similar) [127]. Even though CNN generates spatial maps for

different regions of an image, it can not generalize some other artifacts created by different

manipulation techniques. Thus, the localization of manipulated regions with only CNN

based architecture may not be the best strategy. In our earlier work [11], we compared

with some recent semantic segmentation approaches [164, 96] that do not perform well for

copy-clone and object removal type of manipulations.

Image tampering creates some artifacts, e.g., resampling, compression, shearing,

which are better captured by resampling features [131, 21, 49]. In [21], resampling features are

utilized as an important signature to detect manipulation. The authors trained six classifiers

to detect six different types of resampling (e.g., JPEG quality thresholded above or below 85,

upsampling, downsampling, rotation clockwise, rotation counterclockwise, and shearing (in

an affine transformation matrix). Resampling introduces periodic correlations among pixels

due to interpolation. As convolutional neural networks exhibit robust translational invariance

to generate spatial maps for the different regions of the image, and certain artifacts are

well-captured in resampling features, both can be exploited in order to localize manipulated

regions.

Towards the goal of localizing manipulated regions in an image, we present a

unified framework that exploits resampling features, LSTM network, and encoder-decoder

architectures in order to learn the pixel level localization of manipulated image regions. We
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Figure 4.2: Overview of proposed framework for localization of manipulated image regions.

train this network end-to-end using back-propagation algorithm. As deep networks are

data hungry, we create lots of synthesized images to learn the base model. The proposed

model shows promising results in localizing manipulated regions at the pixel level, which is

demonstrated on different challenging datasets.

4.1.1 Framework Overview

Given an image, our goal is to localize the manipulated regions at a pixel level.

The proposed framework is shown in Fig. 4.2. Our network can be divided into three parts-

(1) LSTM network with resampling features, and (2) convolutional encoder, and (3) decoder

network.

For the first part, we divide image into patches. For each patch, resampling features

[21] have been extracted. With extracted resampling features, we use Hilbert curve (discussed

in Sec. 4.3.1) to determine the ordering of the patches to feed into LSTM cells. We allow
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LSTM cells to learn the transition between manipulated and non-manipulated blocks in the

frequency domain. Finally, feature maps are generated from the LSTM cell output, which

will be combined with the feature maps from the encoder. An encoder consists of residual

block, batch normalization and activation function. At each residual block, two convolutions

are performed with shortcut connection. After each residual unit, max-pooling operation is

performed which gives translation invariance.

Our next step is to design a decoder that can provide finer representation of

different regions in a mask. We combine both spatial features from encoder and output

feature from LSTM to understand the nature of manipulation. Then, these features are taken

as input to the decoder. Each decoder follows basic operations like upsampling, convolution,

batch normalization and activating feature maps (using activation function). The decoders

help learn the finer details of the manipulated and non-manipulated classes. Finally, a

softmax layer is used to predict manipulated pixels against non-manipulated ones. With the

ground-truth mask of manipulated regions we perform end-to-end training to classify each

pixel. We compute cross entropy loss, which is then minimized by utilizing back-propagation

algorithm. After optimization, we find the optimal set of parameters for the network, that

will be used to predict manipulated regions given a test set.

4.1.2 Main Contributions

Our main contributions are as follows.

• In this work, we propose a novel localization framework that exploits both frequency

domain features and spatial context in order to localize manipulated image regions, which

makes our work significantly different than other state-of-the-art methods.
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• Unlike most of the existing works where patches are used as input, we consider

image as input so that we can utilize global context. Our framework is able to localize

manipulated region with high confidence, which is shown on two datasets.

•We present a new dataset for image tamper localization task that includes a large

number of images with ground-truth binary mask. This dataset is bigger than any of the

publicly available datasets such as IEEE Forensics [1] and COVERAGE [150]. It will also

help train deeper networks for image tamper classification or localization tasks.

This work builds upon our earlier paper [11], but with significant differences.

First, we propose new architecture where spatial features are learned by using an encoder

network, and frequency domain features are exploited to observe the transition between

patches by utilizing an LSTM network. Finally, a decoder network decodes the multi-modal

feature space to localize the manipulated regions. Second, we consider image as input

instead of patches that allows the network to learn larger context, i.e., intra-patch and

inter-patch correlation. Third, unlike [11], we utilize resampling features in our network that

captures characteristics of different artifacts due to image transformation such as upsampling,

downsampling, rotation and shearing.

4.2 Related Work

In media forensics, there have been lot of efforts to detect different types of

manipulations such as resampling, JPEG artifacts, and content-changing manipulations.

In this section, we will briefly discuss some of the existing works for detecting image forgeries.
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In last few years, several methods have been proposed to detect resampling in digital

images [131, 111, 49]. Most of the approaches exploit linear or cubic interpolation. In [131],

periodic properties of interpolation by the second-derivative of the transformed image have

been utilized for detecting image manipulation. In [111], an approach was presented to

identify resampling on JPEG compressed images where noise was added before passing the

image through the resampling detector; it was shown that adding noise aids in detecting

resampling. In [48, 49], a feature was generated from the normalized energy density and then

SVM was used to robustly detect resampled images. Some recent approaches [55, 76] have

been proposed to reduce JPEG artifacts produced by compression techniques. In [6, 143],

feature based methods have been presented in order to detect manipulation in an image.

