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Abstract. Most existing person re-identification methods focus on find-
ing similarities between persons between pairs of cameras (camera pair-
wise re-identification) without explicitly maintaining consistency of the
results across the network. This may lead to infeasible associations when
results from different camera pairs are combined. In this paper, we pro-
pose a network consistent re-identification (NCR) framework, which is
formulated as an optimization problem that not only maintains consis-
tency in re-identification results across the network, but also improves
the camera pairwise re-identification performance between all the indi-
vidual camera pairs. This can be solved as a binary integer programing
problem, leading to a globally optimal solution. We also extend the pro-
posed approach to the more general case where all persons may not be
present in every camera. Using two benchmark datasets, we validate our
approach and compare against state-of-the-art methods.
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1 Introduction

In many computer vision tasks it is often desirable to identify and monitor people
as they move through a network of non-overlapping cameras. While many object
tracking algorithms can achieve reasonable performance for a single camera, it
is a more challenging problem for a network of cameras where issues such as
changes of scale, illumination, viewing angle and pose start to arise. For non-
overlapping cameras it is extremely challenging to associate the same persons at
different cameras as no information is obtained from the “blind gaps” between
them. This inter-camera person association problem is known as the person re-
identification problem.

Person re-identification across non-overlapping fields-of-view (FOVs) is a well
studied topic. Most widely used re-identification approaches focus on pairwise
re-identification. Although the re-identification accuracy for each camera pair is
high, it can be inconsistent if results from 3 or more cameras are considered.
Matches of targets given independently by every pair of cameras might not con-
form to one another and in turn, can lead to inconsistent mappings. Thus, in

? The first two authors should be considered as joint first authors
?? Corresponding author



2 Abir Das, Anirban Chakraborty and Amit K. Roy-Chowdhury

Camera 3

Match

Inconsistent Re-identification

Fig. 1: Example of inconsistency in re-identification: Among the 3 possible re-
identification results, 2 are correct. The match of the target in camera 1 to camera
3 can be found in two ways. The first one is the direct pairwise re-identification result
between camera 1 and 3 (shown as ‘Path 1’), and the second one is the indirect re-
identification result in camera 3 given via the matched person in camera 2 (shown as
‘Path 2’). The two outcomes do not match and thus the re-identification of the target
across 3 cameras is not consistent.

person re-identification across a camera network, multiple paths of correspon-
dences may exist between targets from any two cameras, but ultimately all these
paths must point to the same correspondence maps for each target in each cam-
era. An example scenario is shown in Fig. 1. Even though camera pairs 1-2
and 2-3 have correct re-identification of the target, the false match between the
targets in camera pair 1-3 makes the overall re-identification across the triplet
inconsistent. In this paper we propose a novel re-identification scheme across mul-
tiple cameras by incorporating the consistency requirement. We show that the
consistency requirement not only makes the interpretation of re-identification
more meaningful, but also makes the pairwise re-identification accuracy high.
Since consistency across the camera network is the motivation as well as the
building block of the proposed method, we term this as the ‘Network Consistent
Re-identification’ (NCR) strategy.

To achieve a consistent and optimal re-identification, we pose the problem
of re-identification as an optimization problem that minimizes the global cost of
associating pairs of targets on the entire camera network constrained by a set
of consistency criteria. The pairwise re-identification similarity scores obtained
using any feasible approach are the input to the proposed method. Unlike assign-
ing a match for which the similarity score is maximum among a set of probable
candidates, our formulation picks the assignments for which the total similarity
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of all matches is the maximum, as well as the constraint that there is no inconsis-
tency in the assignment among any pair of cameras given any other intermediate
camera. The resulting optimization problem is translated into a binary integer
program (IP) which can be solved using standard branch and cut, branch and
bound or dynamic search algorithms [20]. The application of the proposed for-
mulation is not limited only to person re-identification, but can also be applied in
solving other correspondence problems between multiple nodes/instances arising
out of the same object at different instants, e.g., object tracking, optical flow,
feature correspondences etc.

