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ABSTRACT OF THE DISSERTATION

Graphical Models for Wide-Area Activity Analysis in Continuous Videos

by

Nandita M. Nayak

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, May 2014

Professor Amit K. Roy-Chowdhury, Chairperson

Activity analysis is a field of computer vision which has shown great progress in the past

decade. Starting from simple single person activities, research in activity recognition is

moving towards more complex scenes involving multiple objects and natural environments.

The main challenges in the task include being able to localize and recognize events in a

video and deal with the large amount of variation in viewpoint, speed of movement and

scale.

Surveillance videos typically consist of wide areas being monitored through a static

camera. Often, they contain long duration sequences of activities which occur at different

spatio-temporal locations and can involve multiple people acting simultaneously. Many

times, the activities have contextual relationships with one other. Although context has

been studied in the past for the purpose of activity recognition to a certain extent, the use of

context in recognition of activities in such challenging environments is relatively unexplored.

The primary focus of the work is in recognition of activities in continuous videos.

We discuss three methods of activity recognition in continuous videos. In the first,
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we demonstrate the different components of analysis involved in labeling activities in wide-

area continuous videos, such as elimination of background noise, identification of motion

patterns which correspond to interesting activities and the task of activity modeling. We

propose to do this using an optical flow based framework. We discuss the limitations of this

work, which can be overcome with the addition of context.

Next, we propose a context-based approach for activity recognition using graphical

models. We assume that the location of activities are identified using existing techniques.

The task of the graphical model is therefore to label these identified regions using context.

Given a collection of videos and a set of weak classifiers for individual activities, the spatio-

temporal relationships between activities are represented as probabilistic edge weights in a

Markov random field. This model provides a generic representation for an activity sequence

that can extend to any number of objects and interactions in a video. We show that the

recognition of activities in a video can be posed as an inference problem on the graph. We

conduct experiments on the publicly available VIRAT dataset to demonstrate the improve-

ment in recognition accuracy using our proposed model as opposed to recognition using

state-of-the-art features on individual activity regions.

Next, we present a unified framework to track multiple people, as well localize and

label their activities, in complex long-duration video sequences. To do this, we focus on two

aspects - the influence of tracks on the activities performed by the corresponding actors and

the structural relationships across activities. We propose a two-level hierarchical graphical

model which learns the relationship between tracks, relationship between tracks and their

corresponding activity segments, as well as the spatiotemporal relationships across activity
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segments. Such contextual relationships between tracks and activity segments are exploited

at both the levels in the hierarchy for increased robustness.

Finally, we suggest how the structure learning can be performed in a graphical

model which performs activity recognition. While a continuous video consists of several ac-

tivities, the contextual relationships between these activities are relatively sparse. We pro-

pose a method which aims to discover these sparse relationships using an L1-regularization

based automatic structure discovery of a graphical model representing the video. Sparsity

is imposed on the edges of the graph so as to model a sparse set of relationships.
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Chapter 1

Introduction

1.1 Activity Recognition

Activity recognition is the task of interpretation of the activities of objects in video

over a period of time. The goal of an activity recognition system is to extract information on

the movements of objects and/or their surroundings from the video data so as to conclude

on the events and context in the video in an automated manner. In a simple scenario where

the video is segmented to contain only one execution of a human activity, the objective of

the system is to correctly classify the activity into its category, whereas in a more complex

scenario of a long video sequence containing multiple activities, it may also involve the

detection of the starting and ending points of all occurring activities in the video[5].

Although there is no formal classification of activities into different categories, for

the sake of understanding, activities can be divided into simple and complex activities based

on the complexity of the recognition task [6]. An activity which involves a single person
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and lasts only a few seconds can be termed as a simple activity. Such video sequences are

generally recorded in a constrained environment with very little variation or extraneous

noise. Some examples of simple activities are running, walking, waving, etc. Although

it is uncommon to find such data in the real world, these video sequences are useful in

the learning and testing of new models for activity recognition. Popular examples of such

activities are found in the Weizmann [2] and KTH [7] datasets.

The focus of this work however, is on wide-area activity analysis in surveillance

scenarios. This is a good example of complex activity recognition. In this case, we are

dealing with more realistic environments where people enter and exit the scene continuously.

The number of people in the scene at any instant cannot be easily predicted. Since we are

also dealing with a wide-area, we can have activities occurring at different viewpoints from

the static camera. The activities can involve person-person interactions or person-object

interactions. In addition, we deal with continuous videos here. This means that more

than one activity can take place in a video. The scene also contains some occlusion and

background clutter. Some examples of wide-area activity datasets are the UT-Interaction

dataset [8], the VIRAT dataset [9], the UCLA dataset [10] and the UCR videoweb dataset

[11].

1.1.1 Challenges in Wide-Area Activity Analysis

Wide-Area activity analysis is a challenging task for several reasons. Any activity

recognition system is efficient only if it can deal with changes in pose, lighting, viewpoint

and scale. These variations increase the dimensionality of the problem. These problems are
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prevalent to a greater degree when it comes to wide-area activity analysis. There is a large

amount of structural variation in a complex activity, therefore the dimension of the feature

space is high. The feature-space also becomes sparser with the dimension, thus requiring

a larger number of samples to build efficient class-conditional models thus bringing in the

Curse of Dimensionality [12]. Issues of scale, viewpoint and lighting also get harder to deal

with for this reason.

Most of the simple activity recognition systems in the past had been tested on

sequences recorded in a noise free controlled environment. Although these systems might

work reasonably well in such an environment, they may not work in a real world environment

which contains noise and background clutter. This problem is more prominent in a wide-

area activity recognition system since there are multiple motions in the scene and they can

easily be confused with the clutter.

Another challenge in wide-area motion analysis is the presence of multiple activi-

ties occurring in a continuous manner. Although many approaches can deal with noise with

sufficient training data, there are difficulties in recognizing continuous activities with com-

plex temporal structures, such as an activity composed of concurrent sub-events. Therefore

many methods are more suited for modeling sequential activities rather than concurrent

ones [13]. In addition, as stated in [13], as an activity gets more complex, many existing

approaches need a greater amount of training data, preventing them from being applied to

highly complex activities.
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1.1.2 Motivation for the Use of Context in Wide-area Activity Analysis

A long-term wide-area surveillance video usually consists of multiple people enter-

ing and exiting the scene over a period of time. Therefore, it is hard to predict the number

of activities occurring in the scene and the number of people involved in those activities.

This variability in the number of actors and the number of action executions within the

sequence is what we term as an “unconstrained” environment in this thesis. Most existing

activity recognition algorithms focus on the region where an activity occurs while ignoring

the contextual information in the surroundings. Such methods place assumptions on the

number of objects, scale and viewpoint of the scene and may not be equally effective in

more challenging environments. Often, it has been found that examining the surroundings

of an activity under consideration in a scene can provide useful clues about the activity.

This information obtained from the surroundings is termed as “context” of the activity.

In this thesis, we propose to incorporate spatial and temporal context across ac-

tivities in a continuous video into our model. The modeling of this contextual information

along with a traditional activity recognition system can provide improved recognition rates

in challenging environments.

Most existing activity recognition approaches aim at recognizing atomic activities

or a single interaction in a short video clip. Real world videos tend to have a large amount of

intra-class variation as well as clutter and noise which makes the recognition task difficult.

Therefore, although the standard recognition methods can be applied here, it is difficult to

obtain a high accuracy results with existing classifiers. A typical example of an outdoor wide

area scene is shown in Figure 1.1 a). The different challenges in recognition are marked on
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Figure 1.1: a) An example scene from a surveillance video in a parking lot demonstrating
that different different activities happen together and can influence each other. “Open
door”, “unloading vehicle” and “approaching vehicle” are related since they pertain to
the same vehicle. Other objects in the scene can cause background clutter making the
recognition task challenging. b) the spatio-temporal relationship between two activities in
a video.
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the figure. Figure 1.1 b) shows the spatial and temporal relationships between two activities

in a video.

The presence of multiple activities, however, also imply that we now have more

information available to us about the scene as a whole, as compared to a small clip containing

a single atomic activity. Activities in a video are often related to each other. For example,

the fact that a person opens the trunk of a car makes it very likely that he might place or

retrieve an object from the trunk. In addition, if we knew that the person had just exited a

facility, it is more likely that he will place an object rather than retrieve it. Therefore, the

occurrence of one activity can provide us a context which can be used to recognize another

related activity. In this work, we wish to demonstrate a method to model this context and

utilize the information to recognize activities in a complex video.

1.2 Related Work

1.2.1 Activity Recognition Methods

A popular approach to activity recognition has been the use of local interest points.

Each interest point has a local descriptor to describe the characteristics of the point. Motion

analysis is thus brought about by the analysis of feature vectors. Some researchers used

spatial interest points to describe a scene [14] [15] [16]. Such approaches are termed as local

approaches [17]. Over time, researchers described other robust spatio-temporal feature

vectors. SIFT (scale invariant feature transform) [18] and STIP (space time interest points)

[19] are commonly used local descriptors in videos. A more recent approach is to combine
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multiple features in a multiple instance learning (MIL) framework to improve accuracy [20].

Another approach to action recognition is global analysis of the video [17]. This

involves a study of the overall motion characteristics of the video. Many of these methods

use optical flow to represent motion in a video frame. One example of this method is in

[21]. These approaches often involve modeling of the flow statistics over time. Optical

flow histograms have commonly been used to compute and model flow statistics like in [22]

which demonstrates the use of optical flow histograms in the analysis of soccer matches.

In some other cases, human activities have been represented by 3-D space-time shapes

where classification is performed by comparing geometric properties of these shapes against

training data [2] [23].

Methods which have been used for modeling activities can be classified as non-

parametric, volumetric and parametric time-series approaches [12]. Non-parametric ap-

proaches typically extract a set of features from each frame of the video. Non parametric

approaches could involve generation of 2D templates from image features [24] [25], 3D object

models using shape descriptors or object contours [2] or manifold learning by dimension-

ality reduction methods such as PCA, locally linear embedding (LLE) [26] and Laplacian

eigenmaps [27]. Parametric methods involve learning the parameters of a model for the

action using training data. These could involve Hidden Markov Models (HMM) [28] and

linear [29] and non-linear dynamical systems [30]. Volumetric methods of action recognition

perform sub volume matching or use filter banks for spatio-temporal filtering [31]. Some

researchers have used multiple 2D videos to arrive at a 3D model which is then used for

view invariant action recognition [32].
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1.2.2 Context-Based Activity Recognition

As compared to a simple activity recognition system, the inherent structure and

semantics of complex activities require higher-level representation and reasoning methods

[12].There have been different approaches used to analyze complex activities. One common

approach has been the use of graphical models. Graphical models encode the dependen-

cies between random variables which in many cases are the features which represent the

activity. These dependencies are studied with the help of training sequences. Some exam-

ples of graphical models commonly used are Belief networks (BNs), Hidden Markov Models

(HMMs) and Petri nets. Belief networks and Dynamic Belief Networks (DBNs) are graphi-

cal models that encode complex conditional dependencies between a set of random variables

which are encoded as local conditional probability densities. These have been used to model

two person interactions like kicking, punching, etc by estimating the pose using Bayesian

networks and the temporal evolution using Dynamic Bayesian networks [33] [34]. A grid

based belief propagation method was used for human pose estimation in [35]. Graphical

models often model activities as a sequential set of atomic actions. A statistical model is

created for each activity. The likelihood of each activity is given by the probability of the

model generating the obtained observations [13].

A popular approach for modeling complex activities has been the use of stochastic

and context free grammars. It is often noticed that a complex large-scale activity often can

be considered as a combination of several simple sub-activities that have explicit semantic

meanings [36]. Constructing grammars can provide useful insights in such cases. These

methods try to learn the rules describing the dynamics of the system. These often involve
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hierarchical approaches which parallel language grammars in terms of construction of sen-

tences from words and alphabets. A typical example is when the activity recognition task

is split into two steps. First, bottom-up statistical method can be used to detect simple

sub-activities. Then the prior structure knowledge is used to construct a composite activity

model [37]. In another instance, context free grammars in [38] followed a hierarchical ap-

proach where the lower-levels are composed of HMMs and Bayesian Networks, whereas the

higher level interactions are modeled by context free grammars [12]. More complex models

like Dependent Dirichlet Process-Hidden Markov Models (DDP-HMMs) have the ability to

jointly learn co-occurring activities and their time dependencies [39].

Knowledge and logic based approaches have also been used in complex activity

recognition [12]. Logic based approaches construct logical rules to describe the presence

of an activity. For instance, a hierarchical structure could be used by defining descriptors

of actions extracted from low-level features through several mid-level layers. Next, a rule

based method is used to approximate the probability of occurrence of a specific activity by

matching the properties of the agent with the expected distributions for a particular action

[40]. Recently, the use of visual cues to detect relations among persons have been explored

in a social network model [41].

Description based methods try to identify relationships between different actions

such as “before”, “after”, “along with”, etc. The algorithm described in [42] is one such

method which uses spatio-temporal feature descriptors. The Bag of Words approach [43]

disregards order and tries to model complex activities based on the occurrence probabilities

of different features. Attempts have been made to improve on this idea by identifying neigh-
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borhoods which can help in recognition [44] and by accommodating pairwise relationships

in the feature vector to consider local ordering of features [45]. Hierarchical methods have

also been proposed which build complex models by starting from simpler ones and finding

relationships between them [46].

Many of these approaches require either tracking body parts, or contextual ob-

ject detection, or atomic action/primitive event recognition. Sometimes tracks and precise

primitive action recognition may not be easily obtained for complex/interactive activities

since such scenes frequently contain occlusions and clutter. Spatio-temporal feature based

approaches, like [47], hold promise since no tracking is assumed. The statistics of these

features are then used in recognition schemes [43]. Recently, spatial and long-term tempo-

ral correlations of these local features were considered and promising results shown. The

work in [17] models the video as a time-series of frame-wide feature histograms and brings

the temporal aspect into picture. A matching kernel using “correlograms” was presented in

[48], which looked at the spatial relationships. A recent work [13] proposes a match func-

tion to compare spatio-temporal relationships in the feature by using temporal and spatial

predicates, which we will describe in detail later.

Often, there are not enough training videos available for learning complex human

activities; thus, recognizing activities based on just a single video example is of high interest.

An approach of creating a large number of semi-artificial training videos from an original

activity video was presented in [49]. A self-similarity descriptor that correlates local patches

was proposed in [50]. A generalization of [50] was presented in [51], where spacetime local

steering kernels were used.
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1.3 Contributions of the Work

The objective of this work is to design algorithms which can recognize activities

in wide-area continuous videos. The study has been carried out in three parts.

We start by proposing a flow-based activity recognition system which identifies

regions of interest in a wide-area video and models them using a combination of shape

matching and subspace analysis [52, 53]. This system can scale up to activities involv-

ing multiple actors [54]. However, activities are analyzed individually and assumed to be

independent of other activities in the scene.

Wide-area continuous videos often contain activities which are potentially related

to each other and might influence each other. Therefore, as a next step, we explore the

contextual relationships in wide-area continuous videos using graphical models [55]. With

the assumption that the locations of activities in a video are pre-determined using existing

approaches, we then show how a Markov random field can be built using the nodes of the

graph as activities and edges representing their spatiotemporal relationships.

While such a graph is successful in modeling context, it is often found that existing

activity classifiers are not always accurate in localization of activities. There is also the task

of tracking which is challenging in wide-area videos in the presence of multiple targets. As

a next step, we explore relationships between tracks and activity segments. We also do

not assume fixed location of activities. We propose a bi-directional approach where we

demonstrate the influence of tracks on activities and vice-versa for simultaneous tracking,

localization and recognition of activities.