Many methods have been proposed to detect seam carving [135, 51, 94] and

inpainting based object removal [152, 25, 88]. Several approaches exploit JPEG blocking

artifacts to detect tampered regions [91, 45, 99, 16, 17]. Some recent works [80, 71, 67, 4]

focus on identifying and localizing copy-move manipulation. In [80], the authors used an

interesting segmentation based approach to detect copy-move forgeries. They first divided

an image into semantically independent patches and then performed keypoint matching

among these patches. In [36], a patch match algorithm was used to efficiently compute an

approximate nearest neighbor field over an image. They further used invariant features

such as Circular Harmonic transforms and showed robustness over duplicated blocks that

have undergone geometrical transformations. In [105], an image splicing technique was

presented using visual artifacts. In [109], the steerable pyramid transform (SPT) and the

local binary pattern (LBP) were utilized to detect image forgeries. The paper [57] highlights
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the recent advances in image manipulation and also discusses the process of restoring missing

or damaged areas in an image. In [7], a review on different image forgery detection techniques

is presented.

Recently, there has been a growing interest to detect image manipulations by ap-

plying different computer vision and machine learning algorithms. In semantic segmentation,

many deep learning architectures [96, 164, 8] have been proposed, which surpass previous

state-of-the-art approaches by a large margin in terms of accuracy. Most of the deep networks

[96, 8] are based on Convolutional Neural Networks (CNNs), where hierarchical features

are exploited at different layers in order to learn the spatial map for semantic region. In

[96], a classification-purposed CNN is transformed into fully convolutional one by replacing

fully connected layers to produce spatial heatmaps. Finally, a deconvolution layer is used to

upsample the heatmaps to generate dense per-pixel labeling. SegNet [8] designs a decoder

to efficiently learn the low-resolution heatmaps for pixel-wise predictions for segmentation.

In [73, 27], the fully connected pairwise CRF is utilized as a post-processing step to refine

the segmentation result. In [120], skip connection is exploited to perform late fusion of

feature maps for making independent predictions for each layer and merging the results. In

ReSeg [145], Gated Recurrent Units (GRUs) and upsampling have been used to obtain the

segmentation mask.

Recent efforts, including [12, 13, 127, 21, 107] in the manipulation detection task,

exploit deep learning based models. These tasks include detection of generic manipulations

[12, 13], resampling [14], splicing [127], and bootleg [20]. In [124], the authors propose

Gaussian-Neuron CNN (GNCNN) for steganalysis. A deep learning approach to identify

73



facial retouching was proposed in [15]. In [163], image region forgery detection has been

performed using stacked auto-encoder model. In [12], a new form of convolutional layer is

proposed to learn the manipulated features from an image. In computer vision, deep learning

has led to significant performance gain in different visual recognition tasks such as image

classification [165], and semantic segmentation [96]. The deep networks extract hierarchical

features to represent the visual concept, which is useful in object segmentation. Most of the

architectures are based on Convolutional Neural Network (CNN), which provides spatial

maps relevant to manipulated regions. However, we can also exploit resampling features

that distinguish other artifacts. Since, both spatial context and resampling are important

attributes to localize manipulated regions from image, we present an unique network that

exploits both of the features.

4.3 Network Architecture Overview

Our main goal of this work is to localize image manipulations at pixel level.

Fig. 4.2 shows our overall framework. The whole network can be divided into three parts -

(1) LSTM network with resampling features, and (2) Encoder, and (3) Decoder network.

Convolutional neural network (CNN) architectures extract meaningful spatial features for

object segmentation, which could also be useful to localize manipulated objects. Even though

spatial feature maps are crucial to classify each pixel, solely using CNNs in the image domain

does not usually perform well in identifying image manipulations. It is simply because

there are certain manipulations like upsampling, downsampling, compression, which are

well-captured in the frequency domain. Thus, we use resampling features from the extracted
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(a) (b) (c) (d)

Figure 4.3: The figure shows example of manipulated images from the NIST dataset[2] column (a).
Column (b) shows the corresponding ground-truth masks for the manipulated images in column (a).
Columns (c) shows two patches extracted from the corresponding image, with the top containing no
manipulation and the bottom one containing some manipulations. Columns (d) shows the radon
transform corresponding to each of the extracted patches with each row corresponding to one of the
10 extracted angles.

patches of an image. These resampling features are considered as input to the LSTM

network which learns the correlation between different patches. An encoder architecture

is also utilized to understand the spatial location of manipulated region. Before decoder

network, we utilize the meaningful features by exploiting both spatial and frequency domain.

Finally, we use decoder network to obtain finer representation of binary mask to localize

tampered region from low-resolution feature maps. In order to develop encoder-decoder

network, we utilize convolutional layers, batch normalization, max-pooling and upsampling.

Next, we will discuss the technical details of our proposed architecture for image tamper

localization.