The proposed method is further generalized to a more challenging scenario
in person re-identification when all persons are not present in all the cameras.
This challenging scenario of dealing with a variable number of people has been
addressed mainly in single cameras by methods relying on learning person spe-
cific discriminating signature [3,8]. For multi camera re-identification, a simple
way has been to apply a threshold to the similarity score between persons in dif-
ferent cameras. With our formulation we show that we can address this largely
unaddressed challenge of multicamera person re-identification by employing a
reward for true negatives (no association for an isolated person in one camera)
in the binary IP framework.

We compare the performance of our approach to state-of-the-art person re-
identification methods using a publicly available benchmark dataset - WARD [16]
having 3 cameras, and a new 4 camera dataset, RAiD (Reidentification Across
indoor-outdoor Dataset) introduced by us. More details about the datasets are
provided in sections 4.1 and 4.2.

2 Related Works and Our Contributions

In the last few years there has been increasing attention in the field of person re-
identification across camera networks. The proposed approaches addressing the
pairwise re-identification problem across non-overlapping cameras can be roughly
divided into 3 categories, (i) discriminative signature based methods [2,3,15,16],
(ii) metric learning based methods [1,4,23], and (iii) transformation learning
based methods [11,18]. Multiple local features (color, shape and texture) are used
in [3,15,16] to compute discriminative signatures for each person using multiple
images. Similarity between person images is computed by measuring the distance
between shape descriptors of color distributions projected in the log-chromaticity
space [12] or by using an unsupervised salient feature learning framework in [24].
The authors in [9], propose a metric learning framework whereby a set of train-
ing data is used to learn an optimal non-Euclidean metric which minimizes the
distance between features of pairs of true matches, while maximizing the same
between pairs of wrong matches. Some of the recent works try to improve the
re-identification performance by learning a relaxed Mahalanobis metric defined
on pairs of true and wrong matches, by learning multiple metrics in a transfer
learning set up [14] or by maintaining redundancy in colorspace using a local
Fisher discriminant analysis based metric [17]. Works exploring transformation
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of features between cameras tried to learn a brightness transfer function (BTF)
between appearance features [18], a subspace of the computed BTFs [11], lin-
ear color variations model [10], or a Cumulative BTF [19] between cameras.
Some of these works [10,11] learned space-time probabilities of moving targets
between cameras which may be unreliable if camera FoVs are significantly non-
overlapping. As the above methods do not take consistency into account, apply-
ing them to a camera network does not give consistent re-identification. Since the
proposed method is built upon the pairwise similarity scores, any of the above
methods can be the building block to generate the camera pairwise similarity
between the targets.

There have been a few correspondence methods proposed in recent years in
other aspects of computer vision, e.g., point correspondence in multiple frames
and multi target tracking that are relevant to the proposed method. In one of the
early works [21], finding point correspondences in monocular image sequences
is formulated as finding a graph cover and solved using a greedy method. A
suboptimal greedy solution strategy was used in [22] to track multiple targets
by finding a maximum cover path of a graph of detections where multiple fea-
tures like color, position, direction and size determined the edge weights. In [6],
the authors linked detections in a tracking scenario across frames by solving
a constrained flow optimization. The resulting convex formulation of finding k-
shortest node-disjoint paths guaranteed the global optima. However, this method
does not actively use appearance features into the data association process which
might lead to ID switches among different pairs of cameras resulting in inconsis-
tency. An extension of the work using sparse appearance preserving tracklets was
proposed in [5]. With known flow direction, a flow formulation of re-identification
will be consistent. But in a re-identification problem with no temporal or spatial
layout information, the flow directions are not natural and thus re-identification
performance may widely vary with different choices of temporal or spatial flow.