Finally, we also propose a novel approach to learn the structure of the graphical
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model automatically. Given a set of training data, the optimum structure for the graphical

model is chosen using an L1-based regularization of the parameters of the graph. In each

case, experiments are conducted on recent wide-area surveillance datasets and improvement

in results is demonstrated.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. We present a method for multi-person

activity recognition in wide-area videos in Chapter 2. This work assumes activities to be

independent of each other and models them individually. We discuss the limitations of this

assumption and motivate the use of spatiotemporal context in activity recognition. Next,

we present a graphical model based approach for activity recognition in Chapter 3. Here,

the activity regions are computed in the pre-processing stage and the graphical model is

used to learn the contextual relationships. In Chapter 4, we extend the graphical model

based approach to the case where activity locations as well as tracks are not assumed to be

constant. Finally, we discuss the structure learning of graphical models using L1-regularized

parameter estimation in Chapter 5. We conclude the thesis in Chapter 6 with a summary

of the work and discussion of future directions.
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Chapter 2

Multi-person Activity Recognition

in Wide-area Videos

2.1 Introduction

Natural videos usually consist of multiple motion patterns generated by objects

moving at arbitrary speeds and time intervals. They could have multiple events occurring

simultaneously at arbitrary viewpoints and varying scales. The analysis of such videos can

be termed as complex activity recognition. Recognition of complex activities often involves

dealing with features distributed in a high dimensional space due to a higher amount of

intra class variations. Algorithms dealing with such sequences should be robust to back-

ground clutter, noise and changes in viewpoint and scale. Most of the traditional activity

recognition algorithms, such as [56] [2] [57], work with simpler datasets like [7] [2] which

place assumptions on the number of objects, scale and viewpoint of the scene. However,
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in real world situations it is hard to encounter such videos. Therefore, there is a need for

algorithms which can handle the structure and semantics of complex activities.

A scene is a collection of moving pixels. Optical flow provides a natural repre-

sentation for this motion. It represents the pixel-wise motion from one frame to the next;

therefore, it captures the spatial and temporal dynamics in a video. Since a complex activity

involves multiple motion patterns, it is useful to separate the motion patterns before mod-

eling them, to reduce the search space. One way of doing this would be to compute tracks.

However, it is not always feasible to compute accurate tracks in real world videos. The use

of optical flow would eliminate this need for computing tracks. The problem of separation

of motion pattern reduces to the problem of segmentation of optical flow. Although prone

to the same inaccuracies as tracks, optical flow is computed for every pixel in the video. It

is therefore, a more statistically reliable indicator in the presence of noise. These factors

motivate us to use optical flow as the input features for our recognition algorithm.

In this work, we recognize activities by analyzing the underlying pixel-wise motion

using optical flow. Each region in a video where the pixels exhibit similar motion is said to

constitute a motion pattern. Individual motion patterns are considered as “events” which

can be identified by segmenting the flow patterns. This motion pattern could be due to one

or more objects in the scene. An activity is represented as a collection of motion patterns.

Optical flow is represented using streaklines which are obtained by integrating the flow

over time. The activity in a video could be composed of multiple such motion patterns,

which are assumed to be correlated. Therefore, the overall match score between two videos

is obtained by matching the individual motion patterns. The streaklines which constitute
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Figure 2.1: The figure shows sample frames of the VIRAT dataset used for recognition.
The first figure shows a person loading a trunk, the second figure shows a person entering a
vehicle and the third figure shows a person closing a trunk. We notice other people in the
scene adding to background clutter. Lighting changes and shadows add noise to the data.

a motion pattern can be identified using their average shape vectors and spatio-temporal

variation with respect to the average shape. This variation is modeled using a collection

of linear subspaces which capture their spatio-temporal variation in a low dimensional rep-

resentation. These patterns can be matched by a combination of shape comparison and

subspace analysis. We validate the robustness of our algorithm by experimenting on two

realistic outdoor datasets. We do not place any assumptions on the number of motion pat-

terns in the scene. The proposed method can be used across a wide range of activities with

varying scales and viewpoints. Some sample frames of the data used for activity recognition

are shown in Figure 2.1.

These are the definitions of some of the commonly used terminology in the chapter:

Motion Pattern - A spatio-temporal region in a video in which all pixels exhibit similar

motion. Each motion pattern is considered as an “event” in the video.

Activity - The action which is to be recognized in a video. An activity is composed of one
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or more events.

Streakline - The locus of all points in a video which have passed through a particular

pixel.

Particle - An abstraction of a point on a streakline.

Motion Region - Those streaklines in the video which correspond to distinctive motion

and are used for recognition.

2.1.1 Main Contributions

The salient features of this chapter are:

1. We provide a unified framework for activity recognition in wide-area videos. The

proposed system can perform a bottom-up analysis starting from pixel wise motion

to identifying motion regions in the volume to segmentation and modeling of these

regions. Some state-of-the-art methods like [1] and [42], which deal with similar

datasets, explore spatio-temporal information at a feature level. Our method on

the other hand explores spatio-temporal information at a global level. This has the

advantage that we can segment out different events occurring in the video and then

model them in a single framework, unlike these competing methods which would

build a model over all interest points in the video (or we will have to use a different

segmentation algorithm). Thus, we propose a framework based on the analysis of flow

that is able to handle the entire image analysis pipeline - from the low level to the

high level processing.

2. Another contribution of this work lies in the use of optical flow for multi-object behav-
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ior analysis. Unlike previous methods which utilize optical flow in the form of motion

statistics [17], we model the actual dynamics of flow rather than using histograms

which do not retain the spatial and temporal information. Therefore, we provide a

framework for representation and comparison of complex activities using optical flow.

3. Although we have built upon the work in [58] which uses streaklines and Helmholtz

decomposition for crowd segmentation, there are several differences in our work as

compared to theirs in the modeling and in the application of streaklines. First, the

objective of the proposed method in [58] is to segment a video into different regions

exhibiting similar motion, whereas our objective is to explicitly model every motion

pattern in a video for the purpose of activity recognition. In [58], the authors propose

a method to perform a space segmentation of the streaklines at every frame, whereas

we deal with spatio-temporal segmentation of the entire volume. We compute the

distance between critical points to identify time segments of motion patterns. In [58],

the Helmholtz decomposition is again used to compute a divergence factor, which is

then used to identify abnormal activities. Here, we use the Helmholtz decomposition

to identify the regions which are of interest to us for the purpose of modeling and

recognizing activities. Therefore, we have extended the method in [58] to work not

just on crowded environments but also in videos which contain sparse motion.

2.1.2 Related Work

A major thrust of research in complex activity recognition has been in the selection

of features and their representations. Different representations have been used in activity
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recognition, most of which can broadly be classified as local or global representations [12].

Local representations like [57] [56] identify small spatio-temporal regions in the video as

the regions of interest. The spatial and temporal modeling of activities is then performed

in the recognition stage. Global representation like [59] [17] on the other hand, model the

scene as a whole. These representations often span a larger spatio-temporal volume, so the

spatial and temporal information is captured in the features themselves. Methods such as

[60] and [42] use STIP-based features for recognition of complex activities. The recognition

is then performed by modeling relationships between these features in a complex graph

based or histogram based framework. We hypothesize that representing motion patterns

using optical flow is more intuitive than using spatio-temporal features since the spatio-

temporal information is embedded in the flow. This therefore, is a global representation.

Also, unlike previous global methods which use histograms of optical flow, we explicitly

model the spatial and temporal evolution of flow.

Optical flow has widely been used in the past for activity recognition. It serves

as an approximation of the true motion of objects projected onto the image plane [12].

Optical flow has predominantly been used in features like space-time interest points (STIP)

[19] as a part of the feature descriptor. The time series of histogram of optical flow has been

modeled as a non-linear dynamical system using Binet-Cauchy kernels in [17]. Optical flow

histograms have also been used to analyze the motion of individual players in soccer videos

[22]. Most of such approaches utilize the statistics of optical flow for recognition rather

than the flow itself. This removes the spatio-temporal structure from the flow. They also

assume that the flow belongs to one object in the scene. Optical flow has been extensively
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used in crowd motion analysis. Dense crowd motion analysis and segmentation has been

performed using optical flow in [61]. Helmholtz decomposition has been used to segment

different motions in crowd scenes by streakline computation in [58]. In contrast to the above

trends, we show how flow-based methods can be used in the analysis of multi-object scenes

with sparse motion.

2.2 Overview of Proposed Approach

The overall algorithm is described in Figure 2.2. The goal of our algorithm is to

model the activity in a video as a combination of motion patterns. There are two compo-

nents to the algorithm - identification of motion patterns and modeling and comparison of

motion patterns.

The identification of motion pattern involves identifying regions in the video which

correspond to useful motion and segmenting these regions into individual motion patterns.

These regions of interest are termed as motion regions. We start by computing the optical

flow at each time instant. Optical flow is highly susceptible to noise which can result in

spurious patterns which are difficult to analyze. Therefore, we work with streaklines which

are obtained by integrating optical flow over time. Motion regions are then identified as

the streaklines which show a significant amount of motion. We demonstrate a framework

based on the Helmholtz decomposition of a vector field to extract these regions.

Once we identify the streaklines which correspond to the motion regions in a video,

motion patterns are recognized by performing a space-time clustering on these streaklines.

We demonstrate a method of identifying time segments of streaklines using the Helmholtz
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Figure 2.2: The figure shows the overall framework of the proposed method.

decomposition. We further perform a space segmentation by running a clustering algorithm.

After the segmentation step, each space-time segment is considered as an individual motion

pattern in the video.

After identifying the motion patterns, we need to model them and define a distance

measure to compare motion patterns across videos. We compute the average preshape of

the streaklines and a linear subspace representation for the spatio-temporal variation about

the average preshape for each group of streaklines constituting a motion pattern. Given a

set of videos for training and a test video, we compute the models for all the training data.

The test data is matched to each of the training data by a combination of shape matching

and subspace matching algorithm. The final match score is obtained by a time warping over
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the time segments. The test video is classified using a N-nearest neighbor classification.

2.3 Streakline Representation of Motion Patterns

The first step of our algorithm is to represent a video using streaklines. Streaklines

are a concept derived from fluid dynamics to represent a time-varying flow field. Suppose

we inject a set of particles in the flow field continuously at certain points in the field, the

path traced by these particles are called streaklines.

More formally, a streakline is defined as the locations of all particles that passed

through a particular point over a period of time. It can be computed by initializing a

set of particles at every time instant in the field and propagating them forward with time

according to the flow field at that instant. This results in a set of paths, each belonging to

one point of initialization. It can be shown that the streakline representation has advantages

over other representations like streamlines and pathlines in being able to capture changes in

the field as well as in smoothness of the resulting representation. Given a video with n pixels

per frame for a duration of N frames, we compute streaklines s1, ..., sn where si = [Xi, Yi]
T ,

Xi = [xi,1, xi,2, ...., xi,N ]T , Yi = [yi,1, yi,2, ..., yi,N ]T , si ∈ R2N for i = 1, 2, ..., n. Every point

on the streakline (xi,t, yi,t) corresponds to a particle p initialized at pixel i at time instant

t.

The particle p is initialized at the ith pixel of the frame at time instant t. For the

subsequent frames, the particle is propagated from its old position (xoldi,t , y
old
i,t ) to its new

position (xnewi,t , ynewi,t ) using the particle advection.
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Figure 2.3: The figure shows the streaklines for people opening a trunk in two videos. The
circled region shows the similarity in the activity captured by the streaklines.
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xnewi,t = xoldi,t + u(xoldi,t , y
old
i,t )

ynewi,t = yoldi,t + v(xoldi,t , y
old
i,t )

(2.1)

where u(x, y) and v(x, y) are the X and Y components of the instantaneous optical flow at

position (x, y).

Streaklines are ideally suited for motion analysis in video. Because they are com-

puted over a larger interval of time as compared to optical flow, they are more robust to

noise and easier to analyze than optical flow. They capture the pixel-wise spatio-temporal

information in a video. Similar activities will result in similar streaklines, therefore modeling

and comparison of streaklines can be used for activity classification. Figure 2.3 illustrates

the streaklines for similar activities being performed in different scenes. We notice that the

streaklines look similar in the circled region.

2.3.1 Identification of Motion Regions

Motion in a video is often sparse. In most natural videos, motion is confined to

small regions in the video. Since we compute streaklines at every pixel in each time frame,

the size of the computed data is the same as the number of pixels in the video. To reduce

the computational space and increase efficiency, we first need to reduce the size of the data.

This can be done by identifying regions of meaningful motion in the video. We refer to such

regions as “motion regions”.

There are several ways by which we could identify the motion regions in a video.

For example, in [58], the authors perform segmentation on the whole volume and then

eliminate small insignificant segments. However, this may not be computationally efficient,
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especially if the meaningful regions are small compared to the whole volume. Also, for our

purpose, we do not need to identify every single streakline which represents motion. We

are interested in those regions in the spatio-temporal volume which are most distinctive for

the purpose of recognition. The Helmholtz decomposition has widely been used in the past

to recognize distinctive points in a vector field. We utilize this concept derived from fluid

dynamics to recognize motion regions.

The Helmholtz decomposition is a concept derived from physics, which states

that any smooth field can be uniquely decomposed into an irrotational component and a

solenoidal component. The extrema of these components are termed as critical points. In

particular, the extrema of the irrotational field occur at regions of high divergence and

convergence. Therefore, these would be the distinctive regions of the flow field that we are

interested in modeling. Since optical flow is highly transient, we propose to use a flow field,

which we call the “motion field” derived from the streaklines to compute the Helmholtz

decomposition. We compute an aggregate flow by averaging the value of flow over a set of k

frames. This aggregate flow represents the average motion which each pixel has undergone.

Next, we apply a smoothing function over this field to make it differentiable. The resultant

field is known as the motion field F.

In this section, we will explain in detail, the computation of motion regions from

the motion field using the Helmholtz decomposition.
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Figure 2.4: Decomposition of a flow field: The figure shows a sample flow field and its
decomposition into the irrotational and solenoidal components. The critical points are
marked in red on each image. Figure a) shows the original flow field; Figure b) is the
original flow field marked with regions containing critical points. We notice that the critical
point in region 3 is an attracting focus and the critical points in region 1 and 2 are repelling
nodes; Figure c) represents the solenoidal component of original flow; and d) represents
the irrotational component of original flow. We can see that the irrotational field has no
rotational component and the solenoidal field is divergence free (purely rotational).
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2.3.2 Helmholtz Decomposition of Flow Field

The Helmholtz decomposition theorem states that any arbitrary vector field which

is assumed to be differentiable can be decomposed into a curl free (irrotational) component

and a divergence free (solenoidal) component [62], i.e.,

F = Fsol + Firr, (2.2)

where F is the overall field, Fsol represents the solenoidal component and Firr represents

the irrotational component, F ∈ Rm×n where m× n is the video frame size.

Since Fsol is divergence free, we have ∇Fsol = 0. Similarly, since Firr is curl free,

we have ∇ × Firr = 0. We can also define a scalar potential ϕ and a vector potential A

such that

F = −∇ϕ+∇×A (2.3)

We see an illustration of the Helmholtz decomposition of a vector field in Figure 2.4. We

notice that the first component is purely a rotational field whereas the second component

is purely divergent. Below, we will illustrate the extraction of regions of interest from the

motion field using this decomposition.

Computing the Flow Field Components

According to the Helmholtz decomposition, the motion field is composed of an

irrotational and solenoidal component. We also mentioned that the motion field can be

expressed in terms of a scalar potential (ϕ) and a vector potential (A). We can obtain

the irrotational and solenoidal components of the motion field from the scalar and vector
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potentials respectively. We will follow the technique described in [62] to solve for the scalar

and vector potentials. The scalar potential can be obtained by projecting onto the curl-free

component and solving the following variational problem:

argmin
ϕ

∫
Λ
∥F+∇ϕ∥2dA,Λ ⊂ ℜ2 (2.4)

where Λ is the image domain under consideration and A is the area. It can be shown that

the solution to ϕ is obtained by solving the following Poisson equation[62]:

∇.F = ∇2ϕ (2.5)

F+∇ϕ.n̂ = 0 in ∂Λ (2.6)

where n̂ is the unit outward normal to the boundary ∂Λ.