75



4.3.1 LSTM Network with Resampling Features

Resampling Features

The typical content-changing manipulations are copy-clone, splicing and object

removal, which are difficult to detect. In general, these manipulations distort the natural

statistics at the boundary of tampered regions. Fig. 4.3 shows two examples to illustrate

the difference in statistics between manipulated and non-manipulated patches. In [21], the

method of resampling detection is presented. Laplacian filter along with Radon transform

is exploited in order to extract resampling features given a patch. We will also follow

the same procedure for resampling features. Given an image, we first extract 64 (8 × 8)

non-overlapping patches. As input image has size of 256x256x3, the dimension of each patch

would be 32x32x3. Then, the square root of magnitude of 3 × 3 Laplacian filter is used

to produce the magnitude of linear predictive error for each extracted patch as presented

in [21]. As resampling signal has periodic correlations in the linear predictor error, we

apply the Radon transform to accumulate errors along various angles of projection. In our

experiment, we use 10 angles. Finally, we apply Fast Fourier Transform (FFT) to find the

periodic nature of the signal. In general, these resampling features are capable of capturing

different resampling characteristics- JPEG quality thresholded above or below a threshold,

upsampling, downsampling, rotation clockwise, rotation counterclockwise, and shearing (in

an affine transformation matrix).

In order to reduce computational burden, we resize images to 256×256 which might

introduce some additional artifacts such as degradation in image quality factor, shearing,

upsampling, downsampling. In [21], resampling features are used to classify these artifacts.

76



First Order Second Order Third Order

Figure 4.4: The figure illustrates Hilbert curves for different orders.

In this work, we also utilize resampling features, which gives us robust performance. Unlike

[21], where resampling features are considered for patch classification, we perform localization

at pixel level. There is a tradeoff in selecting the patch size: resampling is more detectable in

larger patch sizes because the resampling signal has more repetitions, but small manipulated

regions will not be localized that well. In [21], resampling features are extracted from

8× 8 block. On the other hand, we choose 32× 32 small patches from an image to extract

resampling features that capture more information. The major motivation of utilizing the

resampling features for patches is to characterize the local artifacts due to different types of

manipulations.

Hilbert Curve

Long-Short Term Memory (LSTM) is commonly used in tasks where sequential

information exists. The performance of LSTM highly depends on the ordering of the patches

(sequence of the extracted patches). One can consider horizontal or vertical directions, but

these orderings do not capture local information well. For example, consider a manipulated
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object present in the upper-left corner of the image; if we follow horizontal and vertical

directions, LSTM will observe different part of the same object after a long interval. Due to

this long time lag, LSTM can not correlate well for a region (an object for this case).

In order to preserve better local information, we use space-filling curve which is

commonly used to reduce multi-dimensional problem to a one-dimensional [19]. Hilbert

curve is one of the space-filling curve methods that traverses the multi-dimensional space

linearly, and passes through all points of a square. Fig. 4.4 shows the process of how Hilbert

curve works. The main mechanism is to divide a plane into four parts, each of these parts

into four parts, and so on. As we have total 64 (8 × 8) blocks extracted from an image,

we require three recursive dividing of the plane. After ordering the patches with Hilbert

curve, LSTM network is utilized. We empirically observe that this ordering technique helps

improve the performance of localization.

Long-Short Term Memory (LSTM) Network

LSTM network is well-known for processing sequential data in different applica-

tions such as language modeling, machine translation, image captioning, and hand writing

generation. In computer vision, LSTM network has been successfully used to capture the

dependency among a series of pixels [119, 22]. The key insight of using LSTM for detecting

image manipulations is to learn the boundary transformation between different blocks, which

provides discriminative features between manipulated and non-manipulated regions.

In [11, 21], LSTM network is utilized in order to learn the transition (change)

between manipulated vs non-manipulated blocks by feeding the blocks into an LSTM

network. In [21], the authors propose a patch classification framework where frequency
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domain features are extracted from 8× 8 block before LSTM network. The method could

be more effective by considering larger block size. Unlike these approaches, we divide an

image into several patches, and extract rasampling features as discussed in Sec. 4.3.1 from

32× 32 size of patch that are taken as input to the LSTM network.

After extracting resampling features for each patch, we use Hilbert curve (discussed

in Sec. 4.3.1) to determine the ordering of the patches. Then, we feed the resampling

features extracted from patches into LSTM cells in a sequential manner. LSTM network

computes the logarithmic distance of patch dependency by feeding each patch to each cell.

The LSTM cells learn the correlation among neighboring patches. In this framework, we

use 2 stacked layers, and at each layer, 64 cells are used. We obtain 64 dimensional feature

vector from each cell in the last layer. Then, we project the outputs from LSTM network to

Nf features maps. Let us consider feature vector Fl ∈ R1×Nh . If we define a weight matrix

Wl (∈ RNh×Nf ), then output feature would be as follows:

Ol = Fl.Wl +Bl (4.1)

Here, Bl is bias with Nf dimension. For each set of 64 cells, we will obtain 64 ×Nf size

matrix. The LSTM cells (64 cells) actually provide the transformed feature for each of the

patches. Next, we carefully choose the ordering of the cell outputs in order to preserve the

spatial information. Then, we reshape the 64×Nf matrix to 8× 8×Nf , where first two

dimensions represent the location of the patch.