Contributions of the paper: To summarize, the contributions of the pro-
posed approach to the problem of person re-identification are the followings. Net-
work consistent person re-identification problem is formulated as an optimiza-
tion problem which not only maintains consistency across camera pairwise re-
identification results, but also improves the re-identification performance across
different camera pairs. To the best of our knowledge, this is the first time that
consistency in re-identification across a network of cameras is explored, and an
optimization strategy with consistency information from additional cameras is
used to improve the otherwise standard camera pairwise re-identification. Due
to the formulation of the optimization problem as a binary IP, it is guaranteed to
reach the global optima as opposed to the greedy approaches applied in some of
the correspondence methods. The method is not tuned to any camera pairwise
similarity score generation approach. Any existing re-identification strategy giv-
ing independent camera pairwise similarity scores can be incorporated into the
framework. The proposed method is also extensible to situations where every
person is not present in every camera.



Consistent Re-identification in a Camera Network 5

3 Network Consistent Re-identification Framework

In this section we describe the proposed approach in details. The Network Consis-
tent Re-identification (NCR) method starts with the camera pairwise similarity
scores between the targets. Section 4 gives a brief description of the process in
which the pairwise similarity scores for each person is generated. First we de-
scribe the notation and define the terminologies associated to this problem that
would be used throughout the rest of the section before delving deeper into the
problem formulation.

Let there be m cameras in a network. The number of possible camera pairs

is
(
m
2

)
= m(m−1)

2 . For simplicity we, first, assume, that the same n person are
present in each of the cameras. In section 3.4 we will extend the formulation for
a variable number of targets.

1. Node: The ith person in camera p is denoted as Pp
i and is called a ‘node’

in this framework.
2. Similarity score matrix: Let C(p,q) denote the similarity score matrix be-

tween camera p and camera q. Then (i, j)th cell in C(p,q) denotes the similarity
score between the persons Pp

i and Pq
j .

3. Assignment matrix: We need to know the association between the persons
Pp
i and Pq

j ,∀i, j = {1, · · ·n} and ∀p, q = {1, · · ·m}. The associations between
targets across cameras can be represented using ‘assignment matrices’, one for
each camera pair. Each element xp,q

i,j of the assignment matrix X(p,q) between
the camera pair (p, q) is defined as follows:

xp,q
i,j =

{
1 if Pp

i and Pq
j are the same targets

0 otherwise
(1)

As a result X(p,q) is a permutation matrix, i.e., only one element per row and
per column is 1, all the others are 0. Mathematically, ∀xp,q

i,j ∈ {0, 1}

n∑
j=1

xp,q
i,j = 1 ∀i = 1 to n and

n∑
i=1

xp,q
i,j = 1 ∀j = 1 to n. (2)

4. Edge: An ‘edge’ between two nodes Pp
i , and Pq

j from two different cameras

is a probable association between the ith person in camera p and the jth person in
camera q. It should be noted that there will be no edge between the nodes of the
same camera, i.e., two targets from the same camera. There are two attributes
connected to each edge. They are the similarity score cp,qi,j and the association
value xp,q

i,j .
5. Path: A ‘path’ between two nodes (Pp

i ,P
q
j ) is a set of edges that connect

Pp
i and Pq

j without traveling through a camera twice. A path between Pp
i and

Pq
j can be represented as the set of edges e(Pp

i ,P
q
j ) = {(Pp

i ,Pr
a), (Pr

a ,Ps
b ), · · ·

(Pt
c,P

q
j )}, where {Pr

a ,Ps
b , · · · Pt

c} are the set of intermediate nodes on the path
between Pp

i and Pq
j . The set of association values on all the edges between

the nodes is denoted as L, i.e., xp,q
i,j ∈ L, ∀i, j = [1, · · · , n], ∀p, q = [1, · · · ,m]
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and p < q. Finally, the set of all paths between any two nodes Pp
i and Pq

j is

represented as E(Pp
i ,P

q
j ) and any path e(z)(Pp

i ,P
q
j ) ∈ E(Pp

i ,P
q
j ).