A similar formulation can be derived for the vector potential. The solenoidal

component can be solved using the following variational problem.

argmin
A

∫
Ω
∥F− (∇×A)∥2dA,Ω ⊂ ℜ3, (2.7)

the optimum solution of which is obtained by the following PDE formulation:

∇× F = ∇×∇×A = ∇(∇.A)−∇2A (2.8)

F− (∇×A)× n̂ = 0 in ∂Ω. (2.9)

Here n̂ is the unit outward normal to the boundary ∂Ω. Since we have the the curl (∇×)

to be an operator in three dimensions, for an arbitrary A we need to extend the two

dimensional field F to 3D by setting the z-component to zero.

On solving the above equations, we obtain the scalar potential ϕ and the vector

potential A. The irrotational and solenoidal components of the flow field are accordingly
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obtained as

Firr = ∇ϕ (2.10)

Fsol = ∇×A (2.11)

2.3.3 Motion Regions Using the Helmholtz Decomposition

The irrotational component of the Helmholtz decomposition carries useful infor-

mation about the sources and sinks of the motion field. These sources and sinks are a result

of motion in a video, therefore they can be used to identify regions of motion in the video.

The sources and sinks are also known as critical points. A point C(x0, y0) is defined as a

singular/critical point of the vector field if C(x0, y0) = (0, 0)T = 0 and C1(x, y) ̸= 0 for any

other point C1 with coordinates x ̸= x0, y ̸= y0 in the neighborhood of (x0, y0).

Consider a point v(x, y)in the irrotational field in 2D given by

v(x, y) =

 u(x, y)

v(x, y)


The Jacobian matrix of the irrotational field at a point (x, y) on the field denoted by Jv is

given by

Jv =

 ux uy

vx vy


where ux and vx are the partial derivatives of u and v with respect to x and uy and vy are

the partial derivatives of u and v with respect to y. The determinant of the Jacobian at

(x, y) is denoted as |Jv|. The critical points are identified by finding those points in the

field where u and v are zero, but |Jv| ̸= 0. The critical points of the vector field and its
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components from Helmholtz decomposition are marked in Figure 2.4.

As mentioned before, the critical points of the irrotational field occur in regions of

high convergence and divergence in the field. Intuitively, these would be the most distinctive

regions of the motion field, and therefore, we would want to model the streaklines which

correspond to these regions. Therefore, we define a motion region as a set of streaklines

which pass within a small distance of a critical point. Here, we set the distance as 5 pixels

for a frame size of 150×200, however, this distance can be modified based on the resolution

of the video. An example of the motion regions identified using critical points is shown in

Figure 2.5.

2.4 Segmentation of Motion Patterns

The motion information in a video is contained in the form of motion patterns.

Each video could contain multiple motion patterns, each said to correspond to an “event”.

These motion patterns vary in time durations as well as in space. Activity recognition in

such videos requires modeling of the motion patterns as well as studying the spatio-temporal

relationships between them. We perform activity recognition in two steps - identification

of motion patterns and modeling of motion patterns.

An activity in a video can be composed of one or more motion patterns. Since we

are dealing with complex, real-world scenarios, there could also be motion patterns which

are introduced by background clutter or noise. To make our algorithm robust to these

factors, we do not place any assumptions on the number or locations of motion patterns in

the scene. Our next task therefore, is to identify motion patterns. Because we represent a
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Figure 2.5: The figure shows the extraction of motion regions from streaklines. Figure a)
shows the streaklines of the action ”open trunk”. Figure b) shows the corresponding motion
field. The critical points of the motion field are marked in red. The streaklines extracted
using these critical points are shown in Figure c) and constitute the motion regions of the
video.

video as a group of streaklines, the task of identification of motion pattern is performed by

a segmentation of streaklines. We segment the streaklines both in time and space domain.

2.4.1 Time Segmentation of Streaklines

We propose that the critical points extracted using Helmholtz decomposition can

also be used for time segmentation of streaklines. This is based on the observation that

whenever there is not much change in the motion pattern from one time instant to another,

the location of critical and their characteristics do not change much. On the other hand,

when a new motion pattern originates, a new critical point emerges, or when an existing

motion pattern ends, a critical point disappears. Therefore, by associating the critical points

from one frame to the next, we can identify the start and end points of motion patterns.

Each critical point is associated with a motion region. Therefore, a motion region exists
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Figure 2.6: Examples of time segmentation of streaklines using the Helmholtz decomposi-
tion. The first row shows a sample frame and the second row displays the time segmented
streaklines. Each segment is marked in a different color. The critical points are marked in
blue.

in the duration in which the corresponding critical point is observed. To associate critical

points from one frame to the next, we use the following distance measure as described in

[63].

Every singular point C(x, y) = (u(x, y), v(x, y))T is mapped to a circular coordi-

nate system (γ(x, y), r(x, y)) given by

cos γ =
ux + vy

sqrt(ux + vy)2 + (vx − uy)2
(2.12)

sin γ =
vx − uy

sqrt(ux + vy)2 + (vx − uy)2
(2.13)

r =
1

2
+

uxvy − vxuy
u2x + u2y + v2x + v2y

(2.14)

where ux, uy, vx, vy are elements of the Jacobian of the singular point C denoted by JC . The

similarity measure between two singular points is given by the Euclidean distance between
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them in the (γ, r) plane as defined in Equation (2.15).

dc(Ci, Cj) =
√
r21 + r22 − 2r1r2 cos(γ1 − γ2) (2.15)

Therefore, we compute the critical points in every frame and compute the distance between

critical points from one frame to the next using Equation (2.15). It is seen that the critical

points that arise due to the same event in adjacent frames have a very small distance and

can therefore be associated. Whenever a new critical point arises, a new event is said to

begin and when the critical point disappears, an event ends. The streaklines that belong to

the motion region associated with the critical point in the time interval in which a critical

point is observed is said to constitute the time segment. Figure 2.6 shows some examples

of time segmentation using our algorithm.

2.4.2 Segmentation of Streaklines in Space

Each video segment could be made up of more than one motion pattern. Each

motion pattern could correspond to one object in a scene, or a part of an object in the

scene. We therefore, perform a clustering of streaklines in space such that the streaklines in

each individual cluster exhibit similar motion. Each cluster is said to belong to one motion

pattern or event in the video. To perform a segmentation of the motion patterns, we will

first transform the streaklines into a shape space. The shape representation of streaklines

is given below:

Shape Representation of Streaklines: Consider a streakline s ∈ R2k in a time segment

of length k.
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Figure 2.7: The figure shows the streaklines and the clusters for activities in the VIRAT
dataset. The clusters are marked with different colors.
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s =

[
x1 x2 . . xk y1 y2 . . yk

]T
Next, we remove the scaling and translation from s to obtain a normalized vector c. This

is done by subtracting the mean from s and scaling to unit norm.

c =
Ps

∥Ps∥
, (2.16)

where P = I2k− 1
kID2k

, I2k being the 2k×2k identity matrix and ID2k
is the 2k×2k matrix

given by ID2k
=

 1k×k 0k×k

0k×k 1k×k

, where 1k×k is a k × k matrix of ones. This normalized

vector is independent of translation and scale and is called a preshape vector of a collection

of points [64].

Extraction of Motion patterns: Suppose a video is made up of p underlying motion

patterns [M1,M2, ...,Mp]. Let each motion pattern M i, iϵ{1, 2, .., p} contain ni pre-shape

vectors [ci1, c
i
2, s

i
3, ..., c

i
ni ], where c

i
j ∈ R2k×1. Let [M̃1, M̃2, ..., M̃p] be our estimates of the

motion pattern. Estimation of the motion patterns can be performed in a clustering frame-

work. Here, we use the average preshape of the motion pattern as the representative model

for clustering. The average preshape of a motion pattern M i is given by

c̄i =
ni∑
j=1

cij (2.17)

The projection error between a preshape c and an average preshape c̄i of motion pattern

M i is calculated as the square of the Euclidean norm of their distance, ∥c− c̄i∥2. Therefore,

a preshape c ∈M i if

∥c− c̄i∥2 ≤ ∥c− c̄i
′∥2, ∀i′ ̸= i (2.18)
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where we are using the Euclidean norm as an approximation of the actual pre-shape vector

norm (Procrustus distance). The above clustering problem can be solved using a standard

k-means clustering framework.

Because we do not want to assume the number of motion patterns in the video,

we set a threshold on the model residue εthresh and compute p such that

p∑
i=1

ni∑
j=1

∥cij − c̄i∥2 ≤ εthresh (2.19)

Some examples of space segmentation are shown in Figure 2.7.

2.5 Activity Modeling and Recognition

In the previous section, we computed a set of motion patterns as well as the

average preshape of each motion pattern. This average preshape provides us with the mean

path traced by the object or part of the object which is involved in the event. The average

preshape c̄i of motion patternM i therefore, can be used to model the motion pattern. Apart

from the average preshape, the streaklines can be characterized by their spatio-temporal

evolution. To make this evolution independent of its location, we model the evolution as the

variation of the preshapes of a motion pattern about the average preshape. Each motion

pattern M i contains ni preshapes of length ki. The spatio-temporal evolution of preshapes

can be modeled by examining the linear subspaces along which there is maximum variation

in the data. This can be achieved by a subspace analysis of the data. The task of activity

classification requires a comparison between the average preshape as well as the similarity

between their subspaces. In this section, we will explain these steps in detail.
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2.5.1 Comparison of Average Preshapes

Consider two preshape vectors ci and cj of motion patterns M i and M j . To

compare ci and cj , we first need to ensure that they are of the same length. This is done by

resampling the preshape vectors to a length l. Here, l can be a constant or a function of the

duration of the time segment. The distance between the resampled preshape vectors can

be measured by the full Procrustes distance [64] which is the Euclidean distance between

the Procustes fit of the preshapes c̄i and c̄j . The Procustes fit (β, θ, (a + jb) is chosen to

minimize the distance given by

d(i1,i2)s = ∥c̄i − c̄jβ expjθ −(a+ jb)1l∥, (2.20)

where β is the scale, θ is the rotation and (a+ jb) is the translation, 1l is the l dimensional

column vector of ones. Since the preshapes have already been normalized, the estimated

scale β ≈ 1 and the estimated translation (a + jb) ≈ 0. The rotation will be obtained as

θ = arg(ciTcj).

2.5.2 Subspace Analysis

Let the preshapes constituting a motion pattern M i be Ci = cij , j = 1..ni, where

ni is the number of streaklines in M i. Since the average preshape captures the average

motion in M i, we wish to model the spatio-temporal variation in the motion pattern M i

using subspace analysis. We use the preshape vector ci to compute a linear subspace

representation for M i. A linear subspace representation for Ci can be computed by a
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principal component analysis of the covariance matrix of Ci given by

Ri =
1

ni

ni∑
j=1

(cij − c̄i)(cij − c̄i)T (2.21)

where Ri is the covariance matrix. We choose the first r eigenvectors V i
1 , V

i
2 ...V

i
r of Ri as

the orthogonal vectors for the low dimensional representation of Ci. The value of r is chosen

experimentally.

The similarity between the subspace representation of motion patterns M i and

M j is given as the sum of the r principal angles between the corresponding subspaces [65],

i.e.

d
(i,j)
θ =

r∑
m=1

arccos(V iT
m V j

m). (2.22)

2.5.3 Overall Distance Computation

The total distance between a training and test video is computed as follows: For

the training sequences, it is assumed that the motion patterns pertaining to the training

activity have been identified and modeled. For the test sequence, there could be a different

number of motion patterns. For every motion pattern in the training data, we find the

closest motion pattern in the test data. This distance is computed as follows:

Consider a training video with nr motion patterns and a test video with nT motion

patterns. The distance between a motion pattern M i in the training video and M j in the

test video is given by the weighted average

d(i, j) = w1d
(i,j)
s + w2d

(i,j)
θ , , (2.23)

where ds and dθ are the shape and subspace distances given in Equations (2.20) and (2.21).
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w1 and w2 are the weights which are set such that the overall distance lies in the range

0− 1. These weights are determined using training data. For each motion pattern M i, we

choose the best match as that motion pattern in the test video which has the least distance

Di. The total distance between a training and a test video is given by the sum of the best

match distances for all motion patterns, i.e.,

D =

nr∑
i=1

Di (2.24)

We use a k-nearest neighbor classifier for recognition of activities. i.e. considering the

k closest training clips, the activity is classified as that category to which most of the k

neighbors correspond. Therefore, the steps in recognition of activities using our algorithm

are as follows:

1. For each training video v, compute the motion patterns M1,M2...Mpv . Model each

motion pattern M i using the average preshape c̄i and r eigenvectors V i
1 , V

i
2 , ..V

i
r .

2. For the given test video t, compute the motion patterns and the model for each motion

pattern. The distance between every motion pattern M i in the training video and

M j in the test video is computed using Equation (2.23).

3. For each motion patternM i, the least distance Di with a test motion pattern is chosen

as the best match.

4. The total distance between two videos is given by the sum of distances of the best

match between their motion patterns.

5. Compute the distance between every training video and the test video. The activity
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in the test video is classified using a k-nearest neighbor classifier.

2.6 Experiments

To validate our approach, we perform experiments on two publicly available com-

plex datasets. Each of these datasets involve outdoor scenes and multiple actors interacting

in the presence of noise and background clutter.

2.6.1 Dataset

The first set of experiments are conducted on the UT Interaction dataset [8]. This

dataset consists of high resolution video of two actors performing actions such as handshake,

kicking, hugging, pushing, punching and pointing. Each task is performed by 10 actors in

outdoor environments. Each video is of a duration of aproximately 3 seconds. Often there

are people walking or performing other activities in the background, causing background

clutter. We test our method on this dataset to validate the use of our method for analysis of

articulated motion. We demonstrate and compare our results with three previous methods

which use the same dataset.

The second set of experiments were conducted on the VIRAT dataset. The VIRAT

public dataset [9] contains activities involving people-people and people-vehicle interactions.

The people-vehicle activities include person opening and closing the trunk, person entering

and exiting a vehicle and person loading and unloading objects from the vehicle. Often,

there are other people moving in the scene causing background clutter. There is variation

in the scale as well as orientation of objects in the dataset. Often, there are shadows or
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occlusions leading to a high amount of noise in the scene.

As mentioned before, the critical points of the irrotational field occur in regions of

high convergence and divergence in the field. Intuitively, these would be the most distinctive

regions of the motion field, and therefore, we would want to model the streaklines which

correspond to these regions. Therefore, we define a motion region as a set of streaklines

which pass within a small distance of a critical point.

2.6.2 Results on UT Interaction Data

Our method performed well on the UT Interaction data. The videos are of differ-

ent lengths and the activities are performed from two different viewpoints. We computed

streaklines over the entire video. The motion regions were found to be concentrated around

the limbs of the persons involved due to the nature of the activities. It was found that most

of the activities were composed of two to three events. For example, the “pointing” action

is composed of the person raising his hand and then lowering it. Similarly, “shaking hands”

is composed of two people approaching each other, shaking their hands and dispersing. The

spatial segmentation separated out the articulated motion in the video. Some examples of

retrieved results are shown in Figure 2.8. We use a leave one out strategy for activity recog-

nition. 9 out of 10 sequences were used for training and the remaining for testing. It was

found that the performance of our method on the UT Interaction dataset was similar to the

other state of the art methods like [42] and [1]. We achieved an overall recognition accuracy

of 72.0%, while [42] achieves an accuracy of 70.8% and [1] achieves an accuracy of 70.6%.

The method worked well on activities like hug and shake hands where the motion patterns
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Figure 2.8: Examples of retrieved results for the UT Interaction dataset.
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Figure 2.9: The figure shows the accuracy of recognition using the UT Interaction data and
comparison with previous methods. The activities are: - 1 - Shake Hands, 2 - Hug, 3 -
point, 4 - Punch, 5 - Kick, 6 - Push

were highly distinguishable. The performance for activities like punch and kick were slightly

lower since the events were similar to each other. The comparison of our method to other

previous STIP-based approaches is shown in Figure 2.9. It can be seen that on an average,

our method performs as well as other previous STIP-based methods and better than Bag

of Features. The advantage of our method as compared to these previous methods is that

the spatio-temporal relationships in a STIP-based method have to be explicitly modeled

using graphs or other complex structures. Therefore, as the activities get more complex,

the graph gets more complex and the computation increases exponentially. Whereas in our
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method, the spatio-temporal relationships are embedded in the streaklines, therefore the

computational cost is linear with respect to the number of streaklines in a motion pattern.