LSTM Cell Overview. Information flow between the LSTM cells is controlled

by three gates: (1) input gate, (2) forget gate, and (3) output gate. Each gate has a value
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ranging from zero to one, activated by a sigmoid function. Let us denote cell state and

output state as Ct and zt for current cell t. Each cell produces new candidate cell state C̄t.

Using the previous cell state Ct−1 and C̄t, we can write the updated cell state Ct as

Ct = ft ◦ Ct−1 + it ◦ C̄t (4.2)

Here, ◦ denotes the pointwise multiplication. Finally, we obtain the output of the current

cell ht, which can be represented as

zt = ot ◦ tanh(Ct) (4.3)

In Eqns. 4.2 and 4.3, i, f, o represent input, forget and output gates.

4.3.2 Encoder Network

Our main objective is to design an efficient architecture for pixel-wise tamper

region segmentation. We use convolutional layers to design the encoder which allows the

network to understand appearance, shape and the spatial-relationship (context) between

manipulated and non-manipulated classes. In [8, 96, 27], some deep architectures are

presented where convolutional layers are utilized in order to produce spatial heatmaps for

semantic segmentation. As spatial information is very important to localize manipulated

regions, we also incorporate convolutional layers into our framework. We exploit and modify

encoder-decoder architecture as presented in [8]. The encoder component is similar to CNN

architecture except the fully connected layers.
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Convolutional Network (ConvNet) consists of different layers, where each layer of

data is a three-dimensional array of size h× w × c, where h and w are height and width of

the data, and c is the dimension of the channels. Each layer of convolution involves learnable

filters with varying size. The filters in convolutional layer will create feature maps that are

connected to the local region of the previous layer. In the first layer, image is taken as input

with dimension of 256× 256× 3 (width, height, color channels).

The basic building block of each encoder utilizes convolution, pooling, and activation

functions. We use residual unit [64] for each encoder. Residual block takes advantage of

shortcut connections that are parameter free. The main advantage of using residual unit

is that it can easily optimize the residual mapping and more layers are trainable. Let us

consider an input to the residual unit is y, and the mapping from input to output of the

unit is T (.). The output of residual unit would be T (y) + y in the forward pass. In each

convolutional layer, we use kernel size of 3× 3× d, where d is the depth of a filter. We use

different depth for different layers in the network. In encoder network, the number of filters

are generally in increasing order. On the other hand, we decrease the number of filters in

decoder.

Each residual unit in the encoder produces a set of feature maps. We utilize batch

normalization at each convolutional layer. Batch normalization is robust to covariance shift.

As an activation function, we choose rectified linear unit (ReLU) that can be represented as

max(0, x). At the end of each residual unit, max-pooling with stride 2 is performed, which

reduces the size of feature maps by a factor of 2. Unlike [11], we exploit max-pooling at

each layer as it provides translation invariance. Each max-pooling operation introduces a
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loss of spatial resolution (i.e., boundary details) of the feature maps. The loss in boundary

detail can be compensated by using decoder which is introduced in [8], and discussed next.

4.3.3 Decoder Network

In [96], a decode technique is proposed that requires encoder feature maps to be

stored during prediction. This process might not be applicable in real-life as it requires

intensive memory. In this work, we follow a decoding technique that is presented in [8]. In

[8], the advantage of using decoder has been discussed in details. The key part is the decoder

which replaces the fully connected layers. The decoder decodes the feature output from

encoder. As encoder-decoder is primarily developed for semantic object segmentation [8], we

exploit and tune this network in order to segment manipulated objects. In the upsampling

step, no learnable parameters are involved. Different multi-channel filters are utilized which

are convolved with the upsampling heatmaps (coarse representation) to create dense maps.

Each decoder follows basic operations - upsample, convolution, and batch normalization.

Each decoder first performs upsampling of the feature maps learned at previous layer.

Following that, residual unit computation and batch normalization are performed. We use

3× 3 size kernel for decoder network. Fig. 4.2 shows the decoder operation of the network.

At the end of network, we obtain finer representation of spatial maps that indicates the

manipulated regions in an image.
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(a)

(b)

(c)

(d)

Figure 4.5: The figures show some manipulated images with corresponding ground-truth masks from
synthetic dataset. (a) and (b) shows images created from DRESDEN [54] dataset. (c) and (d) are
the manipulated images created from NIST [2] dataset.
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4.3.4 Training the Network

Soft-max Layer. In order to predict the pixel-wise classification, softmax layer is

used at the end of the network. Let us denote the probability distribution over various classes

as P (Yk) which is provided by softmax classifier. Now, we can predict label by maximizing

P (Yk) with respect to k. The predicted label can be obtained by Ŷ = arg max
k

P (Yk). As

we are only interested to predict manipulated pixels against non-manipulated pixels, the

value of k would be 2. Given the predicted mask provided by softmax layer, we can compute

the loss that will be used to learn the parameter through back-propagation.