3.1 Global Similarity of Association

For the camera pair (p, q), the sum of the similarity scores of association is given

by

n∑
i,j=1

cp,qi,j x
p,q
i,j . Summing over all possible camera pairs the global similarity

score can be written as

C =

m∑
p,q=1
p<q

n∑
i,j=1

cp,qi,j x
p,q
i,j (3)

3.2 Set of Constraints

The set of constraints are as follows.
1. Association constraint: A person from any camera p can have only one

match from another camera q. This is mathematically expressed by the set of
equations (2). This is true for all possible pairs of cameras which can be expressed
as,

n∑
j=1

xp,q
i,j = 1 ∀i = 1 to n ∀p, q = 1 to m, p < q

n∑
i=1

xp,q
i,j = 1 ∀j = 1 to n ∀p, q = 1 to m, p < q

(4)

2. Loop constraint: This constraint comes from the consistency requirement.
Given two nodes Pp

i and Pq
j , it can be noted that for consistency, a logical ‘AND’

relationship between the association value xp,q
i,j and the set of association values

{xp,r
i,a , x

r,s
a,b, · · ·x

t,q
c,j} of a possible path between the nodes has to be maintained.

The association value between the two nodes Pp
i and Pq

j has to be 1 if the
association values corresponding to all the edges of any possible path between
these two nodes are 1. Keeping the binary nature of the association variables and
the association constraint in mind the relationship can be compactly expressed
as,

xp,q
i,j ≥

 ∑
(Pr

k ,P
s
l )∈e(z)(P

p
i ,P

q
j )

xr,s
k,l

− |e(z)(Pp
i ,P

q
j )|+ 1, (5)

∀ paths e(z)(Pp
i ,P

q
j ) ∈ E(Pp

i ,P
q
j ), where |e(z)(Pp

i ,P
q
j )| denotes the cardinality of

the path |e(z)(Pp
i ,P

q
j )|, i.e., the number of edges in the path. The relationship

holds true for all i and all j. For the case of a triplet of cameras the constraint
in eqn. (5) simplifies to,

xp,q
i,j ≥ xp,r

i,k + xr,q
k,j − 2 + 1 = xp,r

i,k + xr,q
k,j − 1 (6)
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𝑥1,1
1,2 = 1 

𝓟𝟐
𝟑 

𝓟𝟏
𝟑 

𝓟𝟐
𝟏 

𝓟𝟏
𝟏 

𝓟𝟏
𝟐 

𝓟𝟐
𝟐 

𝑥2,1
1,3 = 1 

𝑥1,1
2,3 = 1 

𝑥1,1
1,3 = 0 

Fig. 2: An illustra-
tive example showing
that inconsistent re-
identification is cap-
tured by the loop
constraint given by
eqn. (6) for a simple
scenario involving 2
persons in 3 cameras.

An example involving 3 cameras and 2 persons is illustrated with the help of
Fig. 2. Say, the raw similarity score between pairs of targets across cameras sug-
gests associations between (P1

1 ,P2
1 ), (P2

1 ,P3
1 ) and (P1

2 ,P3
1 ) independently. How-

ever, when these associations are combined together over the entire network, it
leads to an infeasible scenario - P1

1 and P1
2 are the same person. This infeasi-

bility is also correctly captured through the constraint in eqn. (6). x1,3
1,1 = 0 but

x1,2
1,1 + x2,3

1,1 − 1 = 1, thus violating the constraint.

For a generic scenario involving a large number of cameras where similarity
scores between every pair of cameras may not be available, the loop constraint
equations (i.e., eqn. (5)) have to hold for every possible triplet, quartet, quintet
(and so on) of cameras. On the other hand, if the similarity scores between all
persons for every possible pair of cameras are available, the loop constraints on
quartets and higher order loops are not necessary. If loop constraint is satisfied
for every triplet of cameras then it automatically ensures consistency for every
possible combination of cameras taking 3 or more of them. So the loop constraint
for the network of cameras become,

xp,q
i,j ≥ xp,r

i,k + xr,q
k,j − 1

∀ i, j = [1, · · ·n], ∀ p, q, r = [1, · · ·m], and p < r < q
(7)