Moreover, we provided a unified bottom-up analysis framework starting from the low-level

features (streaklines), segmenting them into individual regions of interest, identifying events

and modeling activities as a combination of events. This is unlike other competing methods

which consider the entire volume as a set of features and models them, or requires different

tools to do the low level processing (which are not dealt with in detail in those papers).

This has been give in more detail in Section 2.6.4.

2.6.3 Results on the VIRAT Data

The experiments conducted on the VIRAT data test the robustness of our ap-

proach to the presence of clutter and variations in scale. The generation of normalized

preshape vectors from streaklines handles the difference in scale. The rotation invariant

shape comparison handles the changes in viewpoint to some extent. Activities like closing

and opening trunk consisted of one event, the other activities often consisted of two or three

events. For example, entering a vehicle is composed of opening the door, sitting inside the

vehicle and closing the door. The space segmentation separated individual objects in the

scene and helped in the elimination of background clutter.

A leave one out strategy in conjunction with the N-nearest neighbor was used for

classification. The results were compared to that using [1]. The results are shown in Figure

2.11. It can be seen that our results are comparable to other state of the art methods here

also. However, as mentioned before, our system presents an entire end-to-end pipeline for
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Figure 2.10: Example of results for the VIRAT dataset showing some true positives and
false negatives for actions close trunk, enter vehicle and unloading. The false negatives are
marked in red.

44



image analysis and is computationally efficient as discussed in Section 2.6.4. The method

performed well in recognizing multi-person activities like people walking together and people

approaching each other. The accuracy of recognition for loading and unloading was lower

since the events are similar to those in entering and exiting vehicles. Some examples of

videos retrieved are show in Figure 2.10. The erroneous results are marked in red. In

the first row, it is seen that the second example contains a person carrying an object, and

was confused with unloading. This example failed to be retrieved. Similarly, shadows and

occlusions have caused false negatives in the second and third rows.

2.6.4 Analysis of the Results

As seen from Figures 2.9 and 2.11, the performance of our method is comparable to

that of other state of the art methods. However, the advantage of our method is that, unlike

previous methods which try to analyze activities at the feature level, we propose a global

approach to activity recognition. This facilitates a bottom-up analysis of a video, where

we begin with the streaklines over the entire video, then individual motion patterns, then

model and compare these motion patterns. Therefore, our method provides an end-to-end

system which computes a set of features, segments out different events and defines a distance

measure over them. This is unlike other methods like [42] and [1], where segmentation is

not an integral part of the method and has to be performed separately before the activity

modeling and recognition can be done.

There is also the advantage of computational efficiency in the modeling and com-

parison using our algorithm. For a STIP-based method, for example in [1], a graph is
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Figure 2.11: The figure shows the recognition accuracy for the VIRAT dataset. The activi-
ties are: 1 - loading, 2 - unloading, 3 - open trunk, 4 - close trunk, 5 - enter vehicle, 6 - exit
vehicle
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matched for every time segment in the test video to every time segment in the training

video. The time complexity for matching a graph with V nodes and E edges is known to

be O(V 2E). Since the number of edges for a completely connected graph with V nodes

is of the order of V 2, we can expect the time complexity of algorithms like [1] to increase

exponentially with the number of feature points/nodes. In comparison, consider a motion

pattern with N streaklines. Our method computes the mean shape vector for each mo-

tion pattern. This requires O(N) operations. Comparison of mean shape vectors using the

Procrustes distance is a O(1) operation. It can be shown that the subspace analysis to com-

pute the first k eigenvectors of N streaklines of length p is O(Nkp). Therefore, for a motion

pattern with N streaklines, the overall computational cost of modeling and comparison is

proportional to O(N), i.e. the complexity increases linearly with the number of streaklines

in a motion pattern.

2.7 Conclusion

In this work, we proposed a flow-based system for activity recognition in wide-area

videos. We modeled activities as a collection of motion patterns. We demonstrated the use

of streaklines to represent and model these motion patterns. The Helmholtz decomposition

was used to identify regions of useful motion which were analyzed further. The segmentation

of streaklines can be used to separate motion patterns and model them individually. We

also showed a method for computing the similarity between two videos using these models.

Experiments were conducted on multi-object scenes with a high amount of noise and clutter.

While the proposed system was fairly successful in separating out different activity
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patterns in a wide-area scene, the modeling of motion patterns is performed individually.

Single person activities are treated the same as multi-person activities. Also, the relation-

ships across activities are not taken into consideration in the model. In reality, continuous

videos contain activities which are likely to influence each other. Modeling these relation-

ships can substantially improve the recognition results. For example, in Section 2.6.3, we

mentioned that unloading was often confused with carrying a load. While occlusion makes

it difficult to distinguish between these two activities, the preceding activity can help in

distinguishing the two. Unloading is often preceded by opening a trunk, whereas closing

the trunk is often followed by carrying a load. Or carrying a load is followed by opening

the trunk. This example demonstrate the limitations of the proposed approach, which can

be overcome with the modeling of context. In the next chapter, we will propose a graphical

model based approach for context modeling in continuous videos.
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Chapter 3

Context Modeling in Continuous

Videos Using Graphical Models

3.1 Introduction

The use of context is actively being explored in computer vision today. The use

of any data in the video which does not directly correspond to the object or activity being

analyzed can be termed as context. Consider a wide area surveillance scene consisting of

multiple actors performing a series of activities. Unlike sports videos which are governed by

a fixed set of rules, these videos are unconstrained and contain a variable number of objects

and activities. By unconstrained, we mean that the activities might be related but do not

unfold according to set rules. In such long duration sequences, we can expect that several

activities would influence each other causally while some others might occur independently.

However, inferring these causalities is not trivial due to the presence of multiple actors. Also,
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tracking in such sequences can be challenging due to the presence of clutter and occlusion.

In this work, we propose to model the spatio-temporal context between individual activities

in a long duration sequence using a Markov random field. Since the number of actors can

vary from one sequence to another, we propose to construct the graphical model which is

specific to a test sequence.

The key idea behind our approach is that, if two activities are related, they can be

expected to occur within a small spatio-temporal vicinity. The spatial separation, temporal

separation and the association frequency of these activities can therefore be modeled as

context for recognition of these individual activities. Given a collection of videos and a set

of baseline classifiers for atomic activities, we wish to learn the spatio-temporal relationships

between atomic activities and model them. The relationships are learnt from the training

data.

We discuss a context based model for activity recognition in continuous videos.

We propose a Markov random field model on the activity nodes, with the edge potentials

modeling the spatio-temporal relationships between them. The baseline classifiers (which

are assumed to provide a weak classification) give us the node potentials. An inference on

this MRF will help us estimate the activities in the sequence.

3.1.1 Contributions

The main contributions of this chapter are the following.

1. We propose a generalized formulation for modeling the contextual relationships be-

tween activities in the presence of multiple actors and when they are acting simultane-
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ously in the scene. They could be interacting with each other or acting independently.

2. We take a probabilistic approach to modeling relationships between activities. We

model the spatial relationships, temporal relationships as well as the association fre-

quencies into the potential functions of a random field model. Inference on this graph

gives us the estimate of the categories to which each activity corresponds. We perform

experiments on realistic videos containing multiple activities spread over space and

time with high amount of clutter and noise.

3.1.2 Related Work

Graphical models are commonly used to encode relationships in video analysis. A

grid based belief propagation method was used for pose estimation in [35]. Stochastic and

context free grammars have been used to model complex activities in [38]. Co-occurring

activities and their dependencies have been studied using Dependent Dirichlet Process -

Hidden Markov Models (DDP-HMMs) in [39]. In our work, we propose a Markov random

field framework which can handle varying number of actors and activities.

Spatio-temporal relationships have played an important role in the recognition of

complex activities. Methods such as [42]and [66] explore spatio-temporal relationships at

a feature level. The spatial and temporal relationships between space-time interest points

have been encoded as “feature graphs” in [1]. Although such methods have been applied

to multiple activities occurring simultaneously, it may not be practical to construct such

graphs over long term video sequences and do not explore the relationships across activi-

ties. Complex activities were represented as spatio-temporal graphs representing multi-scale
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video segments and their hierarchical relationships in [67]. Most of these papers focus on

the modeling of low level features for recognition. Variable length Hidden Markov models

are used to identify activities with high amount of intra class variabilities in [68]. In this

thesis, we have modeled the spatio-temporal relationships between different activities which

form a higher level representation.

Some of the previous approaches such as [69] assume a known structure of the

graph for context representation. Models such as the AND-OR graphs or other tree struc-

tures have been suggested in the past [10] [70] for modeling sports sequences and office

environments. These models however, are more suited for structured environments where

there are a set of rules governing the behavior of people such as in sports, or where the

number of objects/activities or the combinations of sub-activities are limited as in an office

environment. Applying such models to unconstrained sequences can be laborious due to the

exponential number of combinations of activities which have to be learnt here to construct

such models. Similarly, papers such as [71] use context to infer a collective activity using

single person activities. In such sequences however, it is assumed that all participating

persons/objects contribute to the collective activity. Whereas, in a typical surveillance sce-

narios, different actors may or may not be interacting with each other, therefore such models

cannot be directly applied here. The authors in [72] deal with recognizing a single activity

over multiple cameras by topology inference, person re-identification and global activity

interpretation. Here, we are dealing with a set of different activities which may or may

not be correlated, therefore a Markov random field is a more suited model to capture these

complex spatio-temporal relationships. Social roles for hierarchical representation of activ-
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ities in sports videos is explored in [73]. Most of this work deals with short duration videos

or with videos with a pre-defined structure such as sports videos. We propose to define the

structure of the graph on the test sequence rather than use a pre-defined structure.

3.1.3 Definitions

• Action - A region of uniform motion in the video, one or more of which form a

meaningful activity.

• Activity - A meaningful event in the video which we wish to identify. Our objective

is to assign every activity a class label in the range c1..cN .

• Activity region - A spatio-temporal volume in which the activity takes place. An

activity region Ai is represented by its spatial and temporal centroids si and ti.

• Activity Sequence - A set of activities which occur in close proximity with each

other and can have causal influences on each other. Each activity sequence is modeled

as a graphical model and evaluated.

3.2 Overview

An overview of our MRF model for activity recognition in activity sequences is

shown in Figure 3.1. Given a long-term video, the goal of our approach is to estimate

the category to which individual activity belongs. We assume that we have some training

videos available, each of which have one or more sequences of activities occurring in different

spatio-temporal regions. Each spatio-temporal region where a potential activity takes place
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Figure 3.1: Figure shows the illustration of our proposed method. Training involves model-
ing the pairwise spatio-temporal relationships between different activity regions which are
provided in annotations as mentioned in Section 3.3.1. For a test video, activity regions are
identified using the method presented in Section 3.4.2. Using the potentials from training
data and observation potentials as described in Section 3.3.1, the node labels are inferred
(Section 3.3.3).

is termed as an activity region. We also have available a set of baseline classifiers C =

{c1, c2..cN}, which can output a probability of an activity region y belonging to a particular

class ci, i.e. P (ci|y).

A typical surveillance video, such as a parking lot video (shown in Figure 1.1)

contains several activities occurring simultaneously or in succession in different portions of

the scene. The number of objects, people and activities change from one video sequence

to another. Having identified the activity regions in a video using the baseline classifiers,

and having clustered them into sequences which are potentially related to each other, we

explore three key aspects to improve the accuracy of recognition: 1) The relationship in

the spatial locations of activities, 2) the relationship in the temporal locations of activities

and 3) the probability of association of two given activities, i.e., the probability that one
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activity might occur in the vicinity of another.

These concepts are modeled by a Markov random field (MRF). Since the MRF is

used to model the context information across activities, we choose the nodes of the MRF

as atomic activities rather than pixels or image regions, as is commonly done in image

segmentation. Each edge represents the spatio-temporal context between the activity nodes

that it connects. The node potentials are obtained using the likelihood of the activities given

by the baseline classifiers. The edge potentials are learnt from the training data. We perform

inference on the resulting MRF to estimate the activities in the test sequence. We conduct

experiments on the UCLA office dataset containing indoor office sequences and the publicly

available VIRAT dataset containing parking lot videos.

3.3 Graphical Representation of Activities

The goal of our algorithm is to model the space-time relationships between the

activities in a scene using a Markov random field. The MRF is an undirected graph G =

(V,E), with a set of nodes V and a set of edges E. Given a video sequence to be recognized,

we first construct an MRF over all probable related activities in the sequence. Each node

denotes an activity and an edge represents the spatio-temporal relationship between two

activities. There are a set of observations Y = {y1..yn} and a set of hidden variables X =

{x1..xn} for a sequence of n activities. An observation node yi denotes the image observation

of an activity, which are the features computed over an activity region. The output of the

baseline classifiers for each activity is used to compute an observation potential. A hidden
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node denotes an atomic activity to be estimated. A node xi can be defined as

xi = (ci, si, ti), (3.1)

where xi denotes a node, ci denotes the activity class to which it belongs, si is its spatial

location and ti denotes its temporal location. The MRF is given by

Ψ =
1

Z

∏
i,j∈E

wij
stψst(xi, xj)

∏
i∈V

wi
oψo(xi, yi), (3.2)

where Ψ is the overall potential. Here, we assume that the MRF factors over the edges.

There are two kinds of potentials associated with the graph. ψst(xi, xj) is the edge potential

which is the spatio-temporal relation between two hidden nodes connected by an edge and

ψo(xi, yi) is the observation potential of a node. wo and wst are the node and edge weights

respectively. Z is the normalization constant. The illustration of our proposed graphical

model is shown in Figure 4.3.

3.3.1 Potential Functions

The node observation potentials and the spatio-temporal edge potentials are de-

fined as given below.

Observation Potential

The observation potential or the node potential is the evidence of the activity

obtained from the video data. These are obtained from the image observations of the

activities which are the baseline classifiers. We have one baseline classifier per activity

class, the output of which is the probability of the given activity belonging to a particular
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Figure 3.2: Figure shows the Markov random field constructed over a spatio-temporal
volume for an activity sequence. Shown in the figure are the activity regions which form
the observation variables y. The baseline classifier output forms the observation potential.
The labels of the activities which have to be predicted constitute the hidden nodes x. The
edges of the graph are learnt iteratively.

category. We use a Bag-Of-Features approach over space-time interest points [2] as our

baseline classifiers due to its popularity for recognition of atomic activities. Specifically,

space-time interest points based on Harris and Forstner operators are computed over the

training set. A feature vector is generated for each point. During training, a codebook

is build by clustering and quantizing these features. Each category of activity is modeled

as a distribution over this vocabulary. The interest points are computed over the test

video and regions with significant number of points from the vocabulary are said to be the
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activity regions, denoted as the observation variables yi. A discriminative classifier such as a

multiclass SVM classifier is used to compute the probability of an activity region belonging

to a particular category P (cj |yi). These probabilities are learnt jointly over the training

data. The observation potential is therefore defined as

ψo(xi, yi) = p(xi|yi, C), (3.3)

where ψo is the observation potential, yi is the observation variable and C is the set of

baseline classifiers. It is to be noted that any other set of features or algorithm can also be

used for the baseline classifiers.