Training Loss. During training, we use cross entropy loss, which is minimized

to find the optimal set of parameters of the network. Let θ be the parameter vector

corresponding to image tamper localization task. So, the cross entropy loss can be computed

as

L(θ) = − 1

M

M∑
m=1

N∑
n=1

1(Ym = n) log(Ym = n|ym; θ) (4.4)

Here, M and N denote the total number of pixels, and the number of class. y represents

the input pixel. 1(.) is an indicator function, which equals to 1 if j = k, otherwise it equals

0. In our experiment, we observe that weighted cross entropy loss provides better result. It

is simply because the imbalance between the number of non-manipulated and manipulated

pixels. We put more weight on manipulated pixels over non-manipulated pixels. We use

adaptive moment estimation (Adam) [75] optimization technique in order to minimize the

loss of the network, shown in Eqn. 4.4. At each iteration, one mini-batch is processed to

update the parameters of the network. In order to learn the parameters effectively, we choose

the mini-batch very carefully which will be discussed in details in Sec. 4.4. After optimizing
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the loss function over several epochs, we learn the optimal set of parameters of the network.

With these optimal parameters, the network is able to predict pixel-wise classification given

a test image.

4.4 Experiments

In this section, we demonstrate our experimental results for segmentation of

manipulated regions given an image. We evaluate our proposed model on two challenging

datasets- NIST’16 [2], and IEEE Forensics Challenge [1].

4.4.1 Datasets

In order to train our proposed architecture, we create a synthesized dataset, which

will be discussed in Sec. 4.4.1. In addition, we also use the NIST [2] and IEEE Forensics

Challenge [1] datasets to measure the performance.

Creation of Synthesized Data

As deep learning networks are extremely data hungry, there is a need to collect

images for training and testing the networks. For training, we will need plentiful examples

(usually tens of thousands) of both manipulated and non-manipulated images. Towards this

goal, we create approximately 65k manipulated images in order to train the proposed network

discussed in Sec. 4.3. This network will be referred to as ‘Base-Model’. The ‘Base-Model’

will then be fine-tuned with the NIST [2] and IEEE Forensics Challenge [1] datasets. Below
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(a)

(b)

(c)

(d)

Figure 4.6: This figure illustrates some segmentation results on NIST [2] dataset. First and second
columns represent input image and ground-truth mask for tampered region. Third and fourth
columns delineate probability heat map and predicted binary mask.
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(a)

(b)

(c)

(d)

Figure 4.7: Some segmentation examples on IEEE Forensics Challenge [1] dataset are shown in this
figure. First and second columns are input images and ground-truth masks for manipulated regions.
Third and fourth columns demonstrate the probability heatmap and predicted binary mask.
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Figure 4.8: The figures demonstrate ROC plots on NIST’16 [2], and IEEE Forensics Challenge [1]
datasets respectively. Each curve has area under the curve (AUC), which are provided in Table 4.4

we explain the innovation in the collection of the manipulated image set.

In the synthesized dataset, we have focused on mainly object splicing (addi-

tions/subtractions) manipulation. The major challenge of creating manipulated images was

to obtain segmented objects to insert into an image. For this we used the MS-COCO dataset

[90], which is largely used for object detection and semantic segmentation, to obtain seg-

mented objects across a variety of categories. We extracted the objects from MS-COCO[90]

images using image masks provided in ground-truth. Finally, these objects are used to create

manipulation from the images of DRESDEN dataset[54] and NIST dataset[2]. Please note

that we use only non-manipulated images from NIST dataset to create manipulation.

To create a new manipulated image, we followed the steps below.

(1) For each raw image in the DRESDEN dataset[54], we cropped each of the image’s corners

to extract a 1024x1024 patch. This method avoids resizing which introduces additional

image distortions.
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Data Set # image pairs Avg. Image Size

CoMoFod[141] 260 512x512

Manip[31] 48 2305x3020

GRIP[36] 100 1024x786

COVERAGE[150] 100 400x486

Synthesized 65k 1024x1024

Table 4.1: A comparison of common image tampering datasets

(2) For each of these image patches we spliced on six different objects, from the MS-

COCO dataset, to create six splice manipulated images.

(3) In order to create diverse splicing data, we spliced the same object onto the patch twice

with different scaling and rotation factor, while ensuring no overlap as shown in Fig. 4.5.

This entire process was automated allowing us to generate tens of thousands of images

in less than a day with no human interaction. Using the Dresden image database as the

source of non-manipulated images we were able to produce approximately 40k images and an

additional 25k using the DRESDEN and NIST datasets respectively. The scale of our data

is a hundred fold increase over most datasets that offer similar types of manipulations, which

allows us to train a deep learning model. Our synthesized data also has a relatively high

resolution. We can see how our dataset compares to similar datasets in table 4.1. With this

newly generated data, we trained the ‘Base-Model’. The base model predicts manipulated

region at pixel level given an image.

Dataset Preparation

In order to evaluate our model, we chose two datasets which provided ground-truth

mask for manipulated regions. NIST’16 [2] is a very challenging dataset, which includes
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: This figure demonstrates the segmentation performance with patches as input on NIST’16
[2] dataset. First column of (a) represents the input image. Second and third columns of (a) delineate
the patches as shown in the bounding boxes of input image (first column). Figures (c,d) and (e,f)
are corresponding ground-truth mask and predicted binary mask.
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three main types of manipulation - (a) copy-clone, (b) removal, and (c) splicing. This

recently released dataset includes images, which are tampered in a sophisticated way to

beat current state-of-the-art detection techniques. We also show our results on the IEEE

Forensics Challenge [1] dataset which provides ground-truth mask for manipulation. As

manipulated regions are small in number compared to non-manipulated regions, we also

perform data augmentation in order to get rid of bias in training.