3.3 Overall Optimization Problem

Thus, by combining the objective function in eqn. (3) with the constraints in
eqn. (4) and eqn. (7) we pose the overall optimization problem as,

argmax
xp,q
i,j

i,j=[1,··· ,n]
p,q=[1,··· ,m]

 m∑
p,q=1
p<q

n∑
i,j=1

cp,qi,j x
p,q
i,j
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subject to

n∑
j=1

xp,q
i,j = 1 ∀i = [1, · · · , n] ∀p, q = [1, · · · ,m], p < q

n∑
i=1

xp,q
i,j = 1 ∀j = [1, · · · , n] ∀p, q = [1, · · · ,m], p < q

xp,q
i,j ≥ xp,r

i,k + xr,q
k,j − 1

∀ i, j = [1, · · ·n], ∀ p, q, r = [1, · · ·m], and p < r < q

xp,q
i,j ∈ {0, 1} ∀i, j = [1, · · · , n], ∀p, q = 1 to m, p < q

(8)

The above optimization problem for optimal and consistent re-identification
is a binary integer program.

3.4 Network Consistent Re-identification for Variable Number of
Targets

As explained in the previous sub-section, the NCR problem can be solved by
solving the binary IP formulated in eqn. (8). However, there may be situations
when every person does not go through every camera. In such cases, the values
of assignment variables in every row or column of the assignment matrix can all
be 0. In other words, a person from any camera p can have at most one match
from another camera q. As a result, the association constraints now change from
equalities to inequalities as follows:

nq∑
j=1

xp,q
i,j ≤ 1 ∀i = [1, · · · , np] ∀p, q = [1, · · · ,m], p < q

np∑
i=1

xp,q
i,j ≤ 1 ∀j = [1, · · · , nq] ∀p, q = 1 to m, p < q,

(9)

where np snd nq are the number of persons in camera p and q respectively.
But with this generalization, it is easy to see that the objective function (ref.
eqn. (8)) is no longer valid. Even though the provision of ‘no match’ is now
available, the optimal solution will try to get as many association as possible
across the network. This is due to the fact that the current objective function
assigns reward to both true positive (TP) associations (correctly matching a
person present in both cameras) and false positive (FP) associations (wrongly
associating a match to a person who is present in only one camera). Thus the
optimal solution may contain many false positive associations. This situation can
be avoided by incorporating a modification in the objective function as follows:

m∑
p,q=1
p<q

np,nq∑
i,j=1

(cp,qi,j − k)xp,q
i,j , (10)

where ‘k’ is any value in the range of the similarity scores. This modification
leverages upon the idea that, typically, similarity scores for most of the TP
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matches in the data would be much larger than majority of the FP matches.
In the new cost function, instead of rewarding all positive associations we give
reward to most of the TPs, but impose penalties on the FPs. As the rewards for
all TP matches are discounted by the same amount ‘k’ and as there is penalty
for FP associations, the new cost function gives us optimal results for both
‘match’ and ‘no-match’ cases. The choice of the parameter ‘k’ depends on the
similarity scores generated by the chosen method, and thus can vary from one
pairwise similarity score generating methods to another. Ideally, the distributions
of similarity scores of the TPs and FPs are non-overlapping and ‘k’ can be
any real number from the region separating these two distributions. However,
for practical scenarios where TP and FP scores overlap, an optimal ‘k’ can be
learned from training data. A simple method to choose ‘k’ could be running NCR
for different values of ‘k’ over the training data and choosing the one giving the
maximum accuracy on the cross validation data. So, for this more generalized
case, the NCR problem can be formulated as follows,

argmax
xp,q
i,j

i=[1,··· ,np]
j=[1,··· ,nq ]
p,q=[1,··· ,m]

 m∑
p,q=1
p<q

np,nq∑
i,j=1

(cp,qi,j − k)xp,q
i,j



subject to

nq∑
j=1

xp,q
i,j ≤ 1 ∀i = [1, · · · , np] ∀p, q = [1, · · · ,m], p < q

np∑
i=1

xp,q
i,j ≤ 1 ∀j = [1, · · · , nq] ∀p, q = [1, · · · ,m], p < q

xp,q
i,j ≥ xp,r

i,k + xr,q
k,j − 1

∀ i = [1, · · · , np], j = [1, · · · , nq], ∀ p, q, r = [1, · · ·m], and p < r < q

xp,q
i,j ∈ {0, 1} ∀i = [1, · · · , np], j = [1, · · · , nq], ∀p, q = [1, · · · ,m], p < q