Spatio-temporal Potential

The spatio-temporal potential is defined on edges connecting the activity vari-

ables in the graph. Actions which are within a spatio-temporal distance of each other are

assumed to be related to each other. There are three components to this potential: the

spatial component, the temporal component and the association component. The spatial

component models the probability of an activity belonging to a particular category given

its spatial configuration with its neighbor. Similarly, the temporal component models the

probability of an activity belonging to a particular category given its temporal distance with

its neighbor. The association component is the probability of two activities being within a

pre-defined spatio-temporal vicinity of each other. The spatial and temporal components

are modeled as normal distributions whose parameters µs, σs, µt and σt are computed using

the training data. The spatial component is given by

ψs(xi, xj) = Nsd(∥si − sj∥2;µs(ci, cj), σs(ci, cj)), (3.4)
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ψt(xi, xj) = Ntd(∥ti − tj∥2;µt(ci, cj), σt(ci, cj)). (3.5)

where µs(ci, cj),σs(ci, cj), µt(ci, cj) and σt(ci, cj) are the parameters of the distribution

of relative spatial and temporal positions of the activities, given their categories. The

association probability fij is computed as a ratio of the number of times an activity category

cj has occurred in the vicinity of activity category ci to the total number of times the

category ci has occurred. Therefore, the spatio-temporal potential is given by

ψst(xi, xj) = fijψs(xi, xj)ψt(xi, xj) (3.6)

3.3.2 Training

Training involves learning the edge weights for the graphical model. This is done

by optimizing Equation 3.3 over the training data. Due to the log linear nature of the model,

this is a convex optimization problem. For each training instance, the potential functions

are obtained as explained above. The edge potentials are obtained by a pseudo-negative

log likelihood optimization over loopy belief propagation.

3.3.3 Inference

Inference in a graphical model involves computing the marginal probabilities of

the hidden or unknown variables given an evidence or an observed set of variables. We

choose the belief propagation method for estimation of parameters. Since there are loops in

our model, the loopy belief propagation is used. Although this algorithm is not guaranteed

to converge, it has shown excellent empirical performance [74].

At each iteration, a node sends messages to its neighbor. All nodes are updated
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based on the messages from their neighbors. Consider a node xi ∈ V with a neighborhood

N(xi). The message sent by a node xi ∈ V to its neighbor xj ∈ V, (xi, xj) ∈ E can be given

as

mxi,xj (xj) = α

∫
xi

ψst(xi, xj)ψo(xi, yi)
∏

xk∈N(xi)

mxk,xi(xi)dxi (3.7)

The marginal distribution of each activity region is given by

p(xi) = αψo(xi, yi)
∏

xj∈N(xi)

mxj ,xi(xi) (3.8)

The activity label which has the highest marginal distribution is assigned to the region.

The overall algorithm of our approach is presented in Algorithm 2.

3.4 Experiments and Results

3.4.1 Dataset

The goal of our approach is to model activity context in continuous videos, there-

fore, we perform experimentation on long duration realistic videos. Traditional datasets like

Weizmann [2] and KTH [7] cannot be used to validate our system. Some other datasets like

[8] contain long unsegmented video, but these activities are not related to each other and

the sequence is not a realistic one. Therefore, we evaluate our system on two challenging

datasets containing long duration activities: 1)The UCLA office dataset and 2)The publicly

available VIRAT ground dataset [9].

The UCLA office dataset [10] consists of indoor and outdoor videos of single and

two-person activities. Here, we perform experiments on the lab scene containing close to 35

minutes of video captured with a single fixed camera in a room. We work on 10 single person
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Algorithm 1 Algorithm for labeling activities in a test sequence using our context model

Input: SR = {V1 . . . VNR} Set of training videos containing activity
annotations

An activity sequence Y∫ containing n activities occurring in close spatio-
temporal vicinity {y1 . . . yn}.

Output: Labels of activities {x1 . . . xn}
Training: Train baseline classifiers c1 . . . cN for N activities and model the spatio-

temporal potential ψst(xi, xj) between all pairs of activities using an-
notated training videos using Eqn (3.6).

Testing:

1. Identify activity regions using the activity segmentation algorithm.

2. Compute observation potential ψo(xi, yi) for each activity segment given by the baseline classifiers

using Eqn (3.3).

3. Initialize graph G containing n observation variables representing activity regions and n hidden

variables representing the activity labels.

4. Run inference to generate posteriors;

5. Compute labels from posteriors and output labels.

activities: Enter lab, exit lab, sit down, stand up, work on laptop, work on paper, throw

trash, pour drink, pick phone receiver and place receiver down. There is very little variation

in viewpoint, occlusion and scale here. The first half of the data is used for training and

the second half for testing. Each activity occurs 6 to 15 times in the dataset.

The VIRAT dataset is a state-of-the-art activity dataset with many challenging

characteristics, such as wide variation in the activities and a high amount of occlusion and

clutter. It consists of surveillance videos of 11 scenes with different scales of resolution.

These are parking lot videos involving single vehicle activities, person and vehicle interac-

tions, and people interactions. There are also some group activities. This dataset consists
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of scenes captured on a single camera although the viewpoint can differ from one scene

to the next. In any scene, the activities can occur at different orientations depending on

the location. However, since these are wide-area videos, persons of interest are usually far

away from the camera, the change in spatio-temporal distance with camera view is con-

sidered negligible. We have used parking lot scenes V IRAT S 0000, V IRAT S 0401 and

V IRAT S 0502 for the first set of experiments and all data for the second set. The length

of the videos vary between 2−15 minutes and containing up to 30 activities in a video. For

every scene, the first half is used for training and the second half for testing.

We perform two sets of experiments on the VIRAT dataset, one on Release 1 and

the other on Release 2 of the data. For Release 1, there are 6 activities which are annotated:

Person entering vehicle, person exiting vehicle, person opening trunk, person closing trunk,

person loading vehicle and person unloading vehicle. In release 2, additional 5 activities

have been added: person carrying an object, person gesturing, person running, entering

and exiting a facility. For release 1, we have provided comparison with the baseline Bag-

of-Words classifier as well as the state-of-the-art String of Feature Graphs [1] method. For

release 2, we show comparison with the baseline Bag-of-Words classifier.

3.4.2 Pre-processing

To label meaningful activities in a long-duration wide area video, the first step is

to identify the spatio-temporal location of activities. We call this step as “activity segmen-

tation”. The video is first divided into overlapping time windows of fixed duration. Activity

region computation is performed on windows of three scales. Here each window consists of
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Figure 3.3: The figure shows some examples of segmentation of activity regions. The
obtained segmentation is marked in green while the true segmentation is marked in red.

30, 60 and 120 frames with an overlap of half the number of frames. Feature points are

computed for each time window which contains a track and the time window is spatially

clustered into as many regions as the number of tracks in the window. Here, we use the

Space-Time Interest Points (STIP) [2] as our features.

For each time window, the baseline classifiers are used to assign a probability

of the window belonging to a particular activity. All activities which do not correspond

to the set of “interesting” activities are considered as “background activities”. We also

train a baseline classifier for background activities. For each set of overlapping windows,

the window which has achieved the highest probability is chosen as the activity region. All
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regions which correspond to background activities are eliminated. Recognition is carried out

on the remaining activity regions. An example of activity segments identified in a sequence is

shown in Figure 3.3. A limitation of this approach is that, when the segmentation algorithm

fails to detect an activity segment, it is eliminated from further processing, thereby missed

detections are not corrected.

3.4.3 Methodology

We used a randomly selected set of half the data for training and the other half

for testing. During the training, we assume that the activity segmentation and the activity

labels are available to us. We normalize all distances with respect to the scale of the video to

make the approach invariant to scale. A threshold was set on the spatio-temporal distance

between activities to determine if the relationship between them has to be modeled. We used

the distance threshold as a bounding box of 4 times the average dimensions of the person in

the scene and a time threshold of 20 seconds. These values have been fixed experimentally.

The graphical model is constructed on individual activity sequences. Classification over an

entire activity sequence is carried out using the proposed method. For each activity region

in the sequence, the baseline classifier is applied to generate the observations. A graph is

constructed based on the spatio-temporal distances between activities. Inference is carried

out on the graph using the MRF parameters computed during training. Labels are assigned

to each activity region based on the posterior probabilities.
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Figure 3.4: The figure shows the precision and recall obtained on the UCLA office dataset
and its comparison with the Bag-Of-Features baseline classifier and SFG [1]. The activities
are: 1 - enter room, 2 - exit room, 3 - sit down, 4 - stand up, 5 - work on laptop, 6 - work
on paper, 7 - throw trash, 8 - pour drink, 9 - pick phone, 10 - place phone down.

3.4.4 Results on UCLA office dataset

For the UCLA dataset, we consider only single person activities in a high resolution

video with little variation in viewpoint and occlusion. Although this dataset has been used

for experimentation in [10], the events which have been classified for the lab data and the

accuracy of recognition for each event have not been provided by the authors. Therefore, we

provide comparison to the baseline methods used here, which is the Bag-of-Words and the
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Figure 3.5: Figure a) shows the accuracy of our method with the VIRAT release 1 dataset
for six activities and its comparison with the Bag-of-Words and SFG [1] approach. The
activities are: 1 - loading, 2 - unloading, 3 - open trunk, 4 - close trunk, 5 - enter vehicle, 6
- exit vehicle. Figure b) shows the increase in performance with structure improvisation.

SFG [1]. In both cases, it can be seen that the addition of context improves performance.

The Bag-of-Words classifier gives an overall accuracy of 75.4%.For some activities, the BOW

classifier was able to identify all instances, therefore no further improvement was possible.

An overall accuracy of 86.7% was achieved with the addition of context. For the SFG

method, an overall accuracy of 62.3% was achieved while the addition of context gave an

accuracy of 77.9%. The values of precision and recall for BOW and BOW+context, SFG

and SFG+context are shown in Figure 3.4.

3.4.5 Results on VIRAT dataset

We compare our approach with two well known approaches: the Bag-of-Words

approach and the String of Feature Graphs (SFG) approach which is a recent method that
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provides state-of-the-art performance on multi-object data in realistic videos. This method

also models spatio-temporal relations at the feature level.

For the VIRAT release 1 data, we demonstrate our method using the BOW as

well as SFG as baseline classifiers in Figure 3.5. We have also shown the results of the

baseline classifiers for comparison. We can see that our method performs better than the

SFG method in most cases. An overall accuracy of 40% was obtained using BOW and

51.3% was obtained using the SFG method. The usage of our method on BOW resulted in

an overall accuracy of 52.4% while the usage of our method on SFG resulted in an accuracy

of 61.5%. The accuracy of recognition for activities “loading” and “unloading” was found

to be slightly lower than the rest since they involve similar gestures. The confusion matrix

for the 6 activities using BOW. BOW+context, SFG and SFG + context is shown in Figure

3.6.

The second set of experiments was conducted on the release 2 of VIRAT dataset.

This dataset contains five additional activities - person carrying load, gesturing, running,

entering and exiting facility. These activities add some additional context information to the

data. We provide the precision-recall values for each activity as well as the comparison with

Bag-Of-Features and SFG approaches in Figure 3.7. Here also, we find that the addition of

context helps in better recognition in both cases. The overall accuracy of BOW+context

was 52.6% while BOW had an accuracy of 41.3%. The overall accuracy of SFG was 37.8%

while the overall accuracy of SFG+context was 46.4%. It was seen that the activities “enter

vehicle” and “load vehicle” were often confused with each other in the absence of context.

But the use of context tells us that if a person opens the trunk, he is likely to load it,
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whereas if the person opens a door, he is likely to enter it. This contextual information

was captured by our model and brought about a an improvement in the performance. It

was seen that the method shows an improvement over the baseline classifiers in the case of

partial occlusion as well as noise due to shadows and clutter.

In Figure 3.8, we illustrate the difference between the output of the baseline clas-

sifier and our algorithm for different activities like enter vehicle, exit vehicle, open and close

trunk. It can be seen that the output of our algorithm has a more well defined peak in

probability, which in turn means less uncertainty in prediction as compared to the baseline

classifier. This shows that the confidence of classification can be increased with the use of

context. In the last two cases, the addition of context corrects an incorrect classification

(represented by the highest probability).

3.5 Conclusion

In this chapter, we have proposed an approach to model continuous activities in

wide-area scenes using graphical models. We have shown that the spatio-temporal rela-

tionships between different activities in a scene can be used as context in the recognition

of activities. We illustrated a scheme based on graphical models used to learn the spatio-

temporal relationships from training video. We inferred the most probable set of labels for

the activities in the test video given their spatio-temporal configurations and observation

potentials generated from weak classifiers.
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Figure 3.6: The Figure shows the confusion matrix on VIRAT release 1 data. a)Result of
applying the baseline classifier BOW to the data. b) Result of applying BOW+context on
the data. c) Result of SFG baseline classifier. d) Result of SFG + context. The activities
are: 1 - loading, 2 - unloading, 3 - open trunk, 4 - close trunk, 5 - enter vehicle, 6 - exit
vehicle. The corresponding increase in recognition accuracy is evident from the graph.
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Figure 3.7: The figure shows the precision and recall obtained on the VIRAT release 2
dataset and its comparison with the Bag-Of-Features and SFG approaches. The activities
are: 1 - person loading an object to a vehicle, 2 - person unloading an object from a vehicle,
3 - person opening a vehicle trunk, 4 - person closing a vehicle trunk, 5 - person getting
into a vehicle, 6 - person getting out of a vehicle; 7 - person gesturing, 8 - person running,
9 - carrying load, 10 - entering facility, 11 - exiting facility.
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Figure 3.8: The comparison of the prior probabilities which are the output of the baseline
classifiers with the posterior probabilities which is the output of our algorithm for a set
of six activities. The output of our algorithm is seen to have a more well defined peak
(less uncertainty) as compared to the baseline classifier. For the last two, it is seen that
the addition of context corrects an incorrect classification. The activities in order are: 1
- person loading an object to a vehicle, 2 - person unloading an object from a vehicle, 3 -
person opening a vehicle trunk, 4 - person closing a vehicle trunk, 5 - person getting into a
vehicle, 6 - person getting out of a vehicle
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Chapter 4

Hierarchical Graphical Model For

Simultaneous Tracking,

Localization And Recognition Of

Activities

4.1 Introduction

A continuous video consists of two inter-related components: 1) tracks of the per-

sons in the video and 2) localization and labels of the activities of interest performed by

these actors. Activity analysis of continuous videos involves solving both the tracking as

well as recognition problems. In the past, most research on video analysis has treated these

two problems separately. However, in the context of continuous videos, such as surveil-
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Figure 4.1: Figure demonstrates the bi-directional processing of videos for integrated track-
ing and activity recognition. The bottom-up (or feedforward) processing involves detection
and recognition using an initial set of tracks along with low level features and spatiotempo-
ral context between activities. The top-down (or feedback) processing involves correcting
the tracklet associations using the obtained labels.
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lance or sports videos, the solution to one problem can help in finding the solution to the

other. Knowing the tracklet associations can help in better detection and recognition of

activities. Similarly, information about the location and labels of activities in a scene can

help in determining the movement of people in the scene. Therefore, we propose a method

which performs the two tasks in an integrated framework modeling contextual relationships

between tracks as well as activities using graphical models.

Most early approaches for activity recognition focused on modeling and repre-

sentation of single person activities. However, while dealing with more complex scenarios

of multiple person activities or continuous videos, it has been widely acknowledged that,

in addition to the features themselves, the structural information between sets of features

and/or objects, often termed as context, plays an important role in discriminating between

activities. While graphical models are commonly used to encode such structural relation-

ships [42, 4, 66, 71, 10], the question of how to arrive at the ideal structure for this graphical

model still remains unsolved.

Research in the area of biological vision has shown that, the human visual sys-

tem employs a bi-directional (top-down as well as bottom-up) reasoning in analyzing and

interpreting data of multiple resolutions [75]. This has been found to be particularly help-

ful in correcting errors due to false detections or noise. Applying these concepts to the

analysis of continuous videos, we consider the task of obtaining recognition scores using

tracks as a bottom-up (or feedforward) approach, while the task of correcting tracks using

obtained recognition labels is treated as top-down (or feedback) processing. We alternate

between both these steps to result in a bi-directional algorithm that can help in increasing
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the accuracy of both these tasks.

4.1.1 Contributions

The main contribution of our work described in this chapter is to propose a frame-

work for simultaneous tracking, localization and labeling of activities in continuous videos,

by integrating bottom-up and top-down processing along with automatic structure learning.

