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ABSTRACT OF THE DISSERTATION

A Physics-Based, Neurobiologically-Inspired Stochastic Framework for Activity
Recognition

by

Ricky Jaineet Sethi

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, August 2009
Professor Amit K. Roy-Chowdhury, Chairperson

We present a multi-disciplinary framework for motion modeling and recognition in machine

vision. Building upon the neurobiological model of motion recognition, we propose compu-

tational equivalents for the Motion Energy and Form Pathways. We derive the Hamiltonian

Energy Signature (HES) from �rst-principles in physics as the basis for the Motion Energy

Pathway. The Form Pathway is modeled using existing low-level feature descriptors based on

shape, appearance, and gradients. We propose an Integration methodology to combine both

pathways using a variant of the Feature Integration and Biased Competition neurobiological

models, which we implement via statistical hypothesis testing using the bootstrap. We also

show the extensibility of our physics-based approach by proposing a physically-signi�cant,

compact representation for the gait of a person called the Gait Action Image (GAI), which

is based on core physics principles employed in the HES formulation. We then show the

generalizability of our neurobiologically-inspired integration framework by casting the GAI

within this infrastructure.

Since Motion and image analysis are both important for activity recognition in
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video, we also develop a new approach that extends the Hamiltonian Monte Carlo (HMC)

to allow us to simultaneously search over the combined motion and image space in a con-

certed manner using well-known Markov Chain Monte Carlo (MCMC) techniques. For

motion analysis in video, we use tracks generated from the video to calculate the Hamilto-

nian equations of motion for the systems under study, thus utilizing analytical Hamiltonian

dynamics to derive a physically signi�cant HMC algorithm which can be used for activity

analysis. We then use image analysis to help explore both the motion energy space and the

image space by integrating the Hamiltonian energy-based approach with an image-based

data-driven proposal to drive the HMC, thereby yielding a Data Driven HMC (DDHMC).

We reduce the enormity of the search space by driving the Hamiltonian dynamics-based

MCMC with image data in this DDHMC. We also develop the reverse algorithm, which uses

motion energy proposals to search the image space. While HMC has been used in other

contexts, this is possibly the �rst work that shows how it can be used for activity recogni-

tion in video, taking into account the image analysis results and using the physical motion

information of the system. In addition, the DDHMC framework has potential application to

other domains where statistical sampling techniques are useful, as we outline in the section

on future work.

Experimental validation of the theory is provided on the well-known KTH, Weiz-

mann, and USF Gait datasets with very promising results.
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Chapter 1

Introduction

1.1 Problem and Motivation

Activity recognition is di�cult because the dynamic nature of video makes it nec-

essary to combine both the image and motion elements represented in videos in order to

recognize activities. Integrating these two disparate forms of analysis is a signi�cant problem

which we address in this work. Our governing theme in building a solution was to always

start from �rst principles. Following this line of reasoning, we started by examining how one

of the most successful systems for activity recognition, the brain, interprets and understands

motion.

Understanding activities, indeed, is intuitive for humans. From birth, we observe

physical motion in the world around us and create perceptual models to make sense of it.

Neurobiologically, we invent a framework within which we understand and interpret human

activities [34]. Recent work in neurobiology suggests that the brain also conducts a similar

analysis: it examines both the form aspects of motion (e.g., shape, colour, orientation,
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Figure 1.1: Feature extraction in V1 and then division along Motion Energy Pathway (Dor-
sal) and Form/Shape Pathway (Ventral)

etc.) as well as the motion energy (the kinematics and dynamics) when it attempts motion

recognition, as shown in Figure 1.1.

Most modern approaches in activity recognition similarly involve some form of

image analysis as well as motion analysis. Image analysis of the form (based on shape,

colour, orientation, etc.) is a well-known area of activity recognition. But representing

the dynamic element, the motion energy which the brain somehow interprets, is a di�cult

problem that has not been studied much in machine vision. This dynamic motion element

has, however, been widely studied in physics.

Motion, in fact, underlies all activities; human activities are de�ned by motion.

The rigorous study of motion has been the cornerstone of physics for the last 450 years,

over which physicists have unlocked a deep, underlying structure of motion. We therefore

employ ideas grounded �rmly in fundamental physics that are true for the motion of the

underlying physical systems considered in video.

Using this physics-based methodology, we propose the computation of Hamilto-
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nian Energy Signatures (HES) for the various objects (either an entire object or its

various parts) involved in an activity, thus representing the motion of each object over the

course of an activity as a multi-dimensional time-series. In addition, we develop a new dis-

tance metric, called the S Metric, which also characterizes the global motion of the object,

or the entire scene, with a single, scalar, global value (that can be represented as a series

of values if the total video is broken up into shorter time-segments since the S Metric is

additive, as shown in Section 2.3); this is exactly what we use in our development of the

Gait Action Image (GAI), a spatio-temporal gait representation in which we create an

average silhouette image that assigns an intensity value to each point on a person's contour.

Both the HES curves and the S-Metric provide a gist of the activity.

This HES is also what we use to represent the Motion Energy pathway of the brain.

In addition, we use well-known approaches in activity recognition [2, 66] to represent the

Form pathway. Finally, we posit statistical computational models for the Integration of the

two pathways (integration of the pathways is still an open question in the neurobiological

community [23, 22]) and analyze the relationship between our computational models and

some existing neurobiological models.

In order to devleop our framework, we build liberally upon theoretical thrusts

from several di�erent disciplines, including Analytical Hamiltonian Mechanics, Neuromor-

phic Computing and Neurobiology, and, of course, image analysis. The models developed for

robotics in [47] provide the basic NMC architecture but are used more for image recognition

and analysis. Similarly, Energy-Based Models (EBMs) [39] capture dependencies between

variables for image recognition by associating a scalar �energy� to each con�guration of the

variables. Still others [9] take local and global optical �ow approaches and compute con�-
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dence measures. Also, our physics model goes well beyond an examination of Eulerian or

Lagrangian �uid �ows, which only yield local (vector) rather than global (integral) prop-

erties. Researchers have proposed computational frameworks for integration, e.g., [65], but

they have also been restricted to the analysis of single images. The use of DDMCMC shown

in [70] would make for an interesting integration approach; motivated by the DDMCMC

framework, we propose a new integration approach that takes into account the dynamics of

motion. We call this the Data Driven Hamiltonian Monte Carlo (DDHMC).

In terms of human activity recognition [30, 66], some of the cutting edge research

uses the fusion of multiple features. In fact, many methods in activity recognition [29,

41, 68, 26, 53, 67] use a combination of motion and form and we are also motivated by

the same. Our methodology works in both high- and low-resolution and for densely- and

sparsely-distributed objects since all it requires is the (x,y,t) tracks for the various objects.

And, unlike methods that compute a low-level signature with dyadic pyramids and Fourier

energy [47], our method, as explained in the Appendix and in Section 3.1, computes a

physically-signi�cant energy.

In terms of neurobiology, we build liberally upon some of the latest models for

integrating the two pathways, both in object recognition and in motion recognition. Neuro-

morphic computing approaches [47, 58] have examined di�erent integration methodologies

in the context of object recognition, including simple pointwise multiplication, as well as

exploring more standard neurobiological integration mechanisms such as feature integration

[64], in which simple visual features are analyzed pre-attentively and in parallel, and biased

competition [15, 52], which proposes that features compete for attention (at a neuronal level).

We also build upon the latest suggestions of integration which propose several alternative

4



approaches for this [14, 35, 69] in developing our computational variants of integration.

1.2 Contributions

In this work, we make several novel contributions to address the problem of in-

tegration of motion and form in order to do activity recognition in video. We develop a

computational equivalent for the motion energy pathway of the neurobiological model based

upon a fundamental physics formulation. Using the rigorous Hamiltonian framework, we

propose Hamiltonian Energy Signatures as an abstract feature for detection of motion en-

ergy and activity recognition. In addition, we extend our physical development to create

a new spatio-temporal gait representation, called the Gait Action Image. We then create

various statistical Integration mechanisms to combine both the motion and form pathways

of the neural model. Finally, we develop yet another Integration variant motivated by the

DDMCMC but that builds upon a physically-signi�cant Hamiltonian Monte Carlo, which

we call the DDHMC. The following are thus the main contributions of this work.

1.2.1 Hamiltonian Energy Signatures for Motion Analysis in Video

We propose the use of the Hamiltonian Energy Signature (HES) based upon the

established Hamiltonian framework. Since the Hamiltonian formulation is an abstract rep-

resentation of the underlying motion, it operates at a higher level than approaches like [31],

which build the framework for the basic detection of motion energy; however, the higher,

more abstract Hamiltonian representation automatically builds upon the lower levels since

it extracts these abstract features directly from the basic tracks of the objects.

While some approaches have proposed the application of the object recognition
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framework to the analysis of motion by �empirically searching for a suitable representation�

[31], our framework, unlike [31, 59, 54], builds upon the rigorous Hamiltonian framework and

is applicable in scenarios with and without training data. In addition, in the hierarchical

model of the motion energy pathway [22, 21], the �rst level consists of local motion energy

detectors, while the second level analyzes the local structure of the optic �ow patterns

generated by biological movements, and, lastly, the postulated level of optic �ow pattern

neurons which are summed in the next, and �nal, level by the motion pattern neurons.

Analogously, our approach can be extended to do more complex modeling of the motion

energy pathway, including the higher levels of the hierarchical model [21], using Hamiltion's

Action 1 as the HES, as discussed in Section 2.2.2, as well as formulating probabilistic models

for Hamilton's Action/HES to make it more robust. Thus, our proposed methodol of HES

can be integrated into the hierarchical model along with [31], in order to model the higher,

more abstract, levels.

1.2.2 Neurobiologically-Inspired Statistical Integration Strategies

We also propose a complex model for the integration of the two pathways based

upon object-recognition models from neurobiology and neuromorphic computing which we

represent using three di�erent computational processes for this integration: Total Integra-

tion (TI), Partial Integration (PI), and Weighted Integration (WI). One of our proposed

mechanisms, WI, does no worse than either of the two pathways individually. To the best of

our knowledge, this is the �rst ever method that proposes a computational equivalent to the

integration of the neurobiological models of motion recognition and which is applied to real

1To avoid confusion, we will use the term Hamilton's Action to refer to S, see equation (2.1), and Action
without any pre�x to refer to Action as it is normally understood in Action Recognition.
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world data. Although approaches like [31], in particular, have helped con�rm the bene�ts

of extending biological models for motion recognition to computation, they do not provide

a framework for the fusion or integration of the two pathways and concentrate instead on

proposing new motion-sensitive units and tuning functions (C2 features) for the motion

pathway in the original neural model [56]. Our approach, however, extends the neurobio-

logical model in [23, 22, 21] to include an integration framework for motion recognition, and

provides a rigorous basis for implementing the motion energy pathway using fundamental

physics.

1.2.3 Gait Action Image

We further extend our physics-based approach by generalizing the Motion-Energy

Image, Motion-History Image, and Gait Energy Image widely used in gait recognition to a

physically-signi�cant Gait Action Image (GAI). The GAI is a physics-drive compact repre-

sentation of the gait of a person and we show the generalizability of our neurobiologically-

inspired framework by casting the GAI within this infrastructure.

1.2.4 Data Driven Hamiltonian Monte Carlo Framework

We propose a physically driven method to address the problem of activity recogni-

tion by combining the usual energy-based Hamiltonian approach of a Traditional HMC with

data-driven proposals derived from video observations. The resulting approach is what we

call the Data Driven HMC (DDHMC). DDHMC is a potentially general approach but we

mainly demonstrate it in the context of activity recognition in the current work, where we

propose to use the DDHMC, on top of video feature tracks (e.g., points on the human sil-
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houette contour or on body parts in high-resolution or centroids in low-resolution), in order

to classify human activities. These tracks may come from a user query or from averaging

the Hamiltonian over all the training tracks.

1.2.5 DDHMC Variants

We propose two di�erent forms of the DDHMC: DDHMCMotion, which uses

motion-based data-driven proposals, and DDHMCShape, which uses shape-based data-

driven proposals. Both variants of the DDHMC rely upon a data-driven component to

make more informed proposals than the blind proposals generated within a Traditional

HMC. These informed proposals, based on the likelihood of a particular track under a Ker-

nel Density or Gibbs estimator, are then used as the data-driven portion of the HMC.

Thus, the initial classi�cation of the activities based on the data-driven portion

becomes the �rst step in a two-step, hierarchical classi�cation scheme implemented by the

DDHMC: the data-driven portion does a gross classi�cation and then the Traditional HMC

framework does a higher resolution classi�cation with greater granularity. InDDHMCMotion,

we use a physically-signi�cant Hamiltonian, derived from the tracks, to get the similarity dis-

tribution that will help guide the Traditional HMC framework. For DDHMCShape, we use

a shape-based similarity distribution to help guide the physically-signi�cant Hamiltonians

derived from the tracks that are used within the Traditional HMC framework.

We thus develop the DDHMC framework, as well as its two variants that take into

account the image analysis results and the physical motion information of the system, and

then apply these models to real world data using challenging datasets.
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1.3 Organization of this work

The rest of this work is organized as follows: we �rst cover the details of the

Hamiltonian Energy Signature. Then, we examine our proposed Statistical Integration

Mechanisms for the Neurobiologically-Inspired Model of Motion. Finally, we detail our

development of the Data Driven Hamiltonian Monte Carlo (DDHMC) and describe its vari-

ants using the motion and the form separately as proposals. Details of the algorithms,

along with evaluation results are provided, followed by future directions for research in the

conclusion.
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Chapter 2

Hamiltonian Energy Signature

2.1 Introduction

In order to develop a computational framework for the motion energy pathway, we

start with a rigorous study of motion using ideas grounded �rmly in fundamental physics.

We utilize Hamiltonian Dynamics, which is an elegant and powerful alternative formulation

of classical mechanics that not only gives the equations of motion for a system but, more

importantly, provides greater, and often more abstract, insight about the system. It provides

an abstract framework based upon the Principle of Least Action (please see Section 2.2) that

can be extended to all other laws of physics (in fact, all fundamental laws of physics can be

expressed in terms of a least action principle). Hamilton's equations, using the Hamiltonian

H (as shown in Section 2.2), are primarily of interest in establishing basic theoretical results.