In data preparation, we first split the whole image dataset into three subsets-

training (70%), validation (5%) and testing (25%). These subsets are chosen randomly.

In order to increase the training data, we extract bigger patches from the four corners

of the image. One additional patch is also extracted from center location of the image.

We crop patches with size 1024 × 1024 from NIST’16 [2] training images to optimize the

parameters of our architecture. The spatial resolution of IEEE Forensics Challenge [1]

dataset is comparatively low. So, we extract 512× 512 size of patches for IEEE Forensics

Challenge [1] dataset. These newly generated images usually contain partial manipulated

objects when compared to original images. We only perform data augmentation on training

set, not in validation and test set. As the image and corresponding ground-truth mask

are the same size, we can easily generate the ground-truth masks for the extracted image

patches. With these newly generated ground-truth masks and patches, we train the whole

network end-to-end.

4.4.2 Experimental Analysis

In this section, we will discuss the implementation and evaluation criterion of our

model. We compare our model with different existing methods for image forgery detection.
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Implementation Details. We implement our proposed framework in TensorFlow.

In order to expedite our computational load, we utilize multi-GPU setting. We use two

NVIDIA Tesla K80 GPUs to perform different sets of experiments, which will be discussed

next.

Evaluation Criterion. In order to evaluate our model, we use pixel-wise accuracy

and receiver operating characteristic (ROC) curve. ROC curve measures the performance

of binary classification task by varying the threshold on prediction score. The area under

the ROC curve (AUC) is computed from the ROC curve that measures the distinguishable

ability of a system for binary classification. The AUC value typically lies in between 0 and

1.0. The AUC with 1.0 is sometimes referred as perfect system (no false alarm).

Experimental Setup. We setup few experiments to evaluate our proposed

architecture. They are (1) performance of the proposed model, (2) performance with

different baseline methods, (3) comparison against existing state-of-the-art approaches, (4)

ROC curve, (5) qualitative analysis, and (6) impact of global context.

Baseline Methods: In this section, we will introduce some baseline methods. We

implement and compare against these methods. The various baseline methods are described

below.

� FCN : Fully convolutional network as presented in [96].

� J-Conv-LSTM-Conv : This method utilizes LSTM network and convolutional layers for

segmentation as in [11].

� Encoder-Decoder : This method utilizes convolutional network as encoder and deconvolution

as decoder, proposed in [8].
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Methods NIST [2] IEEE [1]

FCN [96] 74.28% –

Encoder-DeCoder [8] 82.96% -

J-Conv-LSTM-Conv [11] 84.60% 77.67%

LSTM-EnDec-Base 91.36% 88.24%

LSTM-EnDec 94.80% 91.19%

Table 4.2: The table shows the pixel-wise accuracy on NIST [2], IEEE Forensics Challenge [1]
datasets for image tamper segmentation.

� EnDec: Similar to encoder-decoder [8] with upsampling factor of 4 in deconvolution.

� LSTM-EnDec-Base: Proposed architecture as shown in Fig. 4.2 trained on Synthesized

dataset discussed in Sec. 4.5

� LSTM-EnDec:Finetuned model of proposed architecture as shown in Fig. 4.2

Performance of the Proposed Model.

We test our proposed model on two datasets- NIST’16 [2], IEEE Forensics Challenge

[1]. We first train our model with synthesized data (discussed in Sec. 4.5). We refer this model

as ‘LSTM-EnDec-Base’ model. The LSTM-EnDec-Base model is finetuned with training

sets from NIST’16 [2], IEEE Forensics Challenge [1] datasets. We obtain two finetuned

model for two datasets. Table 4.2 shows pixel-wise classification accuracy on segmentation

task. ‘LSTM-EnDec-Base’ model learns good discriminative properties between manipulated

vs non-manipulated pixels. Finally, finetuning this ‘LSTM-EnDec-Base’ model provides a

boost in performance for labeling tamper class at pixel level. From the table, we can see

that proposed model ‘LSTM-EnDec’ outperforms ‘LSTM-EnDec-Base’ model by 3.44%, and

2.95% on NIST’16 [2], IEEE Forensics Challenge [1] datasets respectively.
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Performance with Different Baseline Methods.