Our approach can handle a varying number of actors and activities. In order to achieve

this, we propose the following steps:

1. In the feedforward processing, the tracks are used to detect regions in the video where

interesting activities are taking place. The activities in these detected regions are then

recognized. The detection and recognition of activities is carried out simultaneously

using a 2-stage hierarchical Markov random field (HMRF). The lower level nodes

model relationships across tracklets, while the higher level nodes model information

across activities, also known as inter-activity context. A feedback processing is then

carried out, in which the recognition results are then used to correct errors in tracking.

An illustration of the bi-directional computational framework in a continuous video

is shown in Figure 4.1.

2. We use an expectation-maximization formulation to alternate between the two steps

in a bi-directional framework to arrive at a solution for both these tasks.
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4.1.2 Related Work

Reviews of related work in tracking and recognition can be found in [12][76]. We

focus only on those that consider the problem of simultaneous localization and recogni-

tion. Simultaneous localization and classification of scenes in broadcast programs has been

researched in the past in [77] but these scenes have distinctive breaks unlike continuous ac-

tivity sequences. Localization and classification of single-person activities with distinctive

breaks was performed in [78]. Activity localization and labeling of single person activities

was also demonstrated in [79] but the system used concatenated short duration sequences

which lack contextual information. We perform localization and classification on multi-

person sequences in continuous videos and also explore the integration of tracking into the

framework.

Simultaneous activity recognition and tracking has been studied in the context

of interacting objects. The relations between interacting targets obtained from activity

recognition is used in the tracking process using a relational dynamic Bayesian network in

[80]. Simultaneous recognition of a collective activity and tracking of the multiple targets

involved is performed in [81]. However, these only deal with the motion relations between

interacting persons and not across activities of the same person. They also do not look into

the bi-directional processing in an EM framework.
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Figure 4.2: Figure shows the illustration of our proposed method. Given a continuous
video with computed tracklets, a set of tracks and activity segments are initialized. An
HMRF model is built over the tracklets and segments. Edge potentials are learned on the
annotated training data. Inference on this graphical model provides a revised set of labels
for the activities which can be fed back into the system to regenerate the tracks and rebuild
the HMRF. The procedure is repeated until a stop criterion is reached. The tracks and
labels of all segments are provided as output.

4.2 Overview

The illustration of our proposed method is shown in Figure 4.2. The association,

consistency and spatiotemporal potentials are learned from the annotated training data.

For a given test video, we assume that we have with us a set of tracklets, which denote

short duration segments of tracks which are assumed to be accurate. It is assumed that,

each tracklet belongs to a single activity.

To begin with, we generate a set of match hypotheses for tracklet association and

a likely set of tracks. An observation potential is computed for each tracklet using the

features computed at the tracklet. Tracklets are grouped into activity segments using a

standard baseline classifier such as multiclass SVM or motion segmentation.

Next, we construct a two-level Markov random field using the tracklets and activity
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segments. The first level nodes correspond to the tracklets and the second level nodes

correspond to the activity segments. One or more tracklets can correspond to the same

activity segment. Edges model relationships between nodes of the same level as well as nodes

at different levels. This structure incorporates the context information between adjacent

tracklets as well as across activity segments.

The dense HMRF has edges connecting each node to all nodes within a certain

spatiotemporal range from the node. This gives us the initial graph on which we perform the

learning and recognition. The node features and edge features for the potential functions

are computed from the training data.

Inference on this graph provides the posterior probabilities for all nodes using

information available at two resolutions. The tracking is repeated with the new set of

activity segments. The graph is rebuilt using this new structure and the procedure is

repeated. Convergence is said to be achieved when the node labels and tracks do not

change from one iteration to the next.

The output of the algorithm is a set of tracks, segments and the labels assigned to

each segment.

4.3 Hierarchical MRF (HMRF) Model

Consider a video to consist of a set of p tracklets resulting in tracks T . The tracklets

can be grouped into a set of q activity segments along the tracks. We design a 2-level

hierarchical MRF with nodesX = Xt
∪
Xa, where the lower level nodesXt = {xt1 , xt2 ...xtp}

correspond to tracklets and the higher level nodes Xa = {xa1 , xa2 ...xaq} correspond to
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Figure 4.3: Figure shows a typical HMRF over an activity sequence. Tracklets are extracted
from a continuous video and form lower level nodes. Using an initial set of tracks, a
segmentation of tracklets is performed to obtain activity segments. These form the higher
level nodes. Edges model relationships between potentially associated tracklets, tracklets
and their corresponding activity segments, and the spatiotemporal context information
between activity segments. The node potentials and edge potentials are marked in the
graph.

activity segments. The set of observed features obtained for a node xi is denoted as yi. There

are three kinds of edges in the graph: edges connecting adjacent tracklets which belong to a

valid track hypothesis, edges connecting tracklets to their corresponding activity segments,

and edges connecting activity segments which are within a specified spatiotemporal distance

of each other. A typical HMRF constructed over a continuous video is shown in Figure 4.3.
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The overall energy function of the HMRF is given by

E(Xt, Xa, T ) =
1

Z
exp(−Ψ(Xa, Xt, T )), (4.1)

Ψ(Xa, Xt, T ) =
∑
xti

wti
o ψo(xti , yti) +

∑
xai

wai
o ψo(xai , yai)

+
∑
xti

∑
xtj∈N(xti )

w
ti,tj
a ψa(xti , xtj )

+
∑
xti

∑
xaj∈N(xti )

w
ti,aj
c ψc(xti , xaj )

+
∑
xai

∑
xaj∈N(xai )

w
ai,aj

st ψst(xai , xaj ),

(4.2)

where ψo(.) is the observation potential computed over both levels, ψa(.) is the association

potential, ψc(.) is the consistency potential and ψst(.) is the spatiotemporal context potential

of the HMRF. Here, wo is the model parameter for the observation potentials and wa, wc

and wst are the corresponding model parameters for the edges of the graphical model,

represented using similar superscripts. It is to be noted that for a multi-state model such as

in this case, with the nodes taking n states, each edge parameter is a matrix of n2 elements.

4.3.1 Computation of Potential Functions of HMRF

We will now describe the four kinds of potential functions mentioned above in

detail.

Observation Potential

Each node of the graph (lower or higher level) is associated with an observation

potential. At the lower level the observation potential is obtained from the image features
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associated with the tracklet corresponding to the node, while at the higher level, it is

obtained from the image features of all the tracklets that link to the higher level node.

Here, we utilize space-time interest points [2] as well as object attributes to learn a multi-

class SVM classifier in a Bag-of-Words formulation. This is also referred to as the baseline

classifier. The observation potential of a node xi is therefore defined as

ψc
o(xi, yi) = − log(P (xi = c|yi)), (4.3)

where ψc
o is the observation potential for a node xi (tracklet or activity segment) and yi is

its observed feature descriptor. It is to be noted that any other set of features or algorithms

can also be used for the baseline classifiers.

Association Potential

The association potential is defined on the edges connecting tracklets which are

hypothesized to be associated with each other. The association potential models the like-

lihood of association of two tracklets by measuring the compatibility of activities taking

place in the two tracklets. The association potential for two tracklets belonging to activity

class ca and cb is given by

ψa(xti , xtj ) = I(xti , xtj ), (4.4)

where I(a, b) is an indicator function which returns 1 if the features belonging to tracklet a

and the features belonging to the class b map to the same activity label and 0 otherwise.
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Consistency Potential

The consistency potential is defined on the edges connecting tracklets to their

corresponding activity segments. This potential function models the compatibility in the

hierarchy between the lower level nodes and the higher level nodes which contain the same

spatio-temporal region. The consistency potential is given by

ψc(xti , xaj ) = exp(−kij)I(xti , xaj ), (4.5)

where kij is the difference in the observation potentials of xti and xaj . I(.) is the indicator

function which returns 1 if a tracklet belongs to the same activity class as the activity

segment to which it corresponds and 0 otherwise.

Spatio-temporal Context Potential

The spatio-temporal context potential is defined on edges connecting the action

segments in the graph. Actions which are within a spatio-temporal distance of each other

are assumed to be related to each other. There are three components to this potential: the

spatial component, the temporal component and the frequency component.

The spatial and temporal components are modeled as normal distributions whose

parameters µs, σs, µt and σt are computed using the training data. The spatial and temporal

centroid of xai and xaj is given by (si, ti) and (sj , tj). The spatial component models the

probability of an activity belonging to a particular category given its spatial configuration

with its neighbor. The spatial potential is defined as

ψs(xai , xaj ) = Nsd(∥si − sj∥2;µs(ci, cj), σs(ci, cj)), (4.6)
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Similarly, the temporal component models the probability of an activity belong-

ing to a particular category given its temporal distance with its neighbor. The temporal

potential is defined as

ψt(xai , xaj ) = Ntd(∥ti − tj∥2;µt(ci, cj), σt(ci, cj)). (4.7)

where µs(ci, cj),σs(ci, cj), µt(ci, cj) and σt(ci, cj) are the parameters of the distribution of

relative spatial and temporal positions of the activities, given their categories.

The frequency component is the probability of two activities being within a pre-

defined spatio-temporal vicinity of each other. The association probability F (ai, aj) is

computed as a ratio of the number of times an activity category cj has occurred in the

vicinity of activity category ci to the total number of times the category ci has occurred.

Therefore, the spatio-temporal potential is given by

ψst(xai , xaj ) = F (ai, aj)ψs(xai , xaj )ψt(xai , xaj ). (4.8)

4.3.2 Training

As in the previous chapter, training involves learning the edge weights for the

graphical model. This is done by optimizing Equation 4.2 over the training data. Due to

the log linear nature of the model, this is a convex optimization problem. For each training

instance, the potential functions are obtained as explained above. The edge potentials are

obtained by a pseudo-negative log likelihood optimization over loopy belief propagation.
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4.4 Inference on the HMRF

Given an initial set of tracks, activity labels are obtained by inference on the

HMRF using the learned parameters. Inference on a graphical model involves computing the

marginal probabilities of the hidden or unknown variables given an evidence or an observed

set of variables. There are two steps in our inference algorithm which are alternated in an

EM framework to obtain the solution to the tracking and activity recognition problems.

Using a set of pre-computed tracks, we obtain a set of activity labels in a bottom-up

inference strategy. Next, using the obtained activities, tracks are re-computed in a top-

down processing. These steps are explained in detail below.

4.4.1 Bottom-up Inference: From Tracks to Activities

Inference is the task of estimating labels of activities using the computed parame-

ters. Due to the loopy nature of the graph, an exact solution is intractable. We consider an

approximate objective to solve this optimization. A pseudo-likelihood function is computed

by replacing the likelihood with univariate conditionals. A grouping of consecutive actions

taking the same activity labels gives activity regions. Output of the algorithm is the labels

of activities and the structure of the graphical model.

We choose the belief propagation method for inference on the graph. At each

iteration, a node sends messages to its neighbor. All nodes are updated based on the

messages from their neighbors. Consider a node xi ∈ V with a neighborhood N(xi). The

message mxi,xj (xj) sent by a node xi ∈ V to its neighbor xj ∈ V, (xi, xj) ∈ E can be given
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as

mxi,xj (xj) = α

∫
xi

Ψ(xi, xj)Ψo(xi, yi)

∏
xk∈N(xi)

mxk,xi(xi)dxi

(4.9)

Here Ψ(xi, xj) is taken as the association, consistency or spatiotemporal potential depending

on the level of the nodes which it connects. We solve the inference problem starting with

the lower level nodes and propagate the message to the higher level nodes. The marginal

distribution of each activity region is given by

p(xi) = αψo(xi, yi)
∏

xj∈N(xi)

mxj ,xi(xi) (4.10)

The spatio-temporal region is said to belong to that category which has the highest marginal

probability.

We use the loopy belief propagation algorithm due to its proven excellent empirical

performance [74]. However, other variational inference methods such as the mean-field

approximation can also be used for inference.

4.4.2 Top-down Inference: From Activities to Tracks

Tracks are to be formed by associating non-overlapping tracklets. Knowledge

about the activities a person conducts in a given time interval can help in estimating his

position and thereby the tracklet association. Therefore, in addition to the cost due to

feature similarities, the compatibility of two tracklets given the activities that are being

performed by the actor in the spatiotemporal region represented by the tracklets, given by

the association potential, is utilized in the tracklet association algorithm.
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The tracklet association is posed as a min-cost network problem as given in [82].

For a set of tracklets t1, t2...tn, a set of m tracks T1, T2, .., Tm are to be identified, such that,

each track contains one or more tracklets. This can be accomplished by finding a set of m

possible paths between two tracklets ti and tj , given by h1ij , h
2
ij , .., h

m
ij known as the match

hypotheses. Each hypothesis is associated with a cost of matching, given by dkij . The tracks

are defined as a matching function T (f) of a set of binary flow variables f , estimated as

f̂ =argmin
f

P (f,Xt) = argmin
f

∑
i

denfen,i +
∑
i

dexfi,ex

+
∑
ij

dijfij +
∑
ij

w
ci,cj
a ψ

(ci,cj)
a (xti , xtj )fij

(4.11)

Here, f represents the set of binary flow variables indicating whether the tracklet i is

an entry point fi,en of a track, exit point fi,ex of a track or a transition fij to another

tracklet. Therefore, fen,i, fex,i, fij ∈ {0, 1}. Every node can either be an entry node, an

exit node, or be associated with a neighboring tracklet j. Therefore, fen,i +
∑

j

∑
fji =

1, fi,ex +
∑

j

∑
j fij = 1.

The first and second constraints are binary constraints that model the cost as-

sociated with the image or motion features for inflow and outflow, given by den and dex

respectively, the third constraint dij models the cost of association of two tracklets based

on image or motion similarities. This matching cost is given as a weighted combination

of distance between the color histograms of the tracklets and the spatiotemporal distance

between them. The fourth term models the association cost of two tracklets ti and tj per-

forming actions ci and cj and models the compatibility between activities performed by the

tracklets. This term integrates the information from the higher-level activity nodes to the
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inference of tracks.

The match hypotheses for a set of tracklets can be found using the K-shortest

path algorithm [81]. An initial set of tracks are computed using just the binary constraints.

Activity segmentation is conducted on these set of tracks by running a baseline classifier

on the tracklets and grouping adjacent tracklets of a track belonging to the same activity

into a single activity segment. The HMRF is constructed on these tracklets and activity

segments. Using the obtained labels from recognition, the cost matrix is updated and the

tracks are re-computed. The algorithm is repeated with the modified tracks.

4.4.3 Bi-directional Processing for Tracking and Activity Recognition

As explained in Section 4.3, the activity labels of the HMRF can be obtained by

maximizing the energy function E(Xt, Xa, T ) in Equation 4.2, or in other words, minimizing

Ψ(Xt, Xa, T ), i.e.

X̂ = argmax
Xt,Xa

E(Xt, Xa, T )

= argmin
X

Ψ(Xt, Xa, T )

(4.12)

This is dependent on knowing the tracks T which are used to compute the nodes and edges

of the graph as seen from Equation 4.2. Alternately, the track association problem utilizes

the association potential which requires the activity labels assigned to the tracklets as can

be seen from Equation 4.11. We can see that both X and T are dependent on each other.

We propose to solve the tracking and activity recognition problems simultaneously. Since

both X and T are unknown, this can be solved as an expectation maximization problem by
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iterating between two steps.

E-Step: The expectation step computes the conditional expectation of the node

labelsX(p) given the parameters of the HMRF and the current estimation of the tracks given

by f (p). This can be shown to be obtained as the posterior probabilities of the graphical

model given byX(p) = argmin
X

Ψ(Xt, Xa, T (f
(p))). This can be solved as described in Section

4.4.1.

Maximization Step: The maximization step revises the flow parameters given

the current node labels. We recompute the spatiotemporal context potential between the

tracklets for all hypotheses and recompute the flow variables using equation 4.11. This can

be solved as described in Section 4.4.2.

The overall algorithm of our proposed method is explained in Algorithm 2.