Starting from these �rst principles, we develop a method to extract an abstract

representation of the motion of the underlying physical systems we consider in video. Using

this physics-based methodology, we propose to use the Hamiltonian Energy Signatures
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(HES) for various objects (either entire objects or the parts of a single object) involved in

an activity, thus representing the motion of each object over the course of the activity as a

time series.

For example, if we track a person in video, we can compute these HES curves for

the centroid of the person (considering the person as an entire object) or consider all the

points on the contour of that person's silhouette, thus leading to a multi-dimensional time

series (which can, for example, represent the gait of a person). Note that these HES curves

can be computed in either the image plane, yielding the Image HES as used in this work,

or in the 3D world, giving the Physical HES, depending on the application domain and the

nature of the tracks extracted. In either case, the rigorous Hamiltonian framework gives a

highly abstract representation for a system and can yield the energy of the system under

consideration (please see Appendix for details of the speci�c conditions). HES curves can

therefore model a physically-signi�cant energy that only depends on the image velocities, as

conditioned by the neurobiological model [55, 60, 22].

The original neurobiological motion energy formulation of [1], in fact, calculates a

�velocity estimate� to �rst approximation using only the apparent motion in the image plane;

this estimate is then �combined with motion information from other channels� in determining

the �nal neurobiological motion percept of subsequent approximations. Our dynamic models

also rely only on the image plane and thus approximate the �velocity estimate� to �rst

approximation for mass, potential energy, etc.; subsequent approximations could enhance

this estimate with the higher neural pathways of the hierarchical motion energy model [21],

which we can model using Hamilton's Action, Lagrangian, and phase space trajectories

directly (please see Section 2.2 and the Appendix for details). These HES curves thus
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provide the motion energy time series of each object under consideration; as shown in [22],

this temporal ordering is essential for sequence selectivity, which is the temporal order of

the stimulus sequence, in the neural model of motion recognition.

We also prove that the HES is invariant under an a�ne transformation. This

allows us to use the HES to categorize di�erent activities across di�erent domains (high

resolution, low resolution, etc.) in a moderately view-invariant manner, as explained below,

without requiring separate heuristics (features or representations) for each. In addition, the

translation- and scale-invariance, proven for the HES, is another essential component of the

neural model of motion recognition [23, 31, 21, 22].

2.2 Hamiltonian Energy Signatures (HES)

One of the most fundamental ideas in theoretical physics is the Principle of Sta-

tionary Action, also known variously as Principle of Least Action as well as Hamilton's

Variational Principle [38]. This is a variational principle that can be used to obtain the

equations of motion of a system and is the very basis for most branches of physics, from

Analytical Mechanics to Statistical Mechanics to Quantum Field Theory. The basic concept

of this principle is to apply the idea of a function whose value remains constant along any

path in the con�guration space of the system (unless the �nal and initial points are varied)

to Newtonian Mechanics to derive Lagrange's Equations, the equations of motion for the

system being studied.
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2.2.1 Derivation of HES

Following Hamilton's approach, we de�neHamilton's Action, S, for motion along

a worldline between two �xed physical events (not events in activity recognition) as:

S ≡
∫ t2

t1

L(q(t), q̇(t), t)dt, (2.1)

with q, the generalized coordinates 1, and L, in this case, the Lagrangian which,

for a conservative system (i.e., energy is conserved), is de�ned as:

L = T − U, (2.2)

where, T is the Kinetic Energy and U is the Potential Energy. The Hamiltonian

function, derived from Hamilton's Variational Principle (please see the Appendix for

details), is usually stated most compactly, in generalized coordinates, as [25]:

H(q, p, t) =
∑
i

piq̇i − L(q, q̇, t), (2.3)

where H is the Hamiltonian, p is the generalized momentum, and q̇ is the time

derivative of the generalized coordinates, q (proof is provided in the Appendix). If the

transformation between the Cartesian and generalized coordinates is time-independent, then

the Hamiltonian function also represents the total mechanical energy of the system:

H(q(t), p(t)) = T (p(t)) + U(q(t)). (2.4)

1Generalized coordinates are the con�gurational parameters of a system; the natural, minimal, complete
set of parameters by which you can completely specify the con�guration of the system.
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In general, we compute (2.3), which does depend on time, but we can make the

assumption (2.4) as a �rst approximation, as discussed in the Appendix. In this �rst ap-

proximation, the system can be idealized as a holonomic, conservative system (i.e., a system

whose state does not depend on the path taken to achieve it; e.g., carrying a box in a

gravitational �eld), unless we deal with velocity-dependent or time-varying potentials.2

2.2.2 Application to Motion Recognition

This Hamiltonian is what we utilize as the Hamiltonian Energy Signature

(HES) to represent the Motion Energy Pathway of a system or sub-system observed in the

given video. We end up with a quantity that provides a global description of the motion:

the HES (2.3), which can give a simple, intuitive expression for physically signi�cant energy

of the motion of each object (i.e., the characteristic time-series curves for each object).

Hamilton's equations, using the Hamiltonian H (as shown in Section 2.2), are

primarily of interest in establishing basic theoretical results. We therefore create an abstract

representation in terms of H, rather than just velocities or trajectories, to see if we can reduce

the complexity or make interesting predictions we couldn't with the simpler approach. In

fact, we achieve dimensionality reduction (e.g., if we just looked at velocities, N objects will

have N tracks), the ability to model complex situations and interactions, and to easily see

complex relationships that aren't apparent with just (x,y) trajectories. In fact, by relying on

the abstract Hamiltonian framework rather than just the kinetic energy and potential energy,

we utilize the greatest advantage of this abstract representation by allowing for theoretical

extensions; this is the main reason the Hamiltonian/Least Action formulation lies at the core

2In fact, even when we cannot make those idealizations (e.g., viscous �ows), we can de�ne �generalized
potentials� [25] and retain the standard Lagrangian, as in (2.2).
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of most modern physics formulations: not because it allows for simpler computations than

the Lagrangian/Newtonian framework alone but, rather, because it allows for theoretical

extenstions (Section 2.2). In fact, we see an immediate bene�t of the theoretical extensions

allowed by this abstract represention in the form of the proofs (e.g., view invariance proof)

we show in Section 2.3.

Thus, our approach is to segment the video into systems and sub-systems (e.g.,

whole body of a person, or parts of the body) and, for each of those, get their tracks,

from which we compute T and U, and use that to get the HES curve signature, which can

then be evaluated further in phase space and the results analyzed accordingly, as shown in

Figure 2.1. The phase�space of a system consists of all possible values of the generalized

coordinate variables qi and the generalized momenta variables pi. If the Hamiltonian is time-

independent, then phase space is 2-dimensional, (q,p); if the Hamiltonian is time-dependent,

then phase space is 3-dimensional, (q,p,t) [62].

We use the video to gain knowledge of the physics and use the physics to capture

the Motion Energy Pathway of the object being observed via the HES. In order to compute

the HES, we use the tracks from the video to compute the kinematic quantities that drop

out of the Lagrangian formalism, thus giving a theoretical basis for examination of their

energy from (x,y,t).

Figure 2.1: Tracks to Hamiltonian to Phase Space: the phase space of a system consists of
all possible values of the coordinates, which can be (q,p) or (q,p,t), for example; we may
also look at modi�ed phase plots of (H,t), (H,q,p), etc.
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2.2.3 Examples

For example, in the general case when U 6= 0, the Lagrangian, T - U, of a single

particle or object acting under a constant force, F (e.g., for a gravitational �eld, g, F=mg)

over a distance, x, is:

L(x(t), ẋ(t)) = 1
2mv

2 − Fx,

with x = xo + vot+ 1
2at

2 and a = F
m .

(2.5)

We now use this Lagrangian to calculate Hamilton's Action for the general system:

S =
∫ tb
ta
Ldt =

∫ tb
ta

(
1
2m(v2

o + 2vo Fm t)− F (xo + vot)
)
dt

= 1
2mv

2
o(tb − ta)− Fxo(tb − ta)

(2.6)

Using Hamilton's Variational Principle on (2.6) for a gravitational force yields (with

y being the vertical position, which is determined from the tracks):

H = T + U =
1
2
mv2

o +mgh =
1
2
mv2

o +mg(yb − ya) (2.7)

Using the Hamiltonian equations of motion for various objects (either entire objects

or the parts of a single object) involved in activities observed in video, we can easily visualize

these HES curves for simple cases, like the box exchange activity in Figure 2.2(a) between

two people. Plots of the HES curves can give us a sense of the energies associated with

this activity, both in the idealized case (Figure 2.2(b)) and for the experimentally observed

case (Figure 2.2(c)). Here, as a �rst approximation, we treat m as a scale factor and set it

to unity; in future, we can estimate mass using the shape of the object or other heuristics,

including estimating it as a Bayesian parameter. In addition, mass is not as signi�cant when
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we consider the same class of objects, since it factors out during the process of comparing

two sequences.

For more complex interactions, we can even use any standard, conservative/non-

conservative model for U (e.g., as a spring with U = 1
2kx

2 for elastic interactions) whereas,

for the simplest case of a free particle, we are left with just the T; this is equivalent to

situations with videos of activities happening in far-�eld where we can only discern the

motion of objects on a ground plane. Even for these cases, we can also plot Hamilton's

Action vs. time as the HES curve since the partial derivative of the Action is energy [38].

For example, we can see an example of two cars, one following the other, in Figure 2.3. Here,

the �rst car, whose trajectory is labeled in orange, is the lead car and executes a U-turn;

the second car, trajectory in blue, follows it and also makes a U-turn, whereas the third car,

whose trajectory is in red, follows it for a while and then turns away.

On the other extreme, we can compute more complex interactions between the

points on a person's contour/body joints if we are studying gait or the kinematics of the dif-

ferent body parts. The HES curve generated for each person is actually a multi-dimensional

vector composed of HES curves for the di�erent points on the person, as shown in Figure

2.4.

The HES formulation allows us to analyze activities based purely on their motion.

While it will, in general, not be su�cient for complete activity recognition, it formalizes a

�rst level of discrimination using only the motion information and provides a framework for

theoretical extensions. We thus derive the HES curves for all given objects in video and

we can compare their characteristic HES curves using a Dynamic Time Warping (DTW)

algorithm.
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(a)

(b) (c)

Figure 2.2: (a) Box Exchange experiment video: (b) Ideal vs (c) Actual Hamiltonian curves.
Here we see two people exchanging a box in (a). Plots of the Hamiltonian equations of
motion can give us a sense of the energies associated with this activity, both in the idealized
case (b) and for the experimentally observed case (c).

2.3 Theoretical Derivation of HES and its Properties

In this section, we build upon the derivation of the HES and show some of its

properties in detail. We start o� by detailing the Hamilton's Variational Principle, based

upon the Principle of Least Action, which we use to derive the Hamiltonian and that forms

the basis of the HES (shown in the Appendix). Next, we prove the view invariance of

the Action/Lagrangian framework, which we demonstrate experimentally using the KTH

dataset in Section 2.4.

2.3.1 View Invariance of the Action

In this section, we show the invariance of the Action which, by Equations (A.1)-

(A.4), applies to H and thus, by extension, to HES, as well. We start o� by using the

invariance properties of the Lagrange equations; in particular, one of the properties of the
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Figure 2.3: Two cars following: the �rst car, whose trajectory is labeled in orange, is the
lead car and executes a U-turn; the second car, trajectory in blue, follows it and also makes
a U-turn, whereas the third car, whose trajectory is in red, follows it for a while and then
turns away.

Lagrange Equations is their form-invariance under coordinate transformations, especially

under translations and rotations. This, in turn, implies the Action is also invariant under

a Euclidean Transform (translation and rotation). We can also see this invariance from

�rst principles by starting with the three fundamental facts of the physical world:

1. Homogeneity of Time: any instant of time is equivalent to another

2. Homogeneity of Space: any location in space is equivalent to another

3. Isotropy of Space: any direction in space is equivalent to another

Two consequences follow from these three facts, for which there is no evidence of the contrary:

1. The mechanical properties of a closed system are unchanged by any parallel displace-
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Figure 2.4: Vector of HES curves for a person's silhouette
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ment of the entire system in space.

2. The mechanical properties of a closed system do not vary when it is rotated as a whole

in any manner in space.

And so, three properties of the Lagrangian follow:

1. The Lagrangian of a closed system does not depend explicitly on time.

2. The Lagrangian of a closed system remains unchanged under translations.

3. The Lagrangian of a closed system remains unchanged under rotations.

We use these basic principles in the following approach. For Lagrangian Invariance under

Special A�ne Transformations (translation and rotation), let the solution of the Lagrange

Equations in the original coordinate system be:

x = x(t), v = v(t)⇒ S =
∫ t2

t1

L(x(t), v(t))dt (2.8)

The solution of the Lagrange Equations for a displaced system therefore is:

x̃ = x0 +Rx(t), ṽ = Rv(t) (2.9)

The Action calculated on the solution of the displaced system is:

S̃ =
∫ t2

t1

L(x̃, ṽ)dt =
∫ t2

t1

L(x0 +Rx(t), Rv(t))dt (2.10)

Invariance of the Lagrangian under translation gives:

S̃ =
∫ t2

t1

L(Rx(t), Rv(t))dt (2.11)
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Invariance of the Lagrangian under rotation gives:

S̃ =
∫ t2

t1

L(x(t), v(t))dt = S (2.12)

Since S is the Action calculated on the solution in the original system of coordi-

nates, this shows the invariance of the Action under rotational and translational transfor-

mations:

S̃ = S (2.13)

This also applies, by Equations (A.1)-(A.4), to H and hence shows that the HES

computed from 3D points is invariant to rigid translational and rotational transformations.

The HES computed from image parameters is invariant to 2D translations, rotations, and

skew on the image plane as these properties are further proven for the Lagrangian in Section

2.3.1.1. We thus show that the 3D Hamiltonian is invariant to rigid 3D transformations and

the Image Hamiltonian is invariant to 2D transformations.

