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Abstract

Most of the state-of-the-art approaches to human activity
recognition in video need an intensive training stage and as-
sume that all of the training examples are labeled and avail-
able beforehand. But these assumptions are unrealistic for
many applications where we have to deal with streaming
videos. In these videos, as new activities are seen, they can
be leveraged upon to improve the current activity recogni-
tion models. In this work, we develop an incremental ac-
tivity learning framework that is able to continuously up-
date the activity models and learn new ones as more videos
are seen. Our proposed approach leverages upon state-of-
the-art machine learning tools, most notably active learn-
ing systems. It does not require tedious manual labeling
of every incoming example of each activity class. We per-
form rigorous experiments on challenging human activity
datasets, which demonstrate that the incremental activity
modeling framework can achieve performance very close to
the cases when all examples are available a priori.

1. Introduction
Human activity recognition is a challenging and widely

studied problem in computer vision. It has many practi-
cal applications such as video surveillance, video annota-
tion, video indexing, active gaming, human computer inter-
action, assisted living for elderly, etc. Even though enor-
mous amount of research has been conducted in this area, it
still remains a hard problem due to large intra-class variance
among the activities, large variability in spatio-temporal
scale, variability of human pose, periodicity of human ac-
tion, etc. Low quality video, clutter, occlusion, etc. also add
more difficulties to the problem.

With few exceptions, most of the state-of-the-art ap-
proaches [4] to human activity recognition in video are
based on one or more of the following four assumptions: (a)
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Figure 1: The top row (a) shows two video clips of KTH [1] and
UCF11 [2] human activity dataset and the bottom row (b) shows a
video stream of VIRAT ground human activity database [3]. Most
of the state-of-the-art approaches perform well on activity datasets
like KTH and UCF11, where they assume that one video clip con-
tains only one labeled action, their temporal extent is known, and
all of the training examples are available beforehand. However, in
continuous video stream like VIRAT, new activities may arrive af-
ter the training stage, which are usually unlabeled and their spatio-
temporal extent is unknown.

It requires an intensive training phase, where every training
example is assumed to be available; (b) Every training ex-
ample is assumed to be labeled; (c) At least one example
of every activity class is assumed to be seen beforehand,
i.e., no new activity type will arrive after training; (d) A
video clip contains only one activity, where the exact spatio-
temporal extent of the activity is known. However, these
assumptions are too strong and not realistic in many real
world scenarios such as streaming and surveillance videos.
In these cases, new unlabeled activities are coming contin-
uously and the spatio-temporal extent of these activities are
usually unknown in advance, as explained in Figure 1.

Motivated by the above, the main goal of this work is
twofold: to classify new unknown activities in streaming
videos, and also leverage upon them to continuously im-
prove the existing activity recognition models. In order to
achieve this goal, we develop an incremental activity learn-
ing framework that will use new activities identified in the
incoming video to incrementally improve the existing mod-
els by leveraging novel machine learning techniques, most
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Figure 2: This figure shows our proposed incremental activity modeling framework, which is comprised of following stages: activity
segmentation, feature extraction, model learning, activity classification, training activity selection by active learning, and model updating
by incremental learning with the help of the active learning system.

notably active learning.
The detailed framework of our proposed incremental ac-

tivity recognition algorithm is shown in Figure 2. Since, we
do not have any prior information about the spatio-temporal
extent of the activities in the continuous video, our approach
begins with video segmentation and localization of the ac-
tivities using a motion segmentation algorithm. Each of
the atomic motion segments are considered as the activ-
ity segments from which we collect spatio-temporal fea-
tures such as STIP [5], higher level features such as Ac-
tion Bank (AB) [6], and global features such as Gist3D [7].
These features are widely used in action recognition and
achieve satisfactory performance in state-of-the-art chal-
lenging datasets. Then, we learn a prior model using few
labeled training activities in hand. In this work, we pro-
pose to use an ensemble of linear Support Vector Machine
(SVM) classifiers as the prior model. Note that we do not
assume that the prior model is exhaustive in terms of cover-
ing all activity classes or in modeling the variations within
the class. It is used only as a starting point for the incre-
mental learning framework.