4.5 Experiments and Results

4.5.1 Dataset

As in the previous chapter, we again perform experiments on the VIRAT public

dataset. We perform two sets of experiments, one on Release 1 and the other on Release

2 of the data. For Release 1, there are 6 activities which are annotated: 1 - loading, 2 -

unloading, 3 - open trunk, 4 - close trunk, 5 - enter vehicle, 6 - exit vehicle. In release 2,

additional 5 activities have been added: 7 - person carrying an object, 8 - person gesturing,

9 - person running, 10 - person entering facility and 11 - person exiting facility.

During training, we normalize all distances with respect to the scale of the video to
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make the approach invariant to scale. A threshold was set on the spatio-temporal distance

between activities to initiate the dense graph. We used the distance threshold as a bounding

box of 4 times the average dimensions of the person in the scene and a time threshold of 20

seconds. These values have been fixed experimentally. The graphical model is constructed

on individual activity sequences. The regularization parameters experimentally determined

where λc = 3, λa = 3, λst = 4.

To evaluate the accuracy of activity recognition, if there is more than a 40% overlap

in the spatiotemporal region of a detected activity as compared to the ground truth and the

labeling corresponds to the ground truth labeling, the recognition is assumed to be correct.

Some examples of data which were correctly identified using our approach while incorrectly

identified using a dense graphical model are shown in Figure 5.3.

4.5.2 Analysis of the Results

The classification results on VIRAT release 1 data is shown in Figure 5.5 and

the results on VIRAT release 2 data is shown in Figure 5.7. The overall precision and

recall values for VIRAT release 1 and comparison with approaches [1] and [3] is provided in

Table 5.1. For release 2, in addition to providing comparison with BOW, we also provide

comparison against two recent approaches [4] and [3]. Authors in [3] utilize spatiotemporal

context, while the authors in [4] utilize sum-product networks on low level features to

localize foreground objects and label activities. However, both these approaches only deal

with the labeling problem. Our results are comparable to those in [4] and [3]. Although

the overall accuracy is slightly lower with our approach, note that we consider the more

89



challenging problem of joint labeling and tracking of activities in our approach which is

necessary for continuous videos. Table 4.2 shows the overall precision and recall values on

VIRAT release 2 data for these approaches. Figures 5.5 and 5.7 show comparison with [3]

only since the recognition scores of individual activities are not given in [4].

4.5.3 Tracking Results on VIRAT Release 2

Two examples of tracking results are shown in Figure 4.6. In the first case, we have

a sequence of activities performed by a single person in the presence of occlusion. While

the absence of context terminates the track due to the presence of occlusion, the presence

of feedback detects that a trunk has been opened and it is very likely that the same person

would close the trunk. Therefore, track is not terminated. Similarly, the second example

shows two persons loading a trunk. While there is an error in the tracks in the absence

of feedback, it is seen that the addition of feedback takes into account the fact that the

person getting out of the vehicle is very likely to enter the vehicle (as often witnessed in the

training data) and corrects the tracks.

For a qualitative evaluation of tracking using our approach, there is no prior re-

search which has provided results on tracking that we can compare with. Also, datasets

that have been popular in the tracking community do not present activity recognition re-

Method BOW Gaur[1] Zhu[3] HMRF

Precision 47.2 51.6 61.7 62.6

Recall 45.8 57.8 62.9 62.7

Table 4.1: Overall precision and recall values of methods BOW, Gaur et. al[1], Zhu et. al
[3] and our approach for the VIRAT release 1 dataset.
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Figure 4.4: The figure shows the precision and recall obtained on the VIRAT release 1
dataset with our approach. Comparison has been shown to the performance of baseline
classifier BOW [2] as well as Zhu et al [3]. The activities are listed in Section 4.5.1.

sults. Therefore, we provide tracking results against the ground truth (GT) in Table 4.3.

We compile the tracking results over 150 trajectories. The metrics used for measuring the

tracking accuracy are: Mostly tracked: more than 80% of the track is correctly tracked;

Mostly lost (ML) 20% or less tracked; Fragmented tracks (FT) Single track split into mul-

tiple IDS; ID switches (IDS) Switch between multiple tracks. It can be seen that there is a

clear improvement in the tracking performance with the addition of bi-directional tracking.
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Figure 4.5: The figure shows the precision and recall obtained on the VIRAT release 2
dataset with our approach. Comparison has been shown to the performance of baseline
classifier BOW [2] as well as Zhu et al [3]. The activities are listed in Section 4.5.1.

4.6 Conclusion

In this chapter, we have presented a method which can perform tracking, localiza-

tion and recognition of activities in continuous sequences in an integrated framework. The

proposed framework uses an initial set of tracks for analysis of activities using a hierarchical

Markov random field. The activity labels in turn are used to correct the errors in tracking.

The biologically inspired bi-directional processing is shown to be effective in improving the
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Method BOW Amer[4] Zhu[3] HMRF

Precision 50.3 72 71.5 70.4

Recall 52 70 73.1 74.5

Table 4.2: Precision and recall values of methods BOW, Amer et. al[4] and Zhu et. al [3]
and our approach for the VIRAT release 2 dataset.

Figure 4.6: The figure shows two examples where tracking is improved with the addition of
context. The top row shows the tracking results without activity context while the bottom
row shows the result with the addition of feedback. Red and green signify different tracks
in each case. In the first case, it is seen that the track was wrongly terminated due to
occlusion in the absence of context. In the second case, the tracklet association error was
corrected with the addition of context.

accuracy of tracking as well as activity recognition.
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Metric One-Step Tracking Bi-directional process-
ing

GT 150 150

MT 105 121

ML 19 13

FT 36 14

IDS 35 22

Table 4.3: Precision and recall values of methods BOW, Amer et. al[4] and Zhu et. al [3]
and our approach for the VIRAT release 2 dataset.
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Algorithm 2 Algorithm for integrated tracking, localization and labeling of activities in a test

sequence using HMRF.

Input: SR = {V1 . . . VNR} Set of training videos containing activity
annotations

A continuous test video containing one or more activities.
Output: Labels of activities {xa1 . . . xaq} and tracks T1 . . . Tk .
Training: Train baseline classifiers c1 . . . cN for N activities and model the as-

sociation potential ψa(xti , xtj ), consistency potential ψc(xti , xaj ) and
spatio-temporal potential ψst(xai , xaj ) between all pairs of activities
using annotated training videos. Train model parameters w.

Initial
tracking:

Generate hypotheses on tracklets and get an initial estimates of tracks
f (1).

Testing:

1. Tracklets form the lower level node {xt1 , xt2 ...xtp}. Run baseline classifiers to compute labels lold

for all nodes and initial activity segmentation using current tracks {xa1 , xa2 , ...xaq}.

2. Compute observation potential ψo(xti , yti) for each tracklet and ψo(xai , yai) activity segment using

the baseline classifiers.

3. Initialize hierarchical MRF G containing p tracklets and q activity segments.

4. E-Step: Run inference to generate posteriors and labels for all nodes lnew.

5. M-Step: Recompute association potential using current labels lnew. Solve Equation 4.11 using

the revised potential and recompute tracks f (new).

6. Compute new localization using fnew. Rebuild graph.

7. Repeat the EM algorithm until lold = lnew ∥ niter = maxiter

8. Output tracks T (f) and current labels for {xa1 , xa2 , ...xaq}.
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Chapter 5

Structure Discovery Using

L1-regularized Learning In

Graphical Models

5.1 Introduction

Most early approaches for activity recognition focused on modeling and represen-

tation of single person activities. However, while dealing with more complex scenarios of

multiple person activities or continuous videos, it has been widely acknowledged that, in ad-

dition to the features themselves, the structural information between sets of features and/or

objects, often termed as context, plays an important role in discriminating between activi-

ties. Researchers have proposed different ways to represent the structure in a video. Graph-

ical models are commonly used to encode such structural relationships [42, 4, 66, 71, 10].
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What is the ideal structure of this graphical model? Given that the useful contextual re-

lationships in the video are sparse as compared to the total number of elements, how do

we discover this sparse structure? The objective of this chapter is to propose a method to

automatically learn this structure.

The effectiveness of a graphical model depends on the structure as well as the

parameters chosen for the model. In the case of unconstrained videos such as surveillance

videos, the graph structure varies with the number of people and activities in the video.

Therefore, choosing the right set of edges for the graph is a challenging task. Prior ap-

proaches such as [83] have fixed the graph apriori or used dense graphs as an alternative.

The disadvantage of a dense graph is that the number of parameters to be estimated in

the model grows exponentially with the number of edges. This makes the computation of

parameters statistically inefficient and the model inaccurate. In addition, it may not be

practical to fix the graph in some applications. Here, we perform structure discovery as

a part of the parameter learning process such that the resulting graph has a sparse set of

edges.

Sparsity has widely been used in different applications where it is advantageous

to have a small set of parameters that effectively model the data. In continuous videos

with a variable number of activities and people, the total number of possible contextual

relationships can be exponential in the number of activities. However, in reality, the number

of activities which are actually related to each tends to be a small subset of all possible

relationships. For example, two people in the scene may be acting independently and

may not influence actions performed by each other. Similarly, a preceding action may
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Figure 5.1: A continuous video can consist of multiple activities. The challenge in context
modeling using graphical models is to arrive at a structure which effectively models the
contextual relationships between activities. In this chapter, we propose an L1-regularized
learning of the graphical model which performs an automatic structure discovery on the
graph.

provide sufficient context to the next action, while the other relationships may not be as

significant. Therefore, by learning a sparse set of parameters, and in turn a sparse graph, we

can effectively retain those contextual relationships which tend to influence the recognition

scores to a greater extent, while also reducing the computational complexity involved in

solving a dense graph.

L1-regularized learning is a useful tool to select a sparse set of features which

represent a particular data. Different methods of sparse dictionary learning such as deep

Boltzmann machines [84], stacked auto-encoders and sparse coders [85] have been used

to represent image data in the context of object recognition. These concepts have been

extended to video data in approaches such as 3D convolutional neural networks [86] and

independent subspace analysis [87]. Such approaches have demonstrated competitive per-

formances in classification. However, most computer vision approaches which have used

L1-regularized optimization have only explored sparsity in feature representation and not

in structure representation. The main novelty of this work is to extend the concept of
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sparse feature learning to estimating a sparse set of relationships between events in contin-

uous videos.

We model activities in video using features as well as the inter-activity structural

relationships. Starting with a dense graph, a sparsity constraint is imposed on the edges as

well as the features. The resultant graph models the most common contextual relationships

between activities, while also choosing the optimal parameters and features in an automatic

and computationally efficient manner. We demonstrate the sparsity of the graphical model

obtained, thereby showing the ability of the algorithm to discover contextual relationships.

5.1.1 Related Work

Recently, sparse coding techniques have gained popularity in the field of activity

recognition. A 3D convolutional network learned over a fixed set of input frames to represent

the video was proposed in [86]. A cascading system of independent subspace analysis and

spatial pooling was used to learn a set of local features. These features were classified

using K-means vector quantization and χ2 kernel in [87]. Action attributes are modeled

using a sparse dictionary based representation in [88]. Anomaly detection is performed

by measuring the encoding error of features learned using sparse coding in [89]. Recent

methods like [90, 91] use group sparsity for feature learning. These methods primarily

focus on representation of features at different scales in a video [92]. We on the other hand,

use a sparse learning approach for automatic structure discovery and parameter learning in

graphical models.

In applications such as activity recognition, the structure of the graph is difficult to
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determine. Prior approaches have either used fixed graphical models such as in [83] [71] or

built graphs of known structures such as and-or graphs [10]. Recent approaches such as [3]

have tackled this problem by using a greedy forward search to determine the best possible

graph, thereby making the learning and inference very intensive. The idea of learning an

optimal set of structural relationships in a L1-regularized learning framework is the novelty

of our approach, and can be extended to these other applications where structure can play

a crucial role.

5.2 Overview

The illustration of our proposed method is shown in Figure 5.2.

We start with the same formulation of the problem as in the previous chapter.

Pre-processing consists of computing tracklets and computing low level features such as

space-time interest points in the region around these tracklets. Tracking involves association

of one or more tracklets to tracks. Activity localization can now be defined as a grouping of

tracklets into activity segments and recognition can be defined as the task of labeling these

activity segments.

To begin with, we generate a set of match hypotheses for tracklet association and

a likely set of tracks. An observation potential is computed for each tracklet using the

features computed at the tracklet. Tracklets are grouped into activity segments using a

standard baseline classifier such as multiclass SVM or motion segmentation.

Next, we construct a two-level Markov random field using the tracklets and activity

segments. The first level nodes correspond to the tracklets and the second level nodes
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Figure 5.2: Figure shows the illustration of our proposed method. Given a continuous
video with computed tracklets, a set of tracks and activity segments are initialized. An
HMRF model is built over the tracklets and segments. Edge potentials are learned on the
annotated training data. Starting with a dense graph, L1-regularized structure learning
gives a sparse set of edges. Inference on this graphical model provides a revised set of labels
for the activities which can be fed back into the system to regenerate the tracks and rebuild
the HMRF. The procedure is repeated until a stop criterion is reached. The tracks and
labels of all segments are provided as output.

correspond to the activity segments. One or more tracklets can correspond to the same

activity segment. Edges model relationships between nodes of the same level as well as nodes

at different levels. This structure incorporates the context information between adjacent

tracklets as well as across activity segments.

The dense HMRF has edges connecting each node to all other nodes within a

certain spatiotemporal range. This gives us the initial graph on which we perform the

learning and recognition.

The node features and edge features for the potential functions are computed from

the training data. There are two tasks to be performed on the graph - choosing an appropri-

ate structure and learning the parameters of the graph. Both these steps can be performed

simultaneously by posing the parameter learning as an L1-regularized optimization. The
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sparsity constraint on the HMRF ensures that the resulting parameters are sparse, thus cap-

turing the most critical relationships between the objects. The parameters which are set to

zero denote the edges which have been deleted from the graph. The non-zero parameters

denote the parameters of edges retained after automatic structure discovery.

Inference on this graph provides the posterior probabilities for all nodes using

information available at two resolutions. The activity labels are used in a top-down fashion

to recompute the tracks. Activity segmentation on the recomputed tracks gives us a new

set of nodes on which structure learning and inference is then repeated. Convergence is

said to be achieved when the node labels and tracks do not change from one iteration to

the next.

The output of the algorithm is a set of tracks, segments and the labels assigned to

each segment.

5.3 L1-regularized Graphical Model for Activity Recognition

5.3.1 Standard L1-regularization of Parameters:

The graphical model consists of a set of potentials and a set of parameters. As

described in Equation 4.2, there are three kinds of parameters described on the edges of the

graph - wa, wc and wst. The overall parameter vector of the model is therefore formed by

concatenating the weight vectors of all the potential functions, given byw = [wT
a ,w

T
c ,w

T
st]

T .

We begin by computing the potential functions on a densely connected graphical model.

While we could use a fully connected graphical model, here, we assume that nodes within
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a specified spatiotemporal distance can influence each other contextually. Therefore, we

build a graph where every node is connected to all nodes within a specified spatiotemporal

distance. The structure discovery using L1-regularization of parameters is carried out as

given below.

We wish to learn the structure of a sparsely connected graph, which represents

the contextual relationships in the data. We propose to do this by an setting a sparsity

condition on the parameters. A sparse set of parameters also results in a sparse set of edges,

since setting a parameter to zero sets the corresponding potentials of the energy function

to 1. We also set a sparsity constraint on the node parameters for effective feature coding.