(11)

A rigorous proof showing that the problem in eqn. (8) is a special case of
the more generalized problem described in this section can be found in the
supplementary.1

4 Experiments

Datasets and Performance Measures: To validate our approach, we performed
experiments on two benchmark datasets - WARD [16] and one new dataset
RAiD introduced in this work. Though state-of-the-art methods for person re-
identification e.g., [3,8,13] evaluate their performances using other datasets too
(e.g., ETHZ, CAVIAR4REID, CUHK) these do not fit our purposes since these
are either two camera datasets or several sequences of different 2 camera datasets.

1 Supplementary materials are available at www.ee.ucr.edu/~amitrc/publications.php

www.ee.ucr.edu/~amitrc/publications.php
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WARD is a 3 camera dataset and RAiD is a 4 camera dataset. Results are shown
in terms of recognition rate as Cumulative Matching Characteristic (CMC)
curves and normalized Area Under Curve (nAUC) values (provided in the sup-
plementary), as is the common practice in the literature. The CMC curve is a
plot of the recognition percentage versus the ranking score and represents the
expectation of finding the correct match inside top t matches. nAUC gives an
overall score of how well a re-identification method performs irrespective of the
dataset size. In the case where every person is not present in all cameras, we
show the accuracy as total number of true positives (true matches) and true neg-
atives (true non-matches) divided by the total number of unique people present.
All the results used for comparison were either taken from the corresponding
works or by running codes which are publicly available or obtained from the
authors on datasets for which reported results could not be obtained. We did
not re-implement other methods as it is very difficult to exactly emulate all the
implementation details.

Pairwise Similarity Score Generation: The camera pairwise similarity score
generation starts with extracting appearance features in the form of HSV color
histogram from the images of the targets. Before computing these features, the
foreground is segmented out to extract the silhouette. Three salient regions
(head, torso and legs) are extracted from the silhouette as proposed in [3].
The head region SH is discarded, since it often consists of a few and less infor-
mative pixels. We additionally divide both body and torso into two horizontal
sub-regions based on the intuition that people can wear shorts or long pants,
and short or long sleeves tops.

Given the extracted features, we generate the similarity scores by learning the
way features get transformed between cameras in a similar approach as [11,18].
Instead of using feature correlation matrix or the feature histogram values di-
rectly, we capture the feature transformation by warping the feature space in a
nonlinear fashion inspired by the principle of Dynamic Time Warping (DTW).
The feature bin number axis is warped to reduce the mismatch between fea-
ture values of two feature histograms from two cameras. Considering two non-
overlapping cameras, a pair of images of the same target is a feasible pair, while
a pair of images between two different targets is an infeasible pair. Given the
feasible and infeasible transformation functions from the training examples, a
Random Forest (RF) [7] classifier is trained on these two sets. The camera pair-
wise similarity score between targets are obtained from the probability given by
the trained classifier of a test transformation function as belonging to either the
set of feasible or infeasible transformation functions. In addition to the feature
transformation based method, similarity scores are also generated using the pub-
licly available code of a recent work - ICT [2] where pairwise re-identification
was posed as a classification problem in the feature space formed of concatenated
features of persons viewed in two different cameras.