In semantic segmentation, some recent architectures such as fully convolutional

netowork (FCN) [96] and Encoder-Decoder (SegNet) [8] have successfully exploited. For

comparison, we implement and train these deep architectures with image manipulation data

to compare the performance of our model. We can see from Table. 4.2 that convolutional

neural network based model such as FCN, and SegNet does not perform well compared

to proposed architecture for tamper localization. It is because these models try to learn

the visual concept/feature from an image whereas manipulation of an image does not leave

any visual clue. We empirically observe that FCN and SegNet prone to misclassify for

copy-clone and object removal type of manipulations. LSTM-EnDec surpasses FCN and

Encoder-Decoder network by 20.52% and 11.84% on NIST [2] as shown in Table. 4.2. We

also compare against the segmentation framework for tamper localization (J-Conv-LSTM-

Conv) presented in [11]. The proposed network outperforms J-Conv-LSTM-Conv by large

margin. The advantage of our proposed model over J-Conv-LSTM-Conv is that proposed

model can learn larger context by exploiting correlation between patches. On the other

hand, J-Conv-LSTM-Conv is limited to correlate between different blocks of a patch. The

exploitation of both LSTM network with resampling features and spatial features using

encoder, helps the overall architecture to learn manipulations better.

Comparison against Existing Approaches.

In media forensics, there have been lot of approaches presented for image tamper

localization. Some of them are DCT Histograms [91], ADJPEG [17], NADJPEG [17],
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Methods AUC score

DCT Histograms [91] 0.545

ADJPEG [17] 0.5891

NADJPEG [17] 0.6567

PatchMatch [36] 0.6513

Error level analysis [99] 0.4288

Block Features [82] 0.4785

Noise Inconsistencies [103] 0.4874

LSTM-EnDec 0.7936

Table 4.3: Comparison against existing approaches on NIST [2] dataset.

PatchMatch [36], Error level analysis [99], Block Features [82], and Noise Inconsistencies [103].

Table. 4.3 shows the comparison against some existing state-of-the-art methods for image

tamper localization. From the table, we can observe that our framework outperforms other

existing methods by large margin on NIST’16 [2] dataset.

ROC Curve.

Figs. 4.8(a,b) show the ROC plots for image tamper localization, on NIST’16 [2],

and IEEE Forensics Challenge [1], datasets respectively. These ROC curves measure the

performance of binary pixel classification whether a pixel is manipulated or not. We also

provide the area under the curve (AUC) results in Table 4.4. Our model achieves AUC

of 0.7936 and 0.7577 on NIST and IEEE Forensics datasets respectively. From the ROC

curves as shown in Figs. 4.8(a) and 4.8(b), we can see that the proposed network classifies

tampered pixels with high confidence.
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Dataset Segmentation

NIST [2] 0.7936

IEEE Forensic [1] 0.7577

Table 4.4: Area under the curve (AUC) for the ROC plots as shown in Fig. 4.8

Qualitative Analysis of Segmentation.

In Figs. 4.6 and 4.7, we provide some examples showing segmentation results

produced by the proposed network. Fig. 4.6 shows segmentation results on NIST’16 [2]

dataset. Segmentation results for IEEE Forensics Challenge [1] dataset are illustrated in

Fig. 4.7. We also provide probability heat map for localizing tampered region as shown in

third column of Figs. 4.6 and 4.7. As we can see from the Figs. 4.6 and 4.7, the predicted

mask can locate manipulated regions from an image with high probability. The boundary of

tampered objects is affected in the segmentation results as shown in Fig. 4.6 (third column),

the underlying reason being that image boundaries are smooth (blurred) for NIST’16 [2]

dataset. However, our proposed network can still localize precisely with higher overlap

compared to ground-truth mask.

Impact of Global Context.

In our framework, we consider images as input so that the network can exploit

global context. In order to observe the effectiveness of global context, we run an experiment

where we consider patches as input to the network instead of images. Fig. 4.9 illustrates

the segmentation results with respond to the input patches on NIST [2] dataset. From the

figure, we can see that the network can localize more precisely given an image. On the other
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hand, the precision of localization degrades for smaller patch as the patch misses the broader

context. In case of manipulated patch as shown in Figs. 4.9(a) and 4.9(b) (middle column),

proposed network detects the part of the manipulated objects. For example, digit of the

person’s dress and wheel of a plane are identified as manipulated as shown in Figs. 4.9(e) and

4.9(f) respectively. For the patch with non-manipulated pixels, the network may provide

false alarm sometimes as demonstrated in Figs. 4.9(e) (third column). From this study, we

can conclude that global context helps analyzing the manipulated images.

Dataset Segmentation

LSTM-EnDec-Image 94.80%

LSTM-EnDec-Patch 89.98%

Table 4.5: The table illustrates the pixel-wise accuracy for the proposed architecture with image
and patch as input on NIST [2] dataset.

Table 4.5 shows the accuracy of pixel labeling of the proposed model for identifying

the image manipulation with different set of inputs (image and patch). We extract 16 patches

from each image of the test set in order to evaluate the performance by utilizing the sliding

window approach. From the table, we can observe that the performance of LSTM-EnDec

degrades when patches are taken as input since the network could not exploit global context.