The non-zero node parameters would specify the sparse node features which are chosen to

model the activities. The non-zero edge parameters would specify the edges which encode

important contextual information between activities. This is done by imposing a restriction

on the L1-norm of the parameter vector. For a set of m training instances and n nodes in

the graph, the L1-regularized learning problem can be given by

F =min
w

−
m∑
k=1

[
n∑

i=1

[woψo(xo, yo) +
∑

j∈N(i)

wijψe(xi, xj)]]

+m logZ(w) + λ|w|1

(5.1)

Here, λ is the regularization parameter which decides the sparsity of the resultant

solution. This poses the structure learning as an optimization problem. This is a useful

formulation for learning the graphical model since it does not impose any constraint on the

structure and is also much faster than the search based method of edge addition/deletion.
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5.3.2 Group L1-regularization of Parameters:

In the above formulation, each node can take as many states as the number of

meaningful activities in the data. For multi-state nodes representing n activities, the po-

tential function can take n2 values for each edge. Each edge is therefore represented by

an edge parameter w which is composed of a matrix of n2 elements, given by wij , where

i, j ∈ {1, 2, .., n}

We want to learn the edges of a graphical model, each edge parameter representing

the joint distribution of a node given the neighbor. The edge is reduced to zero only if all

elements of the edge are set to zero. This is achieved by the L2-regularization of the

n2 elements over each edge. However, each non-zero edge in this case tends to have all

parameters set to non-zero elements. To introduce sparsity for the elements of the non-zero

edges, we introduce the l1-regularization over this function. This leads us to the group

l1-regularization, which is defined as the l1-regularization of l2-norm of w. Since there are

three kinds of edge potentials in the graph, we form three regularization factors for the

three sets of edges with the flexibility to choose three different regularization parameters.

The optimization function therefore reduces to

F =min
w

−
m∑
k=1

[

n∑
i=1

[woψo(xo, yo) +
∑

j∈N(i)

wijψe(xi, xj)]]

+m logZ(w) + λc
∑
i∈Ec

∑
j∈N(i)

∥wc∥2 + λa
∑
i∈Ea

∑
j∈N(i)

∥wa∥2

+ λst
∑
i∈Est

∑
j∈N(i)

∥wst∥2

(5.2)

This function can be viewed as a sum of a differentiable convex function and a

convex regularizer. We solve this using the Barizilai-Borwein spectral projection method
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[93]. This method views the equation as a constrained optimization problem, with a series of

group constraints. In the group regularization, the constraint given in the form of
∑

g λgwg,

replaces the non-differentiable regularizer with a linear function. The function is solved

using a variant of the projected-gradient method with a variable step size. Therefore, we

now have a smooth optimization problem over a convex set.

The spectral projection method solves for the parameters in an iterative manner.

In each iteration, the value of the parameters is changed in the direction of the projection

of the current values on the function space, i.e.,

wk+1 = P∫ (wk − α∇F (wk)), (5.3)

where P∫ represents a Euclidean projection and α is the step size. For details of the spectral

projection method, please refer [93]. The final solution introduces sparsity for the edges of

the graph using the L1 constraint on the groups, as well as within each group by minimizing

the total number of parameters.

Inference is carried out on the test video by using the parameters computed. Due to

the loopy nature of the graph, an exact solution is intractable. We consider an approximate

objective to solve this optimization. A pseudo-likelihood function is computed by replacing

the likelihood with univariate conditionals. Convergence was achieved using the mean-field

approximate inference. A grouping of consecutive actions taking the same activity labels

gives activity regions. Output of the algorithm is the labels of activities and the structure

of the graphical model.
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Figure 5.3: A few examples of activities which were incorrectly detected using a dense graph-
ical model (λ = 0) and correctly discovered after the L1-regularized parameter learning. The
advantage of learning a sparse graph is better representation of contextual information.

5.4 Experiments

To validate our algorithm, we require continuous videos where multiple actors per-

form a series of activities. The VIRAT dataset [9] is a publicly available dataset containing

outdoor sequences of related activities. It consists of surveillance videos of 11 scenes with

different scales of resolution. These are parking lot videos involving single vehicle activities,

person and vehicle interactions, and people interactions. There are also some group activ-

ities. This dataset consists of scenes captured on a single camera although the viewpoint

can differ from one scene to the next. In any scene, the activities can occur at different

orientations depending on the location. However, since these are wide-area videos, persons

of interest are usually far away from the camera, the change in spatio-temporal distance

with camera view is considered negligible. It has many challenging characteristics, such as

wide variation in the activities and a high amount of occlusion and clutter.

We have used parking lot scenes for the first set of experiments and all data for

the second set. The length of the videos vary between 2− 15 minutes and containing up to

30 activities in a video. For every scene, the first half is used for training and the second

half for testing.
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We perform two sets of experiments on the VIRAT dataset, one on Release 1 and

the other on Release 2 of the data. For Release 1, there are 6 activities which are annotated:

Person entering vehicle, person exiting vehicle, person opening trunk, person closing trunk,

person loading vehicle and person unloading vehicle. In release 2, additional 5 activities

have been added: person carrying an object, person gesturing, person running, entering

and exiting a facility.

For VIRAT release 1, we provide comparison with recent approaches [1] and [3].

For release 2, in addition to providing comparison with BOW, we also provide comparison

against two recent approaches [4] and [3]. Authors in [1] model structural relationships

between features. Authors in [3] utilize spatiotemporal context, while the authors in [4]

utilize sum-product networks on low level features to localize foreground objects and label

activities. While a fixed graph is used for modeling in [4] and [1], the authors in [3] perform

a greedy forward search to determine the graph.

5.4.1 Methodology

We used a randomly selected set of half the data for training and the other half for

testing. During the training, we assume that the activity regions and the activity labels are

available to us. We normalize all distances with respect to the scale of the video to make

the approach invariant to scale. The graphical model is constructed on individual activity

sequences. The regularization parameters experimentally determined where λc = 3, λa = 3,

λst = 4.

To evaluate the accuracy of activity recognition, if there is more than a 40% overlap
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Figure 5.4: The figure shows the sparse contextual relationships discovered by L1-
regularized learning on VIRAT 1 dataset. The figure on the left shows the fully connected
model assumed before parameter learning. The next figure shows the sparse relationships
obtained after parameter learning. The edges corresponding to parameters which are set to
zero have been deleted from the graph. The bar graph on the right shows the histogram of
obtained sparse parameters.

in the spatiotemporal region of a detected activity as compared to the ground truth and the

labeling corresponds to the ground truth labeling, the recognition is assumed to be correct.

Some examples of data which were correctly identified using our approach while incorrectly

identified using a dense graphical model are shown in Figure 5.3.

5.4.2 Analysis of the Results

The sparse structure discovered by the L1-regularized learning for the parameters

wij of an edge for VIRAT release 1 is shown in Figure 5.4. The structure represents the

contextual relationships modeled in a parameter wk. It can be seen that 9 relationships out

Method BOW Gaur[1] Zhu[3] Our Ap-
proach

Precision 47.2 51.6 61.7 64.8

Recall 45.8 57.8 62.9 64.1

Table 5.1: Overall precision and recall values of methods BOW, Gaur et. al[1], Zhu et. al
[3] and our approach for the VIRAT release 1 dataset.
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Figure 5.5: The figure shows the precision and recall obtained on the VIRAT release 1
dataset with our approach. Comparison has been shown to the performance of baseline
classifier BOW [2] as well as Zhu et al [3]. The activities in order are: Person entering
vehicle, person exiting vehicle, person opening trunk, person closing trunk, person loading
vehicle and person unloading vehicle.

109



Figure 5.6: For an activity sequence from VIRAT release 1 containing 5 activities, we
show the initial dense hierarchical Markov random field model constructed on the sequence
(left) and the corresponding sparse graphical model obtained after L1-regularized learning
of parameters (right).

of 15 possible combinations of 6 activities were retained. In addition, it was also observed

that the connections learnt could be intuitively justified as the contextual relationships

between activities that are often observed in the training data. For example, loading and

unloading is often related to opening and closing the trunk. These edges of the graph were

retained, while some others, such as the edge connecting loading to unloading was deleted.

Only about 32.9% of the parameters were non-zero in the resulting model. The histogram

of computed parameters is shown in Figure 5.4 c).

We also demonstrate the structure discovery in an activity sequence from VIRAT

release 1 in Figure 5.6. A dense graphical model constructed over a sequence of 5 activities

is shown on the left and the corresponding sparse graphical model obtained using our

approach is shown on the right. The dense graphical model was constructed by adding

an edge between every two nodes which had a spatio-temporal distance of less than half

the maximum separation between activities in the sequence. After L1-regularization, those
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edges whose parameters have been set to zero were deleted resulting in the sparse graph.

The classification results on VIRAT release 1 data is shown in Figure 5.5. The

overall precision and recall values for VIRAT release 1 and comparison with recent ap-

proaches [1] and [3] is provided in Table 5.1. It can be seen that the performance of our

approach is better than the recent state-of-the-art methods for most activities. The overall

performance is also better. This improvement can be attributed to the improvement in

structure, which captures the relationships across activities effectively.

Similarly, we compute the graphical model and the activity recognition scores for

VIRAT release 2 dataset consisting of 11 activities. The precision and recall values obtained

are shown in Figure 5.7. It can be seen that our approach performed better than the current

state-of-the-art methods. The overall accuracy of our method and other recent approaches

is shown in Table 5.2. For one sequence of activities containing 7 meaningful activities, the

initial dense HMRF before L1-regularized learning and the output of our algorithm, which

is the resulting sparse graph are shown in Figure 5.8. About 31.3% of the parameters were

retained after the L1-regularized learning.

For the 11 activities of VIRAT release 2, we demonstrate the contextual rela-

tionships captured in the parameter matrix w in Figure 5.9. Again, it was seen that our

approach captured the contextual relationships which seemed most intuitive. For example,

the activity running was mostly associated with people entering/exiting the facility or exit-

ing a vehicle and opening a trunk. These relationships are seen in the resulting graph. The

histogram of the computed parameters is also shown in Figure 5.9 c). From the histogram,

it is evident that the parameters are very sparse, thereby eliminating edges of the graph.
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Figure 5.7: The figure shows the precision and recall obtained on the VIRAT release 2
dataset with our approach. Comparison has been shown to the performance of baseline
classifier BOW [2] as well as Zhu et al [3]. The activities in order are: Person entering vehicle,
person exiting vehicle, person opening trunk, person closing trunk, person loading vehicle,
person unloading vehicle, person carrying an object, person gesturing, person running,
entering and exiting a facility.
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Figure 5.8: For an activity sequence from VIRAT release 2 containing 7 activities, we
show the initial dense hierarchical markov random field model constructed on the sequence
(left) and the corresponding sparse graphical model obtained after L1-regularized learning
of parameters (right).

Computational Time: It is well known that inference on a graphical model

with loops is an NP-hard problem and can be tractable only with a bounded tree width

[94]. While it can be solved in polynomial time in the size of the structure for select low-

tree width graphs, in our case, we have an unbounded tree-width with multiple states that

makes exact theoretical calculations on computational complexity very difficult. Also, the

structure of the graph varies depending on the sequence. However, it can be said that, with

the reduction in the number of edges and the introduction of sparsity, the tree-width as well

as the number of loops in the graph is very likely to reduce, thereby achieving a speed-up

in the performance. Experimentally, we run the approach on the dense graph (setting all

values of λ to zero) and compare the taken for inference on the same set of activities using

the sparse graph. Values were computed for 30 sequences containing 5 nodes on matlab

in Intel(R) Core(TM) i3 CPU @2.27GHZ . It was found that inference on the dense graph

took 0.1248 seconds while the inference on the sparse graph with roughly 30% of the edges
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took only 0.0312 seconds. This clearly shows the improvement in speed due to sparsity. In

summary, not only do we achieve higher accuracy in the graph discovery process, we do so

with an order of magnitude less computational time.

5.5 Conclusion

In this chapter, we have demonstrated a method which can automatically dis-

covery the contextual relationships between activities in continuous sequences. We have

demonstrated that the L1-regularized learning of parameters is a good substitute to alter-

nate methods such as greedy forward search. The resulting graph was sparse and intuitively

picked those edges which were effectively improved the recognition scores. We demonstrated

an improvement in recognition accuracy as well as inference time using our approach. This

method can be extended to other applications which utilize graphical models for context

representation.

Method BOW Amer[4] Zhu[3] Our ap-
proach

Precision 50.3 72 71.5 72.6

Recall 52 70 73.1 74.2

Table 5.2: Precision and recall values of methods BOW, Amer et. al[4] and Zhu et. al [3]
and our approach for the VIRAT release 2 dataset.
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Figure 5.9: The figure shows the sparse structure of the graph discovered by L1-regularized
learning on 11 activities of VIRAT 2 dataset. Figure a) shows the fully connected graph
assumed before parameter learning. Figure b) shows the sparse graph obtained after pa-
rameter learning. The edges corresponding to parameters which are set to zero have been
deleted from the graph. Figure c) shows the histogram of the learned parameters w. From
the histogram, it can be seen that w is sparse. The activity labels are the same as in Figure
5.7.
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Chapter 6

Conclusion and Future Work

6.1 Thesis Summary

In this thesis, we have proposed novel algorithms for detection and recognition of

activities in wide-area continuous videos. The core idea of the work is to utilize spatio-

temporal contextual information obtained from the current and neighboring activities to

improve the accuracy of localization and recognition. The contributions can be broken down

in the following manner.

In chapter 2, we demonstrated a system to recognize and label activities in multi-

person wide-area videos. We introduced the different stages of processing involved in such

videos, namely the identification of motion patterns, localization and recognition of activ-

ities. We showed that optical flow is a useful tool to model such activities. Elimination

of noise was carried out by integrating flow to obtain streaklines. Clustering of streak-

lines achieved identification of motion patterns. Localization and labeling of activities was
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carried out using shape matching and subspace analysis. However, this method treated

activities individually. It was seen that some activities were confused with each other due

to occlusion or similarities in motion patterns. We proposed that such limitations could be

overcome if activity context was taken into consideration.

In chapter 3, we have demonstrated the use of graphical models in discovering

the contextual relationships between activities. We have shown that the spatial and tem-

poral neighborhood of an activity provides contextual information which can be used to

localize and label activities. This information was modeled using a graphical model. The

experiments showed that the use of context improved the recognition scores significantly as

opposed to using just the baseline classifiers.

In chapter 4, we discussed the relationship between tracks and activities. Tracks

provide contextual cues regarding the location of an activity. We also showed that the

knowledge about the activities in a continuous video sequence can aid in the tracklet asso-

ciation for estimation of tracks. We proposed a bi-directional approach to solve both these

problems simultaneously. We showed that the results obtained were comparable to the case

where tracks were assumed to be accurate or activities were localized beforehand.

Finally, we proposed a method to estimate the structure of a graphical model using

sparse learning. Since the contextual relationships in a scene are sparse as compared to the

total number of activities, a better estimation of the structure of the graphical model can

aid in faster computation and can help in arriving at a more accurate model. L1-regularized

parameter estimation was suggested to achieve the same.
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6.2 Future Work

This work on activity analysis in wide-area continuous videos has many possible

future directions. In this work, we considered that a video sequence is given to us and

activities are to be recognized offline. However, it would be interesting if the inference

could be carried out real-time. The problem would therefore reduce to the prediction of

future activities given the past activities. The generative nature of a Markov random field

is useful for this purpose. The activity recognition system we have proposed can also be

extended to learn a semantic map of activities in wide-area continuous videos.

One of the major limitations of the current work is that, it assumes sufficient

amount of training data, based on which the model is built. The training data is assumed

to have all feasible combinations of activity sequences. In a typical wide-area video, such

a condition often does not hold. Typically, there is a limited amount of training data to

begin with, although from time to time, there is a possibility of more data being added into

the system. Therefore, online learning of the model can be a good future direction to this

work. This addition can make the system more robust.

Although we present an approach to learn the structural relationships for activity

recognition using L1-regularization, this idea can be generalized across applications. The

importance of structural relationships has been acknowledged in a wide range of applica-

tions. The authors in [83], [71] explore structural relationships across agents performing

an activity. Structural information in video is used to aid segmentation in [77]. Struc-

ture has widely been used in the field of object recognition to model relationships between

object parts [95] and to discover new object categories in [96]. Recently, scene structure
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was modeled to learn correlation between object classes in [97]. The idea of learning struc-

tural relationships in a L1-regularization based framework can be extended to these other

applications where structure can play a crucial role.
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