Experimental Setup: To be consistent with the evaluations carried out by
state-of-the-art methods, images were normalized to 128 × 64. The H, S and V
color histograms extracted from the body parts were quantized using 10 bins
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Fig. 3: CMC curves for the WARD dataset. Results and comparisons in (a), (b) and (c)
are shown for the camera pairs 1-2, 1-3, and 2-3 respectively..

each. Image pairs of the same or different person(s) in different cameras were
randomly picked to compute the feasible and infeasible transformation functions
respectively. All the experiments are conducted using a multi-shot strategy where
10 images per person is taken for both training and testing The RF parameters
such as the number of trees, the number of features to consider when looking for
the best split, etc. were selected using 4-fold cross validation. For each test we
ran 5 independent trials and report the average results.

4.1 WARD Dataset

The WARD dataset [16] has 4786 images of 70 different people acquired in a real
surveillance scenario in three non-overlapping cameras. This dataset has a huge
illumination variation apart from resolution and pose changes. The cameras here
are denoted as camera 1, 2 and 3. Fig. 3(a), (b) and (c) compare the performance
for camera pairs 1−2, 1−3, and 2−3 respectively. The 70 people in this dataset
are equally divided into training and test sets of 35 persons each. The proposed
approach is compared with the methods SDALF [3], ICT [2] and WACN [16].
The legends ‘NCR on FT’ and ‘NCR on ICT’ imply that the NCR algorithm is
applied on similarity scores generated by learning the feature transformation and
by ICT respectively. For all 3 camera pairs the proposed method outperforms
the rest. The difference is most clear in the rank 1 performance. For all the
camera pairs ‘NCR on FT’ shows the best rank 1 performance of recognition
percentages as high as 57.14, 45.15 and 61.71 for camera pairs 1-2, 1-3 and 2-3
respectively. The runner up in camera pair 1-2 is ‘NCR on ICT’ with rank 1
recognition percentage of 40. The runner up for the rest of the camera pairs is
‘FT’ with corresponding numbers for camera pairs 1-3 and 2-3 being 35.43 and
50.29 respectively Fig. 4 shows two example scenarios from this dataset where
inconsistent re-identifications are corrected on application of NCR algorithm.

4.2 RAiD Dataset

Unlike the publicly available person re-identification datasets, Re-identification
Across indoor-outdoor Dataset (RAiD) is collected so that a large number of
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2 3 

Fig. 4: Two examples of correction of inconsistent re-identification from WARD dataset.
The red dashed lines denote re-identifications performed on 3 camera pairs indepen-
dently by FT method. The green solid lines show the re-identification results on appli-
cation of NCR on FT. The NCR algorithm exploits the consistency requirement and
makes the resultant re-identification across 3 cameras correct.

people are seen in multiple cameras in a wide area camera network. This new
dataset also has large illumination variation as this was collected using both
indoor (camera 1 and 2) and outdoor cameras (camera 3 and 4). 43 subjects
were asked to walk through these 4 cameras resulting in 6920 annotated images.
41 of the total 43 persons appear in all the cameras. We took these 41 persons to
validate the proposed approach. The dataset is publicly available to download
in http://www.ee.ucr.edu/~amitrc/datasets.php

The proposed approach is compared with the same methods as for the WARD
dataset. 21 persons were used for training while the rest 20 were used in training.
Figs. 5(a) - (f) compare the performance for camera pairs 1-2, 1-3, 1-4, 2-3, 2-4
and 3-4 respectively. We see that the proposed method performs better than all
the rest for both the cases when there is not much appearance variation (for
camera pair 1-2 where both cameras are indoor and for camera pair 3-4 where
both cameras are outdoor) and when there is significant lighting variation (for the
rest 4 camera pairs). Expectedly, for camera pairs 1-2 and 3-4 the performance
of the proposed method is the best. For the indoor camera pair 1-2 the proposed
method applied on similarity scores generated by feature transformation (NCR
on FT) and on the similarity scores by ICT (NCR on ICT) achieve 86% and 89%
rank 1 performance respectively. For the outdoor camera pair 3-4 the same two
methods achieve 79% and 68% rank 1 performance respectively. For the rest of
the cases where there is significant illumination variation the proposed method
is superior to all the rest.