On the other hand, LSTM-EnDec demonstrates higher performance with images as input

to the network. LSTM-EnDec-Image outperforms LSTM-EnDec-Patch by large margin

( 4.82%) in recognizing manipulated pixels as shown in Table 4.5.
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4.5 Conclusion

In this chapter, we present a deep learning based approach to semantically segment

manipulated regions in a tampered image. In particular, we employ a hybrid CNN-LSTM

model that effectively classifies manipulated and non-manipulated regions. We exploit CNN

architecture to design an encoder network that provides spatial feature maps of manipulated

objects. Resampling features of the patches are incorporated in LSTM network to observe the

transition between manipulated and non-manipulated patches. Finally, a decoder network

is used to learn the mapping from encoded feature maps to binary mask. Furthermore,

we also present a new synthesized dataset which includes large number of images. Our

detailed experiments showed that our approach could efficiently segment various types of

manipulations including copy-move, object removal and splicing.
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Chapter 5

Conclusions

5.1 Thesis Summary

In this thesis, we addressed two fundamental challenges currently facing image and

video analysis approaches - how to minimize the labeling effort by choosing informative

samples to label, and how to identify image regions that have been manipulated. In the

first two frameworks, we proposed novel information-theoretic strategies to select the most

informative samples for manual labeling. The main purpose of these approaches is to learn

a good recognition model with reduced human annotation effort. In our final approach, we

proposed a deep neural network in order to localize manipulated objects from an image. The

proposed network can automatically segment out manipulated regions from non-manipulated

one.

In first approach as discussed in Chapter 2, we proposed a novel active learning

framework for joint scene and object classification where inter-dependencies between scene

and object samples had been exploited. We demonstrated how joint entropy of a graph for-
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mulated from scene and object samples could be reduced by utilizing the mutual information

between nodes of the graph. With only a small subset of the full training set, our approach

achieved better or similar performance compared with the model trained on full training set.

In Chapter 3, we introduced the notion of typicality which could be used as an important tool

to learn informative samples from a huge pool of unlabeled samples. Typicality efficiently

links between recognition and temporal relationship model. This method is computationally

faster than first approach for sample selection task. We applied our method on different

computer vision problems such as sample selection, and anomaly detection, which has a

great use in different video analysis tasks. This method reduced the human load in labeling

samples for visual recognition tasks without compromising the performance compared to

the model with 100% labeling. Our method also efficiently detects the anomalous sample

from a video.

In Chapter 4, we presented our final method which exploited deep neural network

for localizing manipulated regions from an image. In this network, we designed a novel

architecture utilizing resampling features, CNN and LSTM networks in order to effectively

classify manipulated pixels given an image. CNN architecture provides spatial feature maps

of manipulated objects. The LSTM network observes the transition between manipulated

and non-manipulated patches by extracting resampling features from the patches of an

image. Finally, we exploited a decoder network to learn the mapping from encoded feature

maps to fine grained binary mask. In this chapter, in order to train deep network, we also

proposed a new synthesized dataset which includes large number of images. This dataset

could be beneficial to media forensics community, especially if one wants to train a deep
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network. We showed rigorous experiments where our approach could efficiently segment

various types of manipulations.

5.2 Future Research Directions

Our research aims to explore advanced machine learning techniques and information-

theoretic approaches to solve various computer vision problems. We presented two novel

active learning strategies that were applied to scene classification, object detection, and

action recognition. In this thesis, we restricted our methods to label the class of a sample

for any recognition task. However, classifications tasks such as object detection, and activity

recognition require the location ground-truth in an image along with class label for a

sample. At training phase, a model is required to access the bounding box information

and the class labels in order to efficiently detect an object. Similarly, it is true for activity

recognition which requires the information of spatio-temporal location of an activity. The

sample selection strategy for the tasks like object detection and activity recognition where

the location and the class label of sample are required to be manually labeled, will be a

challenging future research direction.

In computer vision, transfer learning has become a growing interest where the

models learned in one task can be used in another task with little additional supervision. In

Chapter 3, we exploited typicality to measure the informativeness of the samples. As a future

direction, typicality can be utilized to transfer knowledge from one domain where data is

available to another where there is limited labeled data. One can learn a good representation

of recognition model when there are enough data samples. However, transferring some
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information from this learned representation to an unknown domain will be an interesting

research problem. Typicality can be used as powerful tool to measure the relevancy of two

domains where one is known and the other will be learned. Furthermore, the possible future

application of our active learning frameworks presented in this thesis might be to adjust the

parameters of a deep network with a set of unlabeled data.

In Chapter 4, we presented deep learning based approaches in order to localize

manipulated regions from an image. The localization of manipulated objects has diverse

applications, especially in security and surveillance. In our approaches, we considered pixel

correlations, frequency domain features and low-level features (e.g., edges, and textures)

to localize tamper regions. The high level information such as contextual regularity for

detecting manipulated objects can be a potential future direction. For example, a car is

more inclined to appear in road scene than indoor scenes. If a car is spliced into ‘indoor’

image, the context model should detect this anomaly. Another possible future direction is

to exploit deep neural network to identify manipulation in videos.

Another future research direction of this thesis could be the active learning for

adversarial examples. The adversarial examples are created by perturbing the original

samples (e.g., images or videos) in a controlled way which causes the recognition model to

make a mistake. In active learning methods, we assume that the human or Oracle will always

provide the correct labeling. However, in the context of adversarial examples, human/Oracle

may provide inaccurate labels that may corrupt the learning process of a recognition model.

Designing a robust active learning framework for adversarial examples will be an interesting

research problem in the future.
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