2.3.1.1 A�ne Invariance of the Lagrangian and the Action

The previous section depends on the rotational and translational invariance of the La-

grangian and so, here we show that the Lagrangian is invariant under an arbitrary a�ne

transform of World Coordinates (e.g., any combination of scaling, rotation, transform,

and/or shear). This also applies to the Hamiltonian by the Legendre Transform of (A.4)

since, as shown in Section A, the Legendre Transform is used in classical mechanics to de-

rive the Hamiltonian formulation from the Lagrangian formulation and vice versa. Thus,

we have the Lagrangian:
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L = T − U (2.14)

with Kinetic Energy, T , and Potential Energy, U . The Lagrangian is a function:

L = L (x1, x2, x3, ẋ1, ẋ2, ẋ3) (2.15)

where x1 x2 x3 are the world coordinates and ẋi = dxi
dt are the time derivatives. We �rst do

an a�ne transform:

yi =
∑
j

Cijxj + di (2.16)

Because this is an a�ne transform, the determinant of the matrix Cij is non-zero; i.e.,

|C| 6= 0. Then, the inverse matrix exists:

A = C−1 (2.17)

Now we can get the formulae for xi :

xi =
∑
j

Aijyj + bi (2.18)

The new Lagrangian is a complex function:

L′ (y1, y2, y3, ẏ1, ẏ2, ẏ3) = L (x1, x2, x3, ẋ1, ẋ2, ẋ3) (2.19)

Where x1, x2, x3, ẋ1, ẋ2, ẋ3 are functions of y1, y2, y3, ẏ1, ẏ2, ẏ3:

x1 = x1 (y1, y2, y3) (2.20)
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x2 = x2 (y1, y2, y3) (2.21)

x3 = x3 (y1, y2, y3) (2.22)

ẋ1 = ẋ1 (ẏ1, ẏ2, ẏ3) (2.23)

ẋ2 = ẋ2 (ẏ1, ẏ2, ẏ3) (2.24)

ẋ3 = ẋ3 (ẏ1, ẏ2, ẏ3) (2.25)

As we can see, the Lagrangian stays invariant: L = L′ as it is just a substitution of variables

and it does not change the Lagrangian value.

Now we prove that Euler-Lagrange equation and Action principle are invariant under an

a�ne transform. In Lagrangian mechanics, the basic principle is not Newton's equation but

the Action principle: the Action is a minimal, as per (A.1). The Action principle then leads

to the Euler-Lagrange equation:

d

dt

∂L

∂ẋi
=
∂L

∂xi
(2.26)

where i = 1, 2, 3 , x1 x2 x3 are the world coordinates, and ẋi = dxi
dt are the time derivatives.

We now show that the Action principle, and then Euler-Lagrange equations, are

invariant under an a�ne transform. We have an a�ne transform, as in (2.16): yi =
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∑
j Cijxj + di. Again, because this is an a�ne transform, the determinant of the ma-

trix Cij is non-zero |C| 6= 0. Then, the inverse matrix exists, once again: A = C−1 and we

can get the formulae for xi: xi =
∑

j Aijyj + bi. The new Lagrangian is again a complex

function:

L′ (y1, y2, y3, ẏ1, ẏ2, ẏ3) = L (x1, x2, x3, ẋ1, ẋ2, ẋ3) (2.27)

Where x1, x2, x3, ẋ1, ẋ2, ẋ3 are functions of y1, y2, y3, ẏ1, ẏ2, ẏ3as in (2.20)- (2.25) with time

derivatives:

ẋi =
∑
j

Aij ẏj (2.28)

Note:

∂xi
∂yj

= Aij (2.29)

∂ẋi
∂ẏj

= Aij (2.30)

We now multiply equation (2.26) by Aij and sum over i:

∑
i

d

dt

∂L

∂ẋi
Aij =

∑
i

∂L

∂xi
Aij (2.31)

∑
i

d

dt

∂L

∂ẋi

∂ẋi
∂ẏj

=
∑
i

∂L

∂xi

∂xi
∂yj

(2.32)

Using the rule of derivatives of complex functions:
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∑
i

∂L

∂xi

∂xi
∂yj

=
∂L′

∂yj
(2.33)

∑
i

∂L

∂ẋi

∂ẋi
∂ẏj

=
∂L′

∂ẏj
(2.34)

Then

d

dt

∂L′

∂yj
=
∂L′

∂ẏj
(2.35)

which is the same equation as (2.26), hence it is invariant under an a�ne transform and

thus the Action principle is also invariant under an a�ne transform. Thus, Lagrangian

Invariance implies Action Invariance which implies the invariance of the Euler-Lagrange

equations which, in turn, implies the invariance of the HES.

2.4 View Invariance Experiments

In Section 2.3, we proved the invariance of the Hamiltonian under an a�ne trans-

formation. Since the 3D Hamiltonian is invariant to an a�ne transformation, this implies

the 2D image Hamiltonian is moderately view-invariant, as long as the 3D transformation

does not change too much; i.e., for some small transformations, it will be moderately view-

invariant.

In this section, we provide empirical con�rmation of the theory by showing exper-

imental results demonstrating the view invariance of the HES using the well-known KTH

dataset. The KTH dataset (http://www.nada.kth.se/cvap/actions/) contains six types

of human actions (walking, jogging, running, boxing, hand waving, and hand clapping) per-
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Figure 2.5: KTH Distance Matrix where we highlight the lowest relative values in a row.
This shows the matching of similar activities despite view changes. Please note this is not
necessarily symmetric because we do the analysis row-wise using training and classi�cation.

formed several times by 25 subjects in four di�erent scenarios: outdoors, outdoors with

scale variation, outdoors with di�erent clothes, and indoors. All sequences are taken over

homogeneous backgrounds with a static camera with a 25fps frame rate. The sequences are

downsampled to a spatial resolution of 160x120 pixels and have a length of four seconds on

average. We use these to demonstrate the view invariance of the Motion Energy Pathway

and present a distance matrix for all six actions in Figure 2.5.

The Activities are labeled as follows: Walking (A1), Jogging (A2), Running (A3),

Boxing (A4), Clapping (A5), and Handwaving (A6). Each activity has four di�erent views,

labeled V1 through V4. As can be seen in Figure 2.5, there is signi�cant matching between

the same activity from di�erent views, with lower scores indicating greater similarity and the

lowest relative scores highlighed in the �gure. There are occasional exceptions, especially for

activities involving excessive translational motion, as there are sometimes very few frames
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(as few as 10-20) with a sample rate of 25fps; i.e., there are too few frames for a completely

reliable calculation of the HES curve. Also, for the clapping and boxing activities, the

tracker lost tracks because it was di�cult to keep consistent tracking when only the hands

were moving; thus, the manual tracking also led to signi�cant errors, in addition the issue

of too few frames for those sets, as well. However, our model is able to distinguish between

di�erent activities, regardless of view, and matches the same activity, again, irrespective of

the di�erent view. We thus demonstrate the view invariance of the HES/S-Metric.

2.5 A Special Application: Gait Action Image (GAI)

In this section, we introduce a special extension of the Hamiltonian framework as

applied to the problem of gait recognition. Compact, image-based representations of gait

have been an area of research, where Motion History Images (MHI), Motion Energy Images

(MEI), and Gait Energy Images (GEI) are three popular descriptors [7, 28]. Building upon

current approaches that use MHI, MEI, and GEI, as well as the analysis of the dense optical

�ow by [40], we develop a spatio-temporal gait representation that builds upon all three of

these but is based upon the fundamental Action (please see equation (2.1)) of a system since

Action is related to motion; we call our new representation the Gait Action Image (GAI).

We then go on to prove that Action is a Norm and demonstrate the addivity of Actions,

which we use in the development of the GAI and its distance measure. GAI can then also

serve as the motion pathway in the neurobiological model of motion.
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2.5.1 Derivation of GAI

MHI and MEI were proposed by [7] as formulations for human movement recogni-

tion. Both MEI and MHI are vector-valued images where the vector value at each pixel is

a function of the motion properties at that particular location in an image sequence. MEI

is a binary image which represents where motion has occured in an image sequence:

MEIτ (x, y, t) =
τ−1⋃
i=0

D(x, y, t− i) (2.36)

where D(x, y, t − i) is a binary sequence indicating regions of motion, τ is the

length of time, t is a particular moment in time, and (x, y) are the values of the 2D image

coordinates. In similar fashion, MHI is a grey-level image which represents how a motion

region in the image is moving:

MHIτ (x, y, t) =


τ, if D(x, y, t) = 1;

max {0,MHIτ (x, y, t− 1)− 1} , otherwise.

(2.37)

Similarly, GEI [28] is a widely used spatio-temporal gait representation that has

been shown to be a robust gait descriptor for gait recognition. GEI builds upon the ap-

proach of [7], who proposed Motion-Energy Image (MEI) and Motion-History Image (MHI)

formulations for human movement recognition. Both MEI and MHI assign a value to each

pixel as a function of the motion properties at that location in an image sequence. GEI also

creates an average silhouette image that assigns an intensity value to each pixel; it does so

by starting with a size-normalized and horizontally-aligned binary silhouette, B(x, y, t), and

de�nes a grey-level GEI, GEI(x, y), as:
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GEI(x, y) =
1
N

N∑
t=1

B(x, y, t) (2.38)

where N is the number of frames in a complete cycle of the sequence, t is the frame

number of the sequence, and (x, y) are the 2D image coordinates. Although, in general,

MEI and MHI are di�erent motion representations than GEI, a correspondence between the

binary version of GEI and a modi�ed MEI can be shown [27].

In this work, we use the ideas behind GEI, MEI, and MHI as motivation to extend

our physics-based approach by generalizing them to a physically-signi�cant Gait Action

Image (GAI). The GEI is an averaged silhouetted summed over the temporal sequence;

Hamilton's Action is a similarly integrated quantity over a speci�c time interval, as shown

in (2.1). We combine these two ideas by computing Hamilton's Action for each point on the

human silhouette contour or body parts in a given cycle as:

GAI(x, y) = GAI(q) =
1
N

∫ N

t=1
L(q(t), q̇(t), t)dt (2.39)

where N is again the number of frames in a complete cycle and q and q̇ are the

generalized coordinate and generalized velocity, respectively (L is again the Lagrangian).

Following the example of [27, 43], we measure the similarity between the gallery (training)

and probe (test) templates of two gait sequences, GAIg andGAIp respectively, by calculating

their distance as the normalized matching error:

D(GAIg, GAIp) =

∑
x,y |GAIg(x, y)−GAIp(x, y)|√∑
x,y GAIg(x, y)

∑
x,y GAIp(x, y)

=

∑
q |GAIg(q)−GAIp(q)|√∑
q GAIg(q)

∑
q GAIp(q)

(2.40)
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where
∑

x,y |GAIg(x, y)−GAIp(x, y)| is the matching error between two GAIs

(sum of the magnitudes of the di�erence between two GAIs) and
∑

x,y GAI(x, y) is the

total energy/action in a GAI. Because GAI mirrors the GEI, MEI, and MHI formulations

and representations so closely, all the extensions and proposed algorithms for them should

be immediately extensible to GAI, as well. In addition, we can use distance or similarity

measures computed using GAI directly in our Integration framework by combining that

similarity distribution with one of the standard shape/form methodologies, as described in

Section 3.2. We show an example of the GAI in Figure 2.6 and show experimental results

of using the GAI as the motion pathway and shape sequence for the form pathway in the

Integration in Section 3.5.

2.5.2 Proof Action is a Norm

Here we show that the Action is a norm that induces a distance in the vector space

of the velocities. This will be an important property for use in the GAI to justify comparing

di�erent gait signatures using scalar values, as in (2.40). Given the Action for a free particle

(U=0):

Figure 2.6: Examples of the Gait Action Image (GAI) formed by averaging the row of sil-
houettes, with darker blues representing higher Action values and lighter blues representing
lower Action values for points on the contour.
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Sf =
∫ tb
ta
L (q, q̇, t) dt = 1

2m
(xb−xa)2

tb−ta

= 1
2mv

2 (tb − ta) = 1
2mv

2∆t
(2.41)

We want to prove that
√
Sf (m, v,∆t) = ‖v‖m,∆t is a norm on the vector space

R3of the velocities. We have to prove that the following holds:

1. ‖v‖m,∆t ≥ 0, ‖v‖m,∆t = 0 if and only if v = 0

2. ‖λv‖m,∆t = |λ| ‖v‖m,∆t

3. Given two free particles, (m1, v1) , (m2, v2), and the system made up by the two, with

TM the total mass and CM the center of mass:

(mTM , vCM ) , ‖vCM‖mTM ,∆t ≤ ‖v1‖m1,∆t
+ ‖v2‖m2,∆t

(2.42)

Properties 1 and 2 are trivially true. In order to prove Property 3, the triangle inequality,

let (m1, v1) , (m2, v2)be two free particles. The system of the two particles is characterized

by its total mass (TM), its center of mass (CM), and the velocity of its center of mass:

mTM = m1 +m2,

xCM = m1~x1+m2~x2
m1+m2

, vCM = m1~v1+m2~v2
m1+m2

(2.43)

and the Action of the two particles, from (2.41), considered as one gives the norm:

‖vCM‖mTM ,∆t =

√
mTM~v2

CM

2
∆t (2.44)

In order to prove the triangle inequality, we need:
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‖vCM‖2mTM ,∆t = mTM~v2CM
2 ∆t = 1

2 (m1 +m2)
(
m1~v1+m2~v2
m1+m2

)2
∆t

= 1
2
m2

1~v
2
1+2m1m2~v1·~v2+m2

2~v
2
2

m1+m2
∆t

(2.45)

and

(
‖v1‖m1,∆t

+ ‖v2‖m2,∆t

)2
=
m1~v

2
1

2
∆t+

√
m1m2v1v2∆t+

m2~v
2
2

2
∆t (2.46)

Their di�erence gives:

(
‖v1‖m1,∆t

+ ‖v2‖m2,∆t

)2
− ‖vCM‖2mG,∆t

= m1~v21
2 ∆t+

√
m1m2v1v2∆t+ m2~v22

2 ∆t− 1
2
m2

1~v
2
1+2m1m2~v1·~v2+m2

2~v
2
2

m1+m2
∆t

= m1m2~v21+m1m2~v22+2(m1+m2)
√
m1m2v1v2−2m1m2~v1·~v2

2(m1+m2) ∆t

(2.47)

The di�erence is positive because:

m1m2~v
2
1, m1m2~v

2
2 > 0 (2.48)

and

2(m1 +m2)
√
m1m2v1v2 − 2m1m2~v1 · ~v2 > 0 (2.49)

with strict inequality, because of the Cauchy-Schwarz inequality :

v1v2 ≥ ~v1 · ~v2 (2.50)

and because the arithmetic mean is greater than the geometric mean:
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m1 +m2 ≥ 2
√
m1m2 >

√
m1m2 (2.51)

Substituting these in and expanding, gives:

2(m1 +m2)
√
m1m2v1v2 − 2m1m2~v1 · ~v2

= 2
√
m1m2((m1 +m2)v1v2 −

√
m1m2~v1 · ~v2)

> 2
√
m1m2(

√
m1m2v1v2 −

√
m1m2~v1 · ~v2)

= 2m1m1(v1v2 − ~v1 · ~v2) ≥ 0

(2.52)

Putting it all together, this �nally yields:

(
‖v1‖m1,∆t

+ ‖v2‖m2,∆t

)2
− ‖vCM‖2mTM ,∆t > 0 (2.53)

And so, we have the triangle inequality:

‖vCM‖mTM ,∆t < ‖v1‖m1,∆t
+ ‖v2‖m2,∆t

(2.54)

Thus, this proves that

‖vCM‖mTM ,∆t < ‖v1‖m1,∆t
+ ‖v2‖m2,∆t

(2.55)

is a norm, therefore it induces a distance in the vector space of the velocities3.