We start incremental learning with the above mentioned
prior model and update it during each run of incremental
training. When a newly segmented activity arrives, we ap-
ply the current model to get a tentative label with a confi-
dence score. However, it is not practical and rational to use
all of the newly segmented activities as the training exam-
ples for the next run of incremental training. This is because
it is costly to get a label for all of them from a human an-
notator, and not all of them posses distinguishing properties
for effective update of the current model. We only select a
subset of them and rectify the tentative labels by our pro-
posed active learning system. In order to learn the activ-
ity model incrementally, we employ an ensemble of linear
SVMs. When we have sufficient new training examples la-
beled by the active learning system, we train a new set of
SVM classifiers and consequently, update the current model
by adding these new SVM classifiers to the ensemble with
appropriate weights.

Thus, the main contribution of this work is to develop
a framework to incrementally learn activity models from
streaming videos, which is achieved through an active learn-
ing framework. This includes updating already known mod-
els with new examples, as well as learning new classes. This
will reduce tedious manual labeling that is needed for most
state-of-the-art systems. We assume that the total number
of classes is known.

2. Related Works

We would like to refer to the article [4] for a compre-
hensive review on the sate-of-the-art approaches to human
activity recognition. Based on the level of abstraction used
to represent an activity, state-of-the-art approaches can be
classified into three general categories such as low-level [5],
mid-level [8], and high-level [6] feature based methods. In
some recent works, graphical models [9], AND-OR gram-
mar [10], and contextual information surrounding the activ-
ity of interest [11] are exploited for modeling more com-
plex activities. However, as discussed in Section 1, most of
these state-of-the-art approaches suffer from the inability to
model activities in continuous streaming video and unable
to take advantages of unseen incoming activities.

Incrementally learning from streaming data is a well
studied problem in machine learning and a lot of approaches
have been proposed in the literature. Among these ap-
proaches, ensemble of classifiers [12,13] based methods
are most commonly used, where new weak classifiers are
trained as new data is available and added to the ensemble.
Their outputs are combined using an appropriate combina-
tion rule, which is set according to the system’s goal.

Active learning has been successfully used in speech
recognition, information retrieval, and document classifi-
cation [14]. Some recent works used two stage active
learning framework in several computer vision applications
such as image segmentation [15], image and object clas-
sification [16], unusual event detection [17], action recog-
nition [18], etc. However, unlike most of these methods,



our framework does not require the storage of already used
training examples and takes the advantage of highly confi-
dent decision provided by the current classification model,
which in turns reduces the amount of manual labeling.

A few methods have considered incremental activity
modeling. A feature tree based incremental action recog-
nition method was proposed in [19], where the feature-tree
grows when additional training examples are available. It
requires the storage of all training examples in the form of
feature tree, which is not feasible for continuous streaming
videos because the number of activities could be very large
over time. Human track-based incremental activity learning
framework was proposed in [8]. It requires annotation of
the human body in the initial frame of an action clip, which
restricts the variety of application domains possible.

3. Incremental Activity Modeling Methodology

We now provide a detailed overview of our proposed in-
cremental activity modeling framework.

3.1. Activity Segmentation and Feature Extraction

We use an adaptive background subtraction algo-
rithm [20] to locate motion regions in the continuous video.
Inside these motion regions, moving persons are detected
by [21]. These detections are used to initialize the tracking
method developed in [22] to obtain local trajectories of the
moving persons. Spatio-temporal interest points (STIP) [5]
are collected only for these motion regions. Each motion
region is segmented into activity segments using the mo-
tion segmentation based on the method in [23] with STIP
histograms as the model observation. In addition to