In all the camera pairs, the top two performances come from the NCR method
applied on two different camera pairwise similarity score generating methods. It
can further be seen that for camera pairs with large illumination variation (i.e.
1-3, 1-4, 2-3 and 2-4) the performance improvement is significantly large. For
camera pair 1-3, the rank 1 performance shoots up to 67% and 60% on applica-
tion of NCR algorithm to FT and ICT compared to their original rank 1 per-
formance of 26% and 28% respectively. Clearly, imposing consistency improves

http://www.ee.ucr.edu/~amitrc/datasets.php
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Fig. 5: CMC curves for RAiD dataset. In (a), (b), (c), (d), (e), (f) comparisons are shown
for the camera pairs 1-2 (both indoor), 1-3 (indoor-outdoor), 1-4 (indoor-outdoor), 2-3
(indoor-outdoor), 2-4 (indoor-outdoor) and 3-4 (both outdoor) respectively.

the overall performance with the best absolute accuracy achieved for camera
pairs consisiting of only indoor or only outdoor cameras. On the other hand, the
relative improvement is significantly large in case of large illumination variation
between the two cameras.

4.3 Re-identification with Variable Number of Persons

Next we evaluate the performance of the proposed method for the generalized
setting when all the people may not be present in all cameras. For this pur-
pose we chose two cameras (namely camera 3 and 4) and removed 8 (40% out
of the test set containing 20 people) randomly chosen people keeping all the
persons intact in cameras 1 and 2. For this experiment the accuracy of the pro-
posed method is shown with similarity scores as obtained by learning the feature
transformation between the camera pairs. The accuracy is calculated by taking
both true positive and true negative matches into account and it is expressed as
(# true positive+# true negative)
# of unique people in the testset .

Since the existing methods do not report re-identification results on variable
number of persons nor is the code available which we can modify easily to incor-
porate such a scenario, we can not provide a comparison of performance here.
However we show the performance of the proposed method for different values
of ‘k’. The value of ‘k’ is learnt using 2 random partitions of the training data
in the same scenario (i.e., removing 40% of the people from camera 3 and 4).
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Fig. 6: performance of the NCR algorithm after removing 40% of the people from both
camera 3 and 4. In (a) re-identification accuracy on the training data is shown for every
camera pair by varying the parameter k after removing 40% of the training persons.
(b) shows the re-identification accuracy on the test data for the chosen values of k = 0.1
and 0.2 when 40% of the test people were not present.

The average accuracy over these two random partitions for varying ‘k’ for all
the 6 cameras are shown in Fig. 6(a). As shown, the accuracy remains more or
less constant till k = 0.25. After that, the accuracy for camera pairs having the
same people (namely camera pairs 1-2 and 3-4) falls rapidly, but for the rest
of the cameras where the number of people are variable remains significantly
constant. This is due to the fact that the reward for ‘no match’ increases with
the value of ‘k’ and for camera pair 1-2 and 3-4 there is no ‘no match’ case. So,
for these two camera pairs, the optimization problem (in eqn. (11)) reaches the
global maxima at the cost of assigning 0 label to some of the true associations
(for which the similarity scores are on the lower side). So, any value of ‘k’ in the
range (0−0.25) will be a reasonable choice. The accuracy of all the 6 cameras for
k = 0.1 and 0.2 is shown in Fig. 6(b), where it can be seen that the performance
is significantly high and does not vary much with different values of ‘k.’

5 Conclusions

In this work we addressed the problem of person re-identification in a camera
network by exploiting the requirement of consistency of re-identification results.
A novel binary integer programing formulation of the problem is provided. The
proposed method not only boosts camera pairwise re-identification performance
but also can handle a largely unaddressed problem of matching variable number
of persons across cameras. The future directions of our research will be not only
to apply our approach to bigger networks with large numbers of cameras, and
cope with wider space-time horizons but to apply also to other areas, (e.g., social
network analysis, medical imaging to name a few) where consistency is the key
to robustness.
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