2.5.3 Additivity of Actions

In order to allow for the additive nature of the GAI in (2.39) and (2.40), we need

to show the additivity of Actions. We prove the additivity of Actions by �rst starting o�

3Although it can be shown to apply to situations where the potential is not zero, the exact nature of this
distance needs to be veri�ed and explored further.
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by computing the S Metric for two objects by constructing the combined Action for the two

objects, S12. Again under the assumption of U=0, we start o� by using the S for one object,

as shown in (2.6). From this, we compute the Action for both objects by �rst constructing

their Lagrangian:

L12 =
1
2
m1v

2
1 +

1
2
m2v

2
2 (2.56)

This leads to a combined Action for the two objects:

S12 =
∫ tb
ta
L(q, q̇, t)dt

=
∫ tb
ta

1
2m1

(
x1,b−x1,a

tb−ta

)2
+ 1

2m2

(
x2,b−x2,a

tb−ta

)2
dt

= 1
2m1

(x1,b−x1,a)2

tb−ta + 1
2m2

(x2,b−x2,a)2

tb−ta = S1 + S2

(2.57)

Thus showing the combined Action is just the sum of the individual Actions:

S12 = S1 + S2 (2.58)

where S12 is used as the S Metric for composite systems.
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Chapter 3

Neurobiologically-Inspired Statistical

Integration Mechanisms

3.1 Introduction

Existing neurobiological models for motion recognition do posit the existence of a

coupling or integration of the two pathways but they leave any speci�c mechanism to com-

bine the two pathways as an open question [23, 22]. In this section, we propose a complex

computational model for the integration of the two pathways based upon object-recognition

models from neurobiology and neuromorphic computing which we represent using three

di�erent computational processes for this integration: Total Integration (TI), Partial Inte-

gration (PI), and Weighted Integration (WI). One of our proposed mechanisms, WI, does

no worse than either of the two pathways individually. To the best of our knowledge, this

is the �rst ever method that proposes a computational equivalent to the integration of the

neurobiological models of motion recognition and which is applied to real world data.
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Some researchers [21, 24] suggest the motion pathways integration is similar to

object recognition; and since others [31, 56, 50] studying image-based recognition have been

inspired by the success of biologically-motivated approaches for object recognition, we are

similarly proposing the application of computational models that have proven e�ective for

object recognition to motion recognition. While biologically-inspired approaches like those

used by [31, 56, 50] have validated this approach, the success of non-biologically-motivated

systems for extending object recognition descriptors to actions [16] also lend support to such

a thrust.

In particular, neuromorphic computing [47, 45, 58] builds computational models

for object recognition motivated by neurobiological pathways. Building upon this and recent

work in the neurobiological community which shows the dorsal and ventral processes could be

integrated through a process of feature integration [64] or biased competition [14, 6, 35, 69, 13]

as originally outlined by [15, 52], we propose a computational model for the fusion of the

motion energy and form/shape pathways, as shown in Figure 3.1. We employ a variant

of these ideas using a statistical hypothesis testing framework with the bootstrap, creating

Total Integration (TI), Partial Integration (PI), and Weighted Integration (WI) models.

One advantage is that this allows us to also implement a variation of the Maximum-Like

operation utilized in each of the pathways of motion recognition [23, 59] as well as for

the fusion, itself. A Maximum-like operation is one that results in an output signal that

approximates the maximum among several input signals [23, 22].

The integration mechanism has parallels to a lot of work in activity recognition

that combines motion and form information; e.g., motion and form integration is done in

Shape Dynamical Models and Bag of Video Words [66]. Thus, shape trajectories [68], bag
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Figure 3.1: Computational integration of the two pathways in our framework

of video words [41], Mach �lter [53], and actions as shapes [26] all make use of motion

and form, either implicitly or explicitly. However, each of them requires a separate set of

heuristics to combine motion and shape. In our approach, we use tracks directly to �rst

analyze the motion information and then analyze the informaion in the sequence of images

for the form components. Also, �rst using motion energy and then form/shape allows for

a hierarchical classi�cation whereby the motion can perform a gross, top-level classi�cation

that can be computationally more e�cient than the greater granularity of a detailed form

exploration of the form; this is a great advantage when searching large video databases, for

example. Since our representation uses the abstract Hamiltonian framework and is based

upon the physical motion information of the system, garnered directly from the tracks, it is

much more physically signi�cant as compared to "energy-based" methods which take some

property of the image, like pixel intensity, and square it or cast it as a squared distribution

or �nd its fourier energy [39, 47].
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3.2 Overview of Proposed Framework for Motion Recognition

Our proposed framework for motion recognition is summarised in Figure 3.2. As

can be seen there, the task we have is to take a probe/test query, containing the motion

of a subset of the objects from the gallery/database, and match the motion of each object

in the probe to the gallery/database. We start o� by computing the HES curves for the

Motion Energy Pathway for each object in the probe. Simultaneously, we compute the shape

information for the Form Pathway for each object in the probe. These are then compared,

individually, with each object in the gallery. These normalized similarity measures are then

sent to the Integration module which can be done using di�erent methods (e.g., Weighted

Integration using the bootstrap, etc.).

3.3 Hypothesis Testing and the Bootstrap

Hypothesis testing can be considered a �ve-step process, given a set of distance

scores of a probe sequence against all elements of the gallery. Below, we outline the process

for our application.

1. Establish a null hypothesis, Ho, and an alternative hypothesis, Ha. In our case, the

null hypothesis would be that a distance measure is not signi�cant while the alternative

would be that it is.

2. Establish a signi�cance level, α, which is usually set to 0.05 [37].

3. Collect the data, select the test statistic, and determine its value (observed) from the
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Figure 3.2: Proposed Framework for motion recognition by searching a database for a query:
�nal recognition decision is made in the Integration module

sample data (in our case, this is creating the distance matrix).

4. Determine the criterion for acceptance/rejection of the null hypothesis by comparing

the observed value to the critical value. In our case, this critical value threshold is

determined via the appropriate Con�dence Interval. The 2-sided Con�dence Interval

will have a lower critical value of the 0.025 quantile and an upper critical value of the

0.975 quantile for α = 0.05. In our implementation, we use the bootstrap to �nd the

variance of these quantiles (please see below for details of the bootstrap and con�dence

intervals).

5. Conclusion: Reject the null hypothesis if the observed value falls within the critical

region (i.e., falls outside the Con�dence Interval determined by the quantiles). In

our case, the null hypothesis would be that all quantiles are equally signi�cant and

the alternative hypothesis would be that at least one quantile is di�erent (i.e., is
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statistically signi�cant); these signi�cant quantiles would be the ones that fall in the

critical region.

3.3.1 Bootstrap

Following the work in [19, 72, 73], we use the bootstrap to �nd the variance of

the desired quantile threshold used within the various Integration models. Bootstrap is a

nonparametric method which lets us compute some statistics when distributional assump-

tions and asymptotic results are not available. In statistics, it is more appealing to compute

the two sided α signi�cance threshold (con�dence interval) via bootstrapping because of its

accuracy and lack of assumptions.

A con�dence interval is a range of values that tries to quantify the uncertainty in

the sample. A con�dence interval can be two-sided or one-sided, as shown in Figure 3.3;

e.g., the 95% 2-sided con�dence interval shows the bounds within which one can �nd 95%

of the population (similarly for the 1-sided upper and lower con�dence bounds). Con�dence

intervals are also equivalent to encapsulating the results of many hypothesis tests; if the

con�dence interval doesn't include Ho, then a hypothesis test will reject Ho, and vice versa

[37]; in fact, both con�dence intervals and hypothesis testing are key elements of inferential

statistics. This is important in our method as we utilize a hypothesis testing framework,

within which we use the bootstrap to estimate the con�dence intervals.

The bootstrap works by re-sampling with replacement to �nd the variance of a

statistic on a sample, as shown for our speci�c case in Table 3.1. We may use this algorithm

twice, depending on the Integration variant we're computing: once for the upper quantile

and once for the lower quantile. One way to estimate con�dence intervals from bootstrap
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Figure 3.3: 2-sided and 1-sided Con�dence Intervals (CI): the �rst diagram shows a 2-sided
CI showing the con�dence interval in the middle and the critical regions to the left and
right; the second diagram shows a 1-sided lower bound with the critical region to the left;
the �nal diagram shows a 1-sided upper bound with the critical region to the right; the E
just indicates the mean expectation value.

samples is to take the α and 1 − α quantiles of the estimated values, called bootstrap

percentile intervals. For example, for the upper quantile, this con�dence interval would then

be given as CI = (qulower, q
u
upper), with lower = bNα/2c and upper = N − lower+ 1, where

N is the number of bootstrap samples and (qulower, q
u
upper) are the lower and upper critical

values of the bootstrap con�dence interval bounds.

So, in our case, we use the hypothesis testing framework to establish the critical

region quantiles for the Con�dence Interval associated with our signi�cance level, α, for

each probe in the distance matrix. In order to �nd the variance of the desired quantiles

(both lower and upper), we use the bootstrap method from Table 3.1. We use the same

signi�cance level, α, as before and derive the bootstrap critical region, CI = (qulower, q
u
upper),

for the upper quantile and CI = (qllower, q
l
upper) for the lower quantile. We also use the

alternate method (using just the mean of the quantile threshold) from the bootstrap for

comparison.
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Table 3.1: Outline of Bootstrap Quantile Analysis

Figure 3.4: Overview of Bootstrap. This �gure shows how the original sample is re-sampled
(with replacement), say, 1000 times. In each re-sampling, a Con�dence Interval is computed
based on that sample. Eventually, the �nal Con�dence Interval is estimated from either the
Bootstrap Con�dence Interval (on the CI computed on each re-sample) or the means (again,
of the CI computed on each re-sample).
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3.4 Integration strategies

3.4.1 The Form Pathway: HOGs and Shape-based Features

Since the Form Pathway is posited to have orientation detectors and also recognizes

body shapes and color [22], we use well-established methods in machine vision to calculate

exactly these features in order to develop its computational representation. Our construction

provides �exibility on the Form Pathway since new approaches in low-level feature extraction

can be employed easily within our framework and the appropriate Form Pathway features

can be used. For the present work, we use Histogram of Oriented Gradients (low-resolution

experiments) and shape features with DTW (high-resolution and gait experiments). Also,

since we are analyzing video, we will need to consider the shape/gradients over a sequence

of frames.

For modelling the sequence of shapes for an activity, we used the methodology

from [68]. It presents an approach for comparing two sequences of deforming shapes using

both parametric models and nonparametric methods, where we use the latter. In this

implementation, Kendall's de�nition of shape is used for feature extraction. Since the shape

feature rests on a non-Euclidean manifold, they propose a modi�cation of the Dynamic

time-warping algorithm to include the nature of the non-Euclidean space in which the shape

deformations take place. They apply this algorithm for gait-based human recognition on the

USF dataset by exploiting the shape deformations of a person's silhouette as a discriminating

feature and they also provide results for motion recognition.

For the low-resolution case, we relied upon a variation of the standard Histogram

of Oriented Gradients [12] which counts occurrences of gradient orientation in localized
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portions of an image on a dense grid of uniformly spaced cells and uses overlapping local

contrast normalization for improved performance.

3.4.2 Integration Mechanisms

The usual Neuromorphic Computing tack is to integrate the dorsal and ventral

pathways via the Integration module, usually by weighting them, as shown in Figure 1.1,

above. We propose a computational approach to implement the di�erent Integration variants

within a Hypothesis Testing framework in which we also use the bootstrap [19, 72, 73] to

ensure reasonable limits.

3.4.3 Integration Variants

Given a set of distance scores of a probe sequence against all elements of the gallery,

Hypothesis Testing lets us choose between the motion and form features or come up with

a combination of them, with the bootstrap being used to �nd the variance of the quantiles

on the sample. After a sample is collected from an experiment, we can calculate a statistic

on it (like the mean or quantiles, for example), and then use the bootstrap to calculate the

variance in that statistic, (e.g., via a Con�dence Interval, CI, as shown in Figure 3.3).

Neuromorphic computing approaches have examined di�erent integration method-

ologies, including simple pointwise multiplication, as well as exploring more standard neu-

robiological integration mechanisms such as feature integration [64], in which simple visual

features are analyzed pre-attentively and in parallel, and biased competition [15, 52], which

�proposes that visual stimuli compete to be represented by cortical activity. Competition

may occur at each stage along a cortical visual information processing pathway. The out-
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come of this competition is in�uenced not only by bottom-up, sensory-driven, activity but

also by top-down, attention-dependent, biases�.

Our Integration approach is a variant of these di�erent methods and, in this work,

we develop three di�erent computational models for this integration: Total Integration (us-

ing a 1-sided upper bound CI), Partial Integration (2-sided CI), and Weighted Integration

(2-sided CI).

Total Integration (TI): In this case, only the winners survive. First, the observed

distance matrix is converted into a similarity matrix; then, the bootstrap quantile analysis

(shown in the Appendix) is done on both the Motion measures and the Form measures for

the upper quantile only. If the value of either the Form or Motion is lower than its upper

bootstrap quantile analysis con�dence bound, then its value is set to 0; if both are higher than

their upper bootstrap quantile analysis, the resultant value is set to the pointwise correlation

between the normalized Motion and Form measures (only the values which �survive� in both

are returned as the �nal result).

Partial Integration (PI): Here, a 2-sided CI is used in which the observed distance

measure is lowered to 0 if it is less than the lower distance quantile or changed to the max

value if it is greater than the upper distance quantile; intermediate values are set to the

pointwise correlation between the normalized Motion and Form measures.

Weighted Integration (WI): The Form values are weighted based on the Motion

values; if the observed distance value of the Form and the Motion is lower than the lower

distance quantile obtained from the bootstrap quantile analysis for both, then the value is

set to 0; if either is higher than the upper quantile analysis, it is set to the max value; all

other values are set to the unaltered Form value. In this way, WI ensures that it always
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does no worse than the Form.

For future research, we are considering other integration mechanisms, including

using MCMC approaches adapted for our Hamiltonian dynamics model. In fact, our frame-

work allows us to use any model for the Integration component that might be appropriate,

just as in the Form Pathway component. However, the details of a particular implementa-

tion might a�ect the accuracy of the results but not the fundamental Integration principle

since the method is not linked to the framework. However, these variations are a separate,

future piece of work.

3.5 Results of the Integration

Since the original neurobiological model for motion recognition does not, as of yet,

posit an integration mechanism, one of our main contributions is to follow through with the

conjecture that the same sort of integration happens in the motion recognition pathways as

in the object recognition pathways. We thereby propose a complex integration model based

upon neurobiological and neuromorphic computing models for object recognition.

In the experiments that follow, we show that the Integration mechanism helps

reduce the search space (using the Weizmann dataset) and also helps with overall recognition

when either the motion or the form (or both) pathways fail or underperform. We show how,

in the USF Gait dataset, although the form model performs well, when we integrate that with

the motion energy computational model, it improves the overall performance; although both

do reasonably well on their own, the integrated version does better than either alone. Finally,

we also demonstrate the utility of the HES as a discriminating function of the computational
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motion energy pathway and the ability of the Integration to reduce the search space.

3.5.1 Experimental Background

For all of these experiments, tracking and basic object-detection was already avail-

able [33] and we utilized these (x,y,t) tracks to compute the Lagrangian and Hamiltonian,

following our development in Section 2.2.2. We used high-resolution and low-resolution video

from the Weizmann dataset. For the low-resolution case, we further used the tracks to get

the Histogram of Oriented Gradients for our Form Pathway whereas, in the high-resolution

case, we utilized shape (as de�ned in [68]) for the Form component. The histogram of

similarities in each time window was computed using standard methodologies, as described

below. We then utilized Hypothesis Testing with bootstrap to derive the threshold for peaks

in the distributions that might compete for selection/matching.

3.5.2 Integration helps reduce search space

We now show how integration helps reduce the search space. In this case, we

demonstrate on the Weizmann dataset. The Weizmann dataset (http://www.wisdom.

weizmann.ac.il/~vision/SpaceTimeActions.html) consists of a database of 90 low-resolution

(180 x 144, deinterlaced 50 fps) video sequences showing nine di�erent people, each perform-

ing 10 natural actions. We analyze these using both shape methods [68] (as discussed in

Section 3.4.1), as well as via the GAI. Using both procedures, we see the resulting similarity

matrices in Figure 3.5 (a) and (b), respectively. Finally, in Figure 3.5 (c), we see the result of

integrating via WI. In each of the distance matrices, both axes consist of the people grouped

by the activity: bend, jack, jump, pjump, run, side, skip, walk, wave1, wave2. So the �rst

48



a) b)

c)

Figure 3.5: Similarity matrices on the Weizmann dataset for a) GAI only, b) Shape Methods
only, and c) Integration using WI. Both axes consist of the people grouped by the activity:
bend, jack, jump, pjump, run, side, skip, walk, wave1, wave2. So the �rst nine rows are
each person bending, the next nine rows are each person doing a jumping jack, etc. In (c),
we see the result of integrating via WI. As can be seen in the matrices, WI combines both
pathways in such a way as to do no worse than either pathway by itself.
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nine rows are each person bending, the next nine rows are each person doing a jumping jack,

etc. This clustering by the di�erent methods is shown explicitly in Figure 3.6, where we see

the Motion pathway correctly isolates pjump and jump; the Form pathway further clari�es

bend, jack, side, and run; �nally, Integration discerns wave1 and wave2, with skip and walk

remaining grouped.

As can be seen in the matrices in Figure 3.5 and the diagrams in Figure 3.6,

GAI alone, in Figure 3.5 (a), groups together bending and jumping jacks; partially groups

the jumping sideways; fully groups jumping in place; confuses running, galloping sideways,

skipping, and walking; and confuses waving 1 and waving 2. Form alone, in Figure 3.5

(b), groups bending and jumping jacks correctly; partially groups the jumping sideways;

fully groups jumping in place; partially groups running; partially groups galloping sideways;

confuses skipping and walking; and partially confuses waving 1 and waving 2.

The Integration, however, in Figure 3.5 (c), does better than both in most cases

and no worse than the better method, form, in all cases. As can be seen, it groups bending

and jumping jacks correctly; partially groups the jumping sideways; fully groups jumping

in place; partially groups running; fully groups galloping sideways; confuses skipping and

walking; and fully groups waving 1 and waving 2.

In order to demonstrate the bene�t of the Integration mechanism provided by our

framework, we tested cases where the HES failed, as well as cases where the Form approach

failed, with experiments on the Weizmann dataset to compare both to Integration in Table

??. We thus show that the integrated combination works better than using only one source

of information.
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Figure 3.6: Data Clustering via Motion Pathway, then Form Pathway, and �nally Integra-
tion. As seen here, the Motion correctly isolates pjump and jump; Form further clari�es
bend, jack, side, and run; �nally, Integration discerns wave1 and wave2, with skip and walk
remaining grouped.

3.5.3 Integration improves performance of gait recognition

We show how, in the USF Gait dataset, although the form model performs well,

when we integrate that with the motion energy computational model, it improves the overall

performance. We experimented with videos from the standard USF gait dataset consisting

of 67 people walking on di�erent surfaces (grass and concrete) with di�erent shoe types

and di�erent camera views. The HES curve generated for each person is actually a multi-

dimensional vector composed of HES curves for all the points on the contour of that person's

silhouette, as shown in Figure 2.3. The form component was calculated using the shape of

the silhouettes and computing similarity using DTW in the shape space.

We utilized WI to bias the Form component with the Motion component and then

used the bootstrap to set the threshold for peaks in the distributions that might compete for

selection/matching. The results are plotted as both distance matrices as well as Cumulative
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Match Score (CMS) graphs, which plot probability vs. rank; results are in Figures 3.7

and Figure 3.8. We also see the Integration approach consistently outperforms the Form

Pathway approach alone, as seen in Figure 3.8. The singular exception is Probe B in rank 1;

this is because WI favours the Form method more heavily than the Motion Energy Pathway

method and, in this case, the Form method misses the real match and guesses matches that

are far removed from the real match, as seen in the similarity matrix in Figure 3.7. Please

note that although these results are speci�c to our Form approach, it is expected that similar

improvements would be realized using other approaches.
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(a) (b)

(c)

Figure 3.7: Similarity Matrices for USF Gait dataset examined using (a) Form Pathway,
(b) Motion Pathway, and (c) the WI Integrated Framework on Probe A for all seven probes
in the USF Gait. Although the form model performs well, when we integrate that with
the motion energy computational model, it improves the overall performance as seen by the
matching in (c). The overall CMS matching is shown in (d).
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(a) (b)

Probe Rank 1 Rank 5

Form Integ Form Integ

A 81.8 86.4 92.4 92.4

B 59.5 51.4 81.1 83.8

C 40.5 40.5 70.3 70.3

D 21.0 24.2 54.8 58.1

E 15.4 15.4 46.2 46.2

F 16.1 17.7 41.9 43.6

G 13.2 13.2 34.2 34.2

Figure 3.8: CMS Curves in (a) and Comparison of Form and Integration Rank 1 & Rank 5
match probabilities on USF Gait (b).
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Chapter 4

Data Driven Hamiltonian Monte

Carlo

4.1 Introduction

The dynamic nature of video makes activity recognition from video databases a

very di�cult problem. It requires an analysis of both the motion and the image features of

the system being studied in video. These often disparate features need to be combined in

order to realize optimal recognition or classi�cation. Their integration, however, leads to an

even greater problem as the �nal search space, which is composed of the combined motion

and image spaces, is usually enormous. In this work, we present a new approach, the Data

Driven Hamiltonian Monte Carlo (DDHMC), which extends the Hamiltonian Monte Carlo

(HMC) and allows us to simultaneously search over the combined space in a concerted and

e�cient manner using well-known Markov Chain Monte Carlo (MCMC) techniques.
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Table 4.1: A summary of some of the basic terms used in this work
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4.1.1 Hamiltonian Monte Carlo (HMC)

Traditional MCMC techniques have been widely used in many disciplines to sim-

ulate a Markov Chain whose invariant states follow a target probability distribution in a

very high-dimensional state space; they do this by generating fair samples from an easy-to-

sample proposal probability distribution [42] (fair samples show us what states are typical

for the underlying system). MCMC is normally used for simulation, integration (computing

integrals in very high-dimensonal space), or global optimization and Bayesian inference [46].

Normal MCMC techniques are usually based on stochastic sampling algorithms (e.g., Gibbs

sampling); as a result, they can be very slow and ine�cient when sampling high-dimensional

parameter spaces. In order to make these algorithms more e�cient, [17, 18] originally intro-

duced the Hamiltonian Monte Carlo (HMC) in the context of solving problems in Quantum

Chromodynamics.

HMC is an MCMC technique that uses gradient information to make traditional

MCMC more e�cient by leveraging the advantages of Hamiltonian dynamics to investigate

how the system evolves in parameter space (as explained later, this is the phase space).

This gives the HMC higher acceptance rates, less correlated and faster converging chains,

and suppresion of the random walks in traditional MCMCs [4, 46]. Initially developed for

investigating computer simulation of lattice �eld theory/Quantum Chromodynamics using

an arti�cial dynamics [18, 46], HMC has also been applied to simulation of classical physical

systems, probabilistic reasoning and statistical inference, and parameter estimation [4].

In general, the HMC is faster than classical stochastic sampling-based (Gibbs sam-

pling, Metropolis-Hastings, etc.) optimization algorithms. By following the dynamical path
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in phase-space, we can propose candidate moves that are far away from the current state

but that still have a substantial chance of being accepted. This gives us a way to e�ciently

explore large regions of phase-space by simulating Hamiltonian dynamics in �ctitious time

in the traditional HMC. The bene�t of following the trajectory of the system in phase-space

is that it eliminates the random walk aspect of the chain while also improving mixing and

producing more accurate estimates and allowing us to explore quickly regions that are far

away from the current state. Thus, (the analysis of motion via) Hamiltonian dynamics is

the key to the approach proposed in this work.

4.1.2 HMC Extension and Application to Activity Recognition

Besides the HMC, another recent innovation in the development of MCMC was

the DDMCMC, developed by [71], which uses data-driven proposals to make the Markov

Chain e�cient. Although MCMC techniques have been applied in various activity recog-

nition applications, neither HMC nor DDMCMC have been used for activity recognition.

DDMCMC has mainly been applied to image segmentation and object recognition [65, 71];

similarly, although HMC has been applied to particle �lters and tracking [10, 49, 61], these

techniques have never been applied to activity recognition to the best of our knowledge.

In this work, we form the logical next step in HMC development by introducing the

DDHMC, which uses data-driven proposals to make the search more e�cient. In addition,

we apply the HMC and DDHMC framework to activity recognition for the �rst time. Almost

all activity recognition methods use some variant of motion plus form analysis but utilize

di�erent heuristics to conduct that analysis; some typical examples being shape trajectories

[68], bag of video words [41], Mach �lter [53], and actions as shapes [26], all of which make use
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of motion and form, either implicitly or explicitly. Thus, the integration a�orded by DDHMC

provides a stochastic framework that is especially suited for activity recognition. We propose

two DDHMC frameworks: one in which we �rst analyze motion in phase space using the

basic tracks and then integrate in the form (image characteristics like shape, gradients, etc.)

methodology via the HMC framework; and another in which we �rst analyze form-based

information and then integrate in the motion energy information via the HMC framework.

Our proposed approach, using motion plus form information, thereby provides a natural

framework for the integration of the two and brings the robustness of statistical methods to

activity recognition.

4.1.3 The Motion Space

Motion, in fact, underlies all activities; human activities are de�ned by motion. For the

last 450 years, the exacting study of motion has been the cornerstone of physics, over which

physicists have unlocked its deep, underlying structure. This study of motion theory can be

helpful in the modeling and recognition of human motion. In order to study activity recog-

nition, we start with a rigorous study of motion using ideas grounded �rmly in fundamental

physics. From �rst principles, we develop a method to extract information about the motion

of the underlying physical systems we consider in video.

Using this physics-based methodology, we derive, in the attached appendices and in

Section 4.3.2, the Hamiltonian equations of motion for various objects (either entire objects

or the parts of a single object) involved in activities observed in video.

We can easily visualize this Hamiltonian for simple cases, like the exchange activ-

ity in Figure 2.2(a), where we see two people exchanging a box. Plots of the Hamiltonian
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equations of motion, as explained in Section 4.3.2, can give us a sense of the energies associ-

ated with this activity, both in the idealized case (Figure 2.2(b)) and for the experimentally

observed case (Figure 2.2(c)).

As another example, we can see two cars following each other in Figure 2.3. Here,

the �rst car, whose trajectory is labeled in orange, is the lead car and executes a U-turn;

the second car, trajectory in blue, follows it and also makes a U-turn, whereas the third car,

whose trajectory is in red, follows it for a while and then turns away. We see the similarities

and variations in the Hamiltonian (phase-space) plots.

4.1.4 The Integration Approaches

We used this physically-signi�cant Hamiltonian, along with well-known form- or

shape-based methodologies for the image space, to yield a Data Driven HMC (DDHMC),

which can e�ciently explore the combined motion energy space and image space. An

overview of the main di�erences between a traditional HMC and our novel DDHMC al-

gorithms is highlighted in Table 4.2 and the rest of this work explores these di�erences in

detail.

We propose two di�erent approaches to this integration of form and motion energy

information: one whose data-driven component is based on image proposals and another

whose data-driven component is based on motion energy proposals. We develop both vari-

ants because, depending on the speci�c application or problem, either the form or the motion

might outperform the other. Since our integration a�ords a hierarchical classi�cation scheme

in which the data-driven proposal does an initial, gross classi�cation, we create both vari-

ants to take best advantage of whichever method is most suited to the �ner granularity of
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classi�cation; e.g., in image analysis, the motion-based proposals give a gross classi�cation

and the image-based con�rmation via the traditional HMC architecture yields the �nal, �ner

classi�cation in the integration a�orded by the DDHMC framework.

In brief, we achieve the integration by changing the 1st step in a Traditional HMC:

instead of sampling from a Normal distribution, we use a data-driven proposal. The Hamil-

tonian dynamics in the 2nd step and the Metropolis-Hastings in the 3rd step are also slightly

modi�ed, as explained in detail in Sections 4.4.3 and 4.4.1.

The integration of a Hamiltonian energy-based approach with an image-based data-

driven proposal allows us to simultaneously search over both the motion energy space and

image space in a concerted manner, unlike traditional HMC methodologies which only ad-

dress a single space, thus reducing the enormity of the search space. In addition to our

data-driven innovation, we are proposing, to the best of our knowledge, the �rst such appli-

cation of our novel HMC algorithms to the problem domain of activity recognition in video,

taking into account the image analysis results and using the physical motion information of

the system.

4.1.5 Contributions

In this work, we propose a physically driven method to address the problem of

activity recognition by combining the usual energy-based Hamiltonian approach of a Tra-

ditional HMC with data-driven proposals derived from video observations. The resulting

approach is what we call the Data Driven HMC (DDHMC). DDHMC is a potentially gen-

eral approach but we mainly demonstrate it in the context of activity recognition in the

current work, where we propose to use the DDHMC, on top of human feature tracks (e.g.,
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Step Traditional HMC Data-Driven HMC Approach

- Image Proposals

Data-Driven HMC Approach

- Motion Proposals

1. Sample from a Normal Distribution Sample from Data-Driven Gibbs

Distribution, based in image

proposals

Sample from Data-Driven Gibbs

Distribution, based on motion

proposals

2. Dynamic Transition (Leapfrog) Dynamic Evolution (compute the

di�erence of Hamiltonians along

the trajectory)

Dynamic Transition (Leapfrog)

3. Markov Chain using Metropolis-Hastings Markov Chain using modi�ed

Metropolis-Hastings

Markov Chain using modi�ed

Metropolis-Hastings

Table 4.2: Comparison of the main loops of the Traditional HMC and Data-Driven HMC
Approach

points on the human silhouette contour or on body parts in high-resolution or centroids in

low-resolution), in order to classify human activities. These tracks may come from a user

query or from averaging the Hamiltonian over all the training tracks (which do not include

the test track).

We propose two di�erent forms of the DDHMC: DDHMCMotion, which uses

motion-based data-driven proposals, and DDHMCShape, which uses shape-based data-

driven proposals. Both variants of the DDHMC rely upon a data-driven component to

make more informed proposals than the blind proposals generated within a Traditional

HMC. These informed proposals, based on the likelihood of a particular track under a Ker-

nel Density or Gibbs estimator, are then used as the data-driven portion of the HMC.
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Thus, the initial classi�cation of the activities based on the data-driven portion

becomes the �rst step in a two-step, hierarchical classi�cation scheme implemented by the

DDHMC: the data-driven portion does a gross classi�cation and then the Traditional HMC

framework does a higher resolution classi�cation with greater granularity. InDDHMCMotion,

we use a physically-signi�cant Hamiltonian, derived from the tracks, to get the similarity dis-

tribution that will help guide the Traditional HMC framework. For DDHMCShape, we use

a shape-based similarity distribution to help guide the physically-signi�cant Hamiltonians

derived from the tracks that are used within the Traditional HMC framework.

In order to derive these physically-signi�cant Hamiltonians from the tracks, we

start from �rst principles; on an intuitive level, we develop a method to extract an abstract

representation of the motion of the underlying physical systems we consider in video. Our

method assumes that the video is segmented into objects and their motion is given; then,

from the physical motion and location information of objects over time, we can use the

abstract Hamiltonian framework to estimate the potential and kinetic energy of the system

and derive an approximation to its Hamiltonian. In the applications proposed in this work,

our standing hypothesis is that the energy pattern across time, represented via the abstract

Hamiltonian framework, tends to be similar in di�erent video clips of the same motion for

given classes of activities. However, this is not usually su�cient for activity classi�cation,

hence we need to analyze the image space, as well.

Therefore, our main contributions are:

• Creation of a data-driven framework for the HMC, thereby yielding a DDHMC, which

allows for hierarchical classi�cation.
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• Application of the HMC architecture, via the DDHMC, to activity recognition for the

�rst time.

• The development of two di�erent data-driven proposal algorithms using both the mo-

tion energy and the shape.

4.2 Hamiltonian Monte Carlo

Although there is some variety in the di�erent kinds of HMCs, in general, all HMCs

are, to some extent, a combination of Monte Carlo methods with a Dynamical simulation

method (referred to as Molecular Dynamics in [42]), a deterministic procedure to integrate

the Hamiltonian equations of motion. This combination of Monte Carlo and Dynamics

allows HMC to overcome the shortcomings of both its constituents: the low acceptance

rates of Monte Carlo (for small trial moves) and the insu�cient temporal development

of Dynamics simulations at continuum timescales [63]. Thus, the Dynamics framework

speci�es the system's possible moves while the Monte Carlo decides on the �nal moves that

will generate the equilibrium population (the �nal Markov chain). Because the Monte Carlo

samples from the phase space globally, it compensates for the relatively short Dynamics

simulation lengths. HMC, in fact, builds upon the Molecular Dynamics/Langevin algorithm

as a means of simulating physical systems [17].

HMC does so using dynamic sampling and stochastic dynamics. Dynamic Sampling

is based on a physical analogy: the gradient of the potential energy for a physical system gives

the �force� that then acts to change system's con�guration via momentum. This dynamical

method is faster since it avoids the random walk element of traditional MCMC approaches.
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Thus, even if the system under study is not a physical system, it is advantageous to invent

an arti�cial dynamics for these non-physical systems, just to make it less random, as is done

in traditional HMC. In the DDHMC, we avoid this problem further by using a data-driven

paradigm, similar in spirit to the DDMCMC developed by [65], in order to help reduce the

dimensionality of the search space.

In order to create an arti�cial dynamics, the usual approach in HMC is to introduce

a �ctitious �time�, t; for a real physical system, t represents the actual physical time [46],

as is true in the case of video analysis, where we use our DDHMC. In order to fully create

this arti�cial (Hamiltonian) dynamics, the HMC also requires the creation of a �ctitious

momentum (for the Kinetic Energy) and an arti�cial Potential Energy. An independent

extra set of momentum variables p with i.i.d. standard Gaussian distributions is usually

introduced as the KE term in this �ctitious phase space; i.e., pi are sampled from N (0, 1)

just to give it a dynamical formulation whereas, for our case (and for the Molecular Dynamics

described in [42]), the pi have real signi�cance since it is related to the actual momentum

of the system under study [46] and can be computed from tracking in video.

For the potential energy, we start with the target probability distribution we want

to sample from, π(q). As long as this is continuous (so that we can calculate the derivatives),

the Potential Energy is then represented as:

U(q) = − lg π(q) (4.1)

This log-likelihood then plays the role of a Potential Energy and this yields the full

Hamiltonian (Energy) Function on a �ctitious phase-space:
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Lines Analysis of Algorithm 1

1 Initialize the Markov Chain of phase space points we'll eventually return in Line

20

2-3 Start the main for loop

4-6 Draw an arti�cial momentum, p, from a normal distribution and initialize our

current qo to the previously accepted q, qi−1

7-13 Let the system evolve dynamically (using the Leapfrog algorithm) from the initial

point in phase space, (qo, po), to the �nal point in phase space, (q
′
, p

′
).

14-16 Draw a random number, α, and compute the di�erence in Hamiltonians for the

initial point and for the �nal point

17-22 If the di�erence is 0 or less, always accept the new phase space point, (q
′
, p

′
),

since this means the two trajectories intersected in phase space and so they have

the same H; otherwise, accept it with probability α

23 Return the �nal Markov Chain of accepted phase space points, {pi, qi}

Table 4.4: Analysis of Algorithm 1
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Algorithm 1 Traditional HMC Algorithm

H(q, p) = − lg π(q) +
1
2

∑
i

p2
i (4.2)

The canonical (joint) distribution associated with this Hamiltonian is π(q, p) =

1
Z e
−H(q,p) and, in this �ctitious dynamics, the �eld of forces is thus supplied by the score

function (i.e., the derivatives of the log-likelihood) [4]:

dqi
dt = q̇i = ∂H

∂pi
= pi

dpi

dt = ṗi = −∂H
∂qi

= ∂ lg π(q)
∂qi

(4.3)

(The proof of q̇i = ∂H
∂pi

and ṗi = −∂H
∂qi

is given in Section A.1).

The stochastic dynamics then builds upon this to follow the trajectories in phase

space where, because the H is time-independent, they can avail themselves of the standard

properties of a time-independent, separable Hamiltonian 1; these standard properties imply

1These properties are: constant H, reversibility, and Liouville's theorem [46].
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that the canonical distribution (the Gibbs distribution using the Hamiltonian) is invariant

with respect to any transformation that consists of following Hamiltonian dynamics for some

period of time [46], as shown in Figure 4.1.

Figure 4.1: Overview of the Traditional HMC Algorithm. This shows how the Hamiltonian
evaluated at the initial phase space point, (qo, po), is compared to the Hamiltionian evaluated
at the �nal phase space point, (q

′
, p

′
), in the Dynamic Transition Step using LeapFrog (Step

2).

The dynamics are implemented using the Leapfrog algorithm since, in practice,

we cannot follow the dynamics exactly (analytically) [46]. The Dynamic Transitions im-

plemented by the Leapfrog algorithm (described in [46, 4]) allow us to discretize these

equations using some non-zero time step. The systematic error in sampling introduced from

the discretization of time into units ∆t in the Leapfrog algorithm in both the trajectory and

the energy, H, is removed by a Markov Chain, based on the stochastic transitions in the

Metropolis-Hastings, as shown in Algorithm 1 (please also refer to its analysis in Table 4.4).

These stochastic transitions allow points in phase space with di�erent energies to be visited
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and ensure the Markov Chain is ergodic (can visit all points of a given energy). HMC thus

samples points in phase space by means of a Markov Chain in which stochastic and dynamic

transitions alternate.

4.3 Data Driven HMC

4.3.1 Overview

We propose a physically driven framework for the HMC architecture by combining

the more traditional energy-based Hamiltonian approach with data-driven proposals derived

from video observations. The resulting approach is called the Data Driven HMC (DDHMC).

We propose two di�erent forms of the DDHMC: DDHMCMotion, which uses motion-based

data-driven proposals, and DDHMCShape, which uses shape-based data-driven proposals.

Both variants of the DDHMC rely upon a data-driven component to make more informed

proposals than the blind proposals generated within a Traditional HMC. These informed

proposals, based on the likelihood of a particular track under a KDE or Gibbs estimator,

are then used as the data-driven portion of the HMC to do an initial classi�cation of the

activities.

We assume we have similarity distributions using both the Motion and the Shape

methods. We then convert these to probability density functions by casting them as a Gibbs

or Kernel Density estimator. This results in a joint distribution, π(τ, f) = π(τ |f)π(f) =

π(f |τ)π(τ), where π(f) is the probability density function for the Form or Shape pathway

and π(τ) is the probability density function for the Motion pathway. Our goal is to sample

this joint space, π(τ, f), and we employ our DDHMC variants to do exactly this since the
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HMC has proved so successful in analyzing high-dimensional spaces in phase space. We

expect the peaks to be highest in our joint distribution where both individual distributions

exhibit higher values and we use the data-driven proposals to narrow in on those areas specif-

ically. Because we expect the peaks in the joint distribution to correspond to areas where

peaks of the motion and form distributions maximally overlap, we can use the DDHMC to

sample from just the π(τ) or the π(f) instead of the π(τ, f), as well. For example, in the

DDHMCMotion, we create a Hamiltonian that is a combination of Shape and HES, so we

sample from π(τ, f) in this case; in the DDHMCShape, we sample from the distribution of

motion similarities, π(τ).

Thus, both variants require a similarity distribution; for DDHMCShape, we use

shape-based methods to compute similarities between the shapes obtained from a query track

and all the database test tracks. For DDHMCMotion, we use the physically signi�cant

Hamiltonian derived from tracks (please see Section 4.3.2) and Dynamic Time Warping

(DTW) to do the same. Since we use DTW, in future work, we can potentially employ a

lower bounding function to speed up the similarity search [36], especially when dealing with

large databases; in fact, the lower bounds can be used in the proposal and con�rmation

searches separately to speed up the DDHMC since the DDHMC itself provides integration

and not just search over a single component or pathway.

Our approach assumes that the video is segmented into objects and their motion

is given; then, from the physical motion and location information of objects over time, we

can use the abstract Hamiltonian framework to estimate the potential and kinetic energy of

the system and derive an approximation to its Hamiltonian. Thus, starting with tracks for

an object, we calculate the Hamiltonian for each object. The integration of a Hamiltonian
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energy-based approach with an image-based data-driven proposal allows us to simultane-

ously search over both the motion energy space and image space in a concerted manner,

unlike traditional HMC methodologies which only address a single space, thus reducing the

enormity of the search space. We can then classify activities based on the likelihood of a

particular track under a KDE or Gibbs estimator.

These are the Data-Driven proposals we use in our two DDHMC formulations:

DDHMCMotion and DDHMCShape. For the �rst variant, DDHMCMotion, we use pro-

posals from the motion space and the same Dynamic Transitions as for the Traditional

HMC, as seen in Algorithm 1. For the second variant, DDHMCShape, we use proposals

from the shape space and then use Dynamic Evolution of the the Proposal and Acceptance

Hamiltonians calculated from the tracks (explained in Section 4.4.2). Dynamic transitions,

as explained in [46], refers to the Hamiltonian dynamics shown in (4.3) being applied for l

time steps and then testing the candidacy of that point based on the change in total energy

using a Metropolis-Hastings step. Dynamic Evolution is our innovation for the DDHMC in

which we follow a trajectory for l time steps and then make a similar decision to accept or

reject based on the di�erence in energy between the Proposal and Acceptance Hamiltonians

using a Metropolis-Hastings step. Since the physically-signi�cant Hamiltonian and the dis-

tribution estimator are common to both variants, we explain them in the next two sections

before we detail the two DDHMC algorithms.

4.3.2 Derivation of Hamiltonian from video

In order to derive the Hamiltonian dynamics for systems studied in video, we follow

the development in Section 2.2 and build upon equations (2.1) - (2.3). If the transformation
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between the Cartesian and generalized coordinates is time-independent, then the Hamilto-

nian function also represents the total mechanical energy of the system:

H(q(t), p(t)) = T (p(t)) + U(q(t)) (4.4)

In general, we compute (2.3), which does depend on time, but we can make the

assumption (4.4) as a �rst approximation, as discussed in the Appendix. The procedure [25]

for deriving the Hamiltonian is to �rst write out the Lagrangian, L, from equation (2.2) in

generalized coordinates, expressing T and U in the normal manner for Lagrange's equation.

Then, the generalized momenta are calculated by di�erentiating the Lagrangian with respect

to the generalized velocity as:

pi =
∂L

∂q̇i
(4.5)

Now we can express the generalized velocities in terms of the momenta by simply

inverting the result of (2.5) and using those generalized velocities in (2.3). We thus �nally

arrive at the equations of motion of Hamiltonian mechanics, known as Hamilton's Equa-

tions of Motion, which we derive from the Hamiltonian equivalent of the Euler-Lagrange

equations:

∂H

∂pi
= q̇i,

∂H

∂qi
= Fi − ṗi,

∂H

∂t
= −∂L

∂t
(4.6)

where, for a free particle with no external forces, the Fi term goes to zero, leaving:

∂H

∂pi
= q̇i,

∂H

∂qi
= −ṗi,

∂H

∂t
= −∂L

∂t
(4.7)
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This de�nes the dynamics on the system's phase-space, in which the qi and pi are

regarded as functions of time [38, 57]. The phase�space of a system consists of all possible

values of the generalized coordinate variables qi and the generalized momenta variables pi.

If the Hamiltonian is time-independent, then phase space is 2-dimensional, (q,p); if the

Hamiltonian is time-dependent, then phase space is 3-dimensional, (q,p,t) [62].

4.3.2.1 Application to Activity Recognition

Our approach is to segment the video into systems and sub-systems (e.g., whole

body of a person or parts of the body) and, for each of those, get their tracks, from which

we compute T and U, and use that to get the Hamiltonian, which can then be evaluated

further and the results analyzed accordingly, as shown in Figure 4.2.

Figure 4.2: Tracks to Hamiltonian to Phase Space: the phase space of a system consists of
all possible values of the coordinates, which can be (q,p) or (q,p,t), for example; we may
also look at modi�ed phase plots of (H,t), (H,q,p), etc. This is similar to Figure 2.1.

We use the video to gain knowledge of the physics and use the physics to capture

the motion energy of the system being observed via the abstract Hamiltonian framework. In

order to compute the Hamiltonian, we use tracks from the video to compute the kinematic

quantities that drop out of the Lagrangian formalism, thus giving a theoretical basis for

examination of their energy from (x,y,t).

A system, in this sense, is de�ned according to the constraints of the video and the

systems we are trying to identify. Thus, a system could be points on the joints of a person,

points on the contour of a person, the center of mass of an object, etc. More generally, the
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Hamiltonian can be used to characterize any system or sub-system. We thus use the tracks to

compute the kinematic quantities that drop out of the Lagrangian formalism, thereby giving

a theoretical basis for examination of their energy from the (x,y,t) tracks (further details

are provided in the attached Appendix). In the end, we take the tracks and map them

to 3-dimensional phase space (q,p,t) trajectories, τ , from which we form the appropriate

Hamiltonians, H(q, p, t) = H(τ), as shown in Figure 4.3, where we see the tracks for three

cars engaged in an activity being mapped to an (H, t) phase plot.

Figure 4.3: Map (x,y,t) tracks to an (H,t) phase plot. This is similar to Figure 2.3 and
speci�cally shows the trajectories for two cars following. The �rst car, whose trajectory is
labeled in orange, is the lead car and executes a U-turn and might represent the query which
we could call the Acceptance Hamiltonian. The second car, trajectory in blue, follows it
and also makes a U-turn, whereas the third car, whose trajectory is in red, follows it for a
while and then turns away; both of these can become Proposal Hamiltonians representing
the test clips from the database.

For example, if we track a person in video, we can compute these Hamiltonians for

the centroid of the person (considering the person as an entire object) or consider all the
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points on the contour of that person's silhouette, thus leading to a multi-dimensional time

series (which can, for example, represent the gait of a person). Note that these Hamiltonians

can be computed in either the image plane, yielding the Image Hamiltonian as used in this

work, or in the 3D world, giving the Physical Hamiltonian, depending on the application

domain and the nature of the tracks extracted. In either case, the rigorous Hamiltonian

framework gives a highly abstract representation for a system and can yield the energy of

the system under consideration (please see Appendix for details of the speci�c conditions).

These Hamiltonians can then model a physically-signi�cant energy that only depends on

the image velocities. Since our representation uses the abstract Hamiltonian framework and

is based upon the physical motion information of the system, garnered directly from the

tracks, it is much more physically signi�cant as compared to "energy-based" methods which

take some property of the image, like pixel intensity, and square it or �nd its fourier energy

[39, 47]. In the experiments shown in this work, we will use the Image Hamiltonian.

4.3.3 Proposal distribution formulation

In order to create a data-driven proposal, we need to �rst compute similarity scores

between the query and test tracks, using either the motion energy or form/shape based

methods, and then cast them as a distribution. In order to compute the motion energy

similarity measures, we use Dynamic Time Warping (DTW) to compare the time series of

the physically-signi�cant Hamiltonian for each track.

Similarly, we use well-established methods in machine vision to calculate form

or shape based features for our representation. Our construction provides �exibility on

the image-based data-driven proposal side since di�erent approaches in low-level feature
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extraction can be employed easily within our framework and the appropriate image-based

data-driven proposal features can be used. In general, we can follow the example of other

data-driven MCMC approaches like [65]. For the present work, we use the shape of the

feature points in the video, which can be the shape of a trajectory or the shape of our

object. Distances can be computed between shapes, leading to a similarity matrix [68].

We can also use Histogram of Oriented Gradients (low-resolution experiments) [12], shape,

trajectory-based descriptors, colour/texture, etc., since the integration is directly on the

similarity scores.

We then cast the similarity scores from our data-driven method as a Gibbs proposal

distribution since any distribution that is nowhere zero can be put in a canonical (Gibbs)

distribution form [46, 20]. In order to estimate the distribution for the similarity scores, we

use standard Kernel Density Estimation [8]:

K(D) = 1
nh

∑n
i=1Keff

(
D−di
h

)
with Keff (D) = (2π)−

1
2 e−

D2

2 and di ∈ (D − h,D + h]
(4.8)

where D is the distance measure between two tracks and h is the bandwidth, which

is set using kNN, as described in [8].

4.4 DDHMC variants

4.4.1 DDHMC with Shape-based Proposals: DDHMCShape

The DDHMCShape relies upon shape-based proposals and we address its develop-

ment within the context of a video database-retrieval. Suppose we have a query clip and a

video database of clips and we would like to match the activity in the query clip with the
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activity in each of the test video database clips. We assume that we have tracks for all the

objects in each clip. We then apply our shape-based method to all the clips in the database

and compute distance measures between each test clip and the query clip. This will then

be cast as the distribution, following the formulation in Section 4.3.3, for our data-driven

proposals in this case (Step 1 of the HMC algorithm).

For Step 2 of the HMC algorithm, we take each proposal clip and compute physically-

signi�cant Hamiltonians, as shown in Section 4.3.2, for the object in the query clip and the

object in the proposal test clip. We compare the two Hamiltonians for l time steps using

DTW and accept their di�erence with a certain probability, α. We keep track of the number

of accepted and the number of rejected time steps via the
Nrejected

Naccepted
ratio.

Finally, in Step 3 of the HMC algorithm, we use that
Nrejected

Naccepted
ratio in a Metropolis-

Hastings test to see if we should accept the proposal test clip or not.

4.4.2 Detailed Description of the DDHMCShape Algorithm

Our full algorithm for theDDHMCShape is outlined in Algorithm 2 but we describe

it in detail here and also give an analysis of the algorithm in Table 4.6. In addition, please

refer to Table 4.2 for an overview of the di�erences between the DDHMC and the Traditional

HMC algorithms.

A diagrammatic representation of the overall evolution and eventual matching ap-

proach of the algorithm in trajectory space is shown in Figure 4.4. Figure 4.4(a) shows seven

trajectories in trajectory space (represented as yellow circles).

Lines 3-11 of Algorithm 2 start o� in Figure 4.4(b), where we enter Step 1 of the

algorithm and �nd a proposal trajectory using the image-based data-driven methodology
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Figure 4.4: Proposal/Acceptance in Trajectory Space (a) shows seven trajectories in trajec-
tory space (represented as yellow circles). Algorithm 2 starts o� in (b) and chooses a Proposal
Hamiltonian (lines 3-11). This Proposal Hamiltonian is then compared with the Acceptance
Hamiltonian (lines 12-22) and, if it is accepted (lines 23-29), the algorithm continues with
the loop by �nding a new Proposal Hamiltonian in (c). In this way, the algorithm maneuvers
through trajectory-space, only picking out those trajectories whose Proposal Hamiltonians
are con�rmed by the Acceptance Hamiltonian of the query clip, (c)-(e).

described earlier; the selected proposal trajectory is then used to create the Proposal/Guide

Hamiltonian (the blue circle). As described variously [18, 46, 42], although the Tradi-

tional HMC uses a single Hamiltonian for both Acceptance and Guidance, the more general

HMC formulation allows the use of a �Guide/Guidance� Hamiltonian, H ′, which does not

have to be the same as the �Acceptance� Hamiltonian, H; this is the approach we use in

DDHMCShape, as well.

Putting this in the context of matching a database query, we �rst use the shape-

based method to compute distances between the query clip and all the test clips in the

database. We cast these similarity measures as a distribution, as shown in Section 4.3.3, for

our data-driven proposals in this case. In Step 1 of the algorithm (lines 3-11), we create a

MCMC that checks these scores and picks a test clip that has a better match. This clip be-

comes our selected proposal and we compute its Hamiltonian to create the �Proposal/Guide�

Hamiltonian. Similarly, we compute a Hamiltonian for the query clip, which becomes the

�Acceptance� Hamiltonian. The Acceptance Hamiltonian decides the acceptance/rejection

and is derived from our query/probe whereas the Proposal/Guide Hamiltonians, H ′, are
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derived from the gallery/database and are our data-driven proposals.

Figure 4.5: Dynamic Evolution: here, we see the tra-
jectory for the Proposal Hamiltonian and the trajectory
for the Acceptance Hamiltonian. We also see two points
in time along those trajectories at tj and tj+1. At tj ,
for example, we compute the di�erence between the two
Hamiltonians up to that point using DTW; this di�er-
ence is δH. If the di�erence is less than zero or within
probability α, we increment Naccepted; else, we increment
Nrejected. Then, we repeat this analysis at t

j+1 and con-
tinue in this manner for l timesteps.

This Proposal Hamilto-

nian is then compared with the

Acceptance Hamiltonian in the

Dynamic Evolution step (lines 12-

22), shown in Figure 4.5, where

we allow both the Guide and Ac-

ceptance Hamiltonians to evolve

together using the real time-steps

given from video by the frame rate

(since we use real time, we don't

need to arti�cially discretize time

into step-sizes ∆t, as in the Traditional HMC). As we see in Figure 4.5, at each step (e.g.,

tj), we calculate δH = H −H ′, between the Acceptance and Proposal/Guide Hamiltonians;

because we're examining the di�erence over the whole trajectory up to that step, we use

Dynamic Time Warping (DTW) to determine the actual di�erence.

If this di�erence is, in general, close to 0, we conclude that the two clips match.

This is because, as pointed out by [62], in phase space, if H is explicitly time-dependent,

we can assert that no two orbits can pass through the same phase space point at the same

time. Ideally, the di�erence should be exactly zero but, due to the discretization errors

mentioned earlier, we allow it to be close to zero as determined by the Metropolis-Hastings

step, instead.

So we let both the Proposal and Acceptance Hamiltonians evolve and, if their
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di�erence is overall negligible, as re�ected in the
Nrejected

Naccepted
ratio, we conclude that they are

the same. Thus, if Nrejected > Naccepted, the proposed trajectory is not accepted (since

α ≯ 1); however, if the proposed trajectory is close to the acceptance proposal, as compared

to α, we conclude they are the same. Force bias methods of [51, 44] are variations that

justify our di�erential approach.

Finally, if the Proposal Hamiltonian is accepted (lines 23-29), the algorithm con-

tinues with the loop by �nding a new Proposal Hamiltonian in Figure 4.4(c), which might

also be accepted. In this way, the algorithm maneuvers through trajectory-space, only pick-

ing out (accepting) those trajectories whose Proposal Hamiltonians are con�rmed by the

Acceptance Hamiltonian of the query clip, Figure 4.4(c)-(e).

We therefore allow dynamic evolution for a speci�ed time to account for the dis-

cretization errors referenced for the traditional HMC. In fact, although our system is based

on the assumption of a time-dependent Hamiltonian, [3] points out that the time-dependence

in H averages itself out up to negligible terms so any cross-over of points (i.e., any time when

δH = 0) further indicates they are the same phase space trajectory. The stepsize in the

Traditional HMC and the length, l, in both are also a way to represent �smoothing� in our

system.

Our approach , in brief, is to:

• Create an Acceptance Hamiltonian , H, from the query (see above for details of H

and H ′)

• Sample a Guide Hamiltonian , H ′, from the Gibbs distribution of the data-based

approach as our data-driven proposal
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Lines Analysis of Algorithm 2

1 Initialize the Markov Chain of accepted trajectories, {τi}, which we'll eventually

return in Line 31

2 Start the main for loop

3-5 Start the Data-Driven Loop

6-7 Draw a proposal trajectory τ
′
i from the data-based Gibbs distribution and draw a

random number, α

8-11 Check if DShape(τ
′
i ) is less than DShape(τi−1) and accept τ

′
i with probability α

12 Start the Dynamic Evolution step

13 Pick a random time jo within the trajectory τ
′
i

14 Let the system evolve for l steps

15 At each time step, compute the di�erence in Hamiltonians between the proposal

trajectory, τ
′
i , and the acceptance/query trajectory, τq, using DTW from that

time step to the beginning of each trajectory.

16-22 Draw a random number, α, and accept the di�erence with that probability;

increment Naccepted if accepted; otherwise, increment Nrejected.

23-24 Start the Final Metropolis-Hastings step and draw a random number, α

25-30 Compute the ratio,
Nrejected

Naccepted
, and accept the proposal trajectory, τ

′
i , with

probability, α

31 Return the �nal Markov Chain of accepted trajectories, {τi}

Table 4.6: Analysis of Algorithm 2
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Algorithm 2 Data Driven HMC Algorithm - Shape-based Proposals
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• Dynamically evolve, over real time, our Hamiltonians for a length, l

• At each step, evaluate a Metropolis-Hastings (MH) acceptance ratio for δH = H ′−H

• Finally, grow the Markov Chain using another MH test on the ratio of
Nrejected

Naccepted
pro-

posals

An overview of the proposal generation is shown in Figure 4.6, where we see that the

Shape-based proposal suggests a trajectory, τ , which is then analyzed within the physically-

signi�cant H to make the �nal decision for acceptance or rejection.

4.4.3 DDHMC with Motion-based Proposals: DDHMCMotion

We can also reverse the DDHMC proposal and acceptance methods. We propose

this second approach to the integration of form and motion energy information because,

depending on the speci�c application or problem, either the form or the motion might out-

perform the other. Since our integration a�ords a hierarchical classi�cation scheme in which

the data-driven proposal does an initial, gross classi�cation, we create both variants to take

best advantage of whichever method is most suited to the �ner granularity of classi�cation;

e.g., in image analysis, the motion-based proposals give a gross classi�cation and the image-

based con�rmation via the traditional HMC architecture yields the �nal, �ner classi�cation

in the integration a�orded by the DDHMC framework. Thus, in Algorithm 3, we use the

Hamiltonian analysis to generate the proposals whereas the shape or form method con�rms

the acceptance.

As can be seen there, the main di�erence from the DDHMCShape is the use of

motion energy based proposals in Step 1 (lines 3-11). We still use an Acceptance and
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Figure 4.6: Shape-Proposal Generation Overview: here we see that the Shape-based proposal
suggests a trajectory, τ , which is then analyzed within the physically-signi�cant H to make
the �nal decision for acceptance or rejection
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Lines Analysis of Algorithm 3

1 Initialize the Markov Chain of accepted trajectories, {τi}, which we'll eventually

return in Line 31

2 Start the main for loop

3-5 Start the Data-Driven Loop

6-7 Draw a proposal trajectory τ
′
i from the data-based Gibbs distribution and draw a

random number, α

8-11 Check if DHES(τ
′
i ) is less than DHES(τi−1) and accept τ

′
i with probability α

12-14 Initialize the q and p using the data-driven proposal trajectory τ
′
i

15-21 Let the system evolve dynamically (using the Leapfrog algorithm) from the initial

point in phase space, (qo, po), to the �nal point in phase space, (q
′
, p

′
).

22-24 Start the Final Metropolis-Hastings step and draw a random number, α, and

compute the di�erence between the current Hamiltonian for the �nal point,

(q
′
, p

′
), and the Hamiltonian for the previously accepted point, (qi−1, pi−1).

25-30 If the di�erence is 0 or less, always accept the new phase space point, (p
′
, q

′
),

since this means the two trajectories intersected in phase space and so they have

the same H; otherwise, accept it with probability α

31 Return the �nal Markov Chain of accepted trajectories, {τi}

Table 4.8: Analysis of Algorithm 3
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Algorithm 3 Data Driven HMC Algorithm � Motion-based Proposals
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a Proposal/Guide Hamiltonian but the Dynamic Evolution of DDHMCShape is replaced

with a Perturbation (lines 15-21) in the DDHMCMotion. For this step, we form a pseudo-

Hamiltonian, exactly the same as in Traditional HMC, except we use the distance measures

for the shape and motion as the generalized coordinates and momentum, respectively (lines

13-14), to create the Proposal Hamiltonian.

This Proposal Hamiltonian is then subjected to a perturbation via Dynamic Tran-

sitions using Leapfrog. The perturbation is done in phase space (which is more abstract

than the form-based space). The reason for the perturbation is because we assume the

Shape/Form method is not perfect and the perturbation, just like the Dynamic Transitions

in the Traditional HMC, accounts for such errors. The Acceptance Hamiltonian, meanwhile,

is computed for the previous phase space point, (qi−1, pi−1), that was accepted.

In Step 3, a normal HMC Metropolis-Hastings is used on the di�erence between the

Acceptance and Proposal/Guide Hamiltonians. We �nally accept the proposed trajectory if

δH ≤ 0 because it penetrates the Acceptance Hamiltonian's trajectory in phase space then

(and so, we conclude the Guide Hamiltonian's trajectory is the same); but if δH > 0, we

only accept with probability α.

An overview of the proposal generation is shown in Figure 4.7, where we see that

the motion-based proposal suggests an arti�cial momentum, p, and the shape-based method

is used within the HMC framework to get the arti�cial position coordinate, q; �nally, both

the q and the p are used to create the Hamiltonian, H(q, p), which is then analyzed via the

HMC framework to make the �nal acceptance decision.

In future versions of the DDHMC, we intend to generalize our approach beyond

just the proposal/guide and acceptance Hamiltonians. In addition, we can also extend future
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Figure 4.7: Motion-Proposal Generation Overview: here we see that the motion-based pro-
posal suggests an arti�cial momentum, p, and the shape-based method is used within the
HMC framework to get the arti�cial position coordinate, q; �nally, both the q and the p are
used to create the Hamiltonian, H(q, p), which is then analyzed via the HMC framework to
make the �nal acceptance decision
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versions to compute an Heff using the Action [18, 32] or the Action directly instead of H

[17, 5, 11, 48].

4.5 Experiments

The DDHMC has several innovations that can be highlighted through experiments.

Experiments on the Weizmann dataset demonstrate the reduction the search space by the

data-driven portion as the �nal results are better than the original, as shown in Figure 4.8.

For all of these experiments, tracking and basic object-detection was already available [33]

and we utilized these (x,y,t) tracks to compute the Lagrangian and Hamiltonian, following

our development in Section 4.3.2.1. For want of space, details are presented in the attached

Appendix.

We show how the integration a�orded by DDHMC helps reduce the search space.

In this case, we demonstrate on the Weizmann dataset. The Weizmann dataset (http:

//www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html) consists of a database

of 90 low-resolution (180 x 144, deinterlaced 50 fps) video sequences showing nine di�erent

people, each performing 10 natural actions. We analyze these using both shape methods

[68] (as discussed in Section 4.3.3), as well as via the Hamiltonian. Using both procedures,

we see the resulting similarity matrices in Figure 4.8 (a) and (b), respectively.

Finally, in Figure 4.8 (c) and (d), we see the result of integrating via DDHMC. As

can be seen in the matrices, the DDHMC approach signi�cantly reduces the search space of

either the motion or shape approaches by themselves.
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a) b)

c) d)

Figure 4.8: Similarity matrices using the Weizmann dataset for a) HES only, b) Shape
Methods only, c) Integration usingDDHMCMotion, and d) Integration usingDDHMCShape
. The rows and columns represent activities by people and are organized according to
activity. The plots show the clari�cation of matches using the �ner granularity of either
shape (in (c)) or motion in (d)).
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Chapter 5

Conclusion

In this work, we propose several novel contributions to address the problem of

integration of motion and form in order to do activity recognition in video. We develop a

computational equivalent for the motion energy pathway of the neurobiological model based

upon a fundamental physics formulation. Using the rigorous Hamiltonian framework, we

propose Hamiltonian Energy Signatures (HES) as an abstract feature for detection of motion

energy and activity recognition. The HES is view-invariant and can easily be generalized

across di�erent application domains and even be applied to coupled systems, like cars chasing

each other, exchanges, or interactions between sparse objects, and other systems without

requiring separate heuristics for each.

In addition, we extend our physical development to create a new spatio-temporal

gait representation, called the Gait Action Image. We then create various statistical Inte-

gration mechanisms to combine both the motion and form pathways of the neural model.

The framework we present in this work provides a structured approach to motion

recognition using the motion analysis neurobiological models within a single, unifying ar-
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chitecture that only requires tracks for the Motion Energy Pathway. We believe it is the

�rst computational equivalent for the integration of the two pathways of motion recognition

that is applied to real world datasets. Our formulation takes an altogether novel approach

whereby we attempt to create a theoretical framework inspired by the biological model and

rooted in physics to gain insight into the problem of motion recognition in machine vision.

Finally, we develop yet another Integration variant motivated by the DDMCMC

but that builds upon a physically-signi�cant Hamiltonian Monte Carlo, which we call the

Data Driven Hamiltonian Monte Carlo (DDHMC). The framework and architecture we pre-

sented in this work also provides a structured approach to activity recognition using the

DDHMC. In addition, we develop two variants of the DDHMC that can be applied speci-

�cially to activity recognition, one using form-based proposals and another using motion-

based proposals.

5.1 Future Work

We see much room for future research for our work. In particular, we see a path to

create a generalized DDHMC which can be applied to many problems beyond motion recog-

nition. In addition, we can apply our various DDHMC variants to problems beyond activity

recognition, as well. A speci�c application we're exploring is applying the DDHMC frame-

work to optimize the lasing temperature for a material under a magnetic �eld generated

by pylons; in this case, the con�guration space of the pylons can serve as the data-driven

component and the HEM (electromagnetic Hamiltonian) can serve as the physical Hamilto-

nian. In addition, we can expand our approach to compute an Heff using the Action or the
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Action directly instead of H.

We also intend to work on improving robustness to noise in low-level features, inte-

gration of di�erent features for the statistical Integration framework, and e�cient database

search mechanisms to help supplement the integration, including looking at ways to set lower

bounds on the individual pathways for grossly di�erent classes of activities and objects. In

addition, we can invert the two pathways' biasing in the Integration module; �nally, we can

use shape or learning algorithms to determine mass and potentials.

Finally, we see much potential for future HES development; e.g., using Phase-Space

Trajectories (including preservation of phase-space volumes) and Poisson Brackets directly.

We also intend to address robustness fo our high-level approach to low-level errors in the

tracks; techniques for addressing this include potentially creating a Stochastic HES. We also

recognize the need to investigate the mathematical properties of the DDHMC thoroughly,

especially in regards to establishing its convergence. We discuss details of drawbacks, tech-

nical points, and further work in the Discussion section of the attached Appendix. Also, all

code will be available online.
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Appendix A

Hamilton's Variational Principle

Hamilton's Variational Principle states that the integral, S, taken along a path of the possible

motion of a physical system, is a minimum (technically, an extremum [38]) when evaluated

along the actual path of motion. This variation can be expressed as:

δS = δ

∫ t2

t1

L(q, q̇, t)dt = 0 (A.1)

where δ is an operation that represents a variation of any system parameter by

an in�nitesimal amount away from the value taken by that parameter when (A.1) is an

extremum. If we express L in terms of generalized coordinates,q = q(t), then the change in

S when q is replaced by q+ δq is arrived at by requiring that the �rst variation be zero [38]

to yield, after integration by parts:

δS =
[
∂L

∂q̇
δq

]t2
t1

+
∫ t2

t1

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δqdt = 0 (A.2)

This can only be true if the integrand is zero identically, which gives rise to the
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so-called Euler-Lagrange equations of the Lagrangian formalism:

∂L

∂q
− d

dt

∂L

∂q̇
= 0 (A.3)

The Hamiltonian formalism is related to the Lagrangian formalism by the Legendre

transformation, from generalized coordinates and velocities (q, q̇) to generalized coordinates

and momenta (q, p), using the q̇i, the time derivative of the generalized coordinates. Thus,

the Hamiltonian function is usually stated most compactly, in generalized coordinates,

as [38]:

H =
∑
i

piq̇i − L (A.4)

where H is the Hamiltonian, pi are the generalized momentum, and q̇i are the time

derivative of the generalized coordinates, as in (2.3).

A.1 Deriving the Hamiltonian

The procedure for deriving the Hamiltonian [25] is to �rst write out the Lagrangian,

L, from equation (2.2) in generalized coordinates, expressing T and U in the normal manner

for Lagrange's equation. Then, the generalized momenta are calculated by di�erentiating

the Lagrangian with respect to the generalized velocity:

pi =
∂L

∂q̇i
(A.5)

Now we can express the generalized velocities in terms of the momenta by simply

inverting the result of (A.5) and using those generalized velocities in (A.4). Finally, we derive
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Hamilton's Equations of Motion from the Hamiltonian equivalent of the Euler-Lagrange

equations:

∂H

∂pi
= q̇i,

∂H

∂qi
= Fi − ṗi,

∂H

∂t
= −∂L

∂t
(A.6)

where, for a free particle with no external forces, the Fi term goes to zero, leaving:

∂H

∂pi
= q̇i,

∂H

∂qi
= −ṗi,

∂H

∂t
= −∂L

∂t
(A.7)

The �rst two relations give 2n �rst-order di�erential equations and are called

Hamilton's canonical equations of motion. This e�ectively results in expressing 1st-order

constraints on a 2n-dimensional Phase Space, whereas the Lagrangian method expresses

2nd-order di�erential constraints on an n-dimensional Coordinate Space.

Furthermore, if the total energy is conserved then the work, W, done on the particle

had to have been entirely converted to potential energy, U. This implies that U is solely a

function of the spatial coordinates (x,y,z ); equivalently, U can be thought of as purely a

function of the generalized con�guration coordinates, qi. Rarely, U is also a function of q̇i,

making for a velocity-dependent potential, but is still independent of the time t. Noether's

theorem, in fact, guarantees that any conserved quantity (e.g., energy) corresponds to a

symmetry: thus, the system can then be thought of as being independent with respect to

some variable or coordinate. In this case, Noether's theorem implies the independence of

the Lagrangian with respect to time, as long as energy is conserved in this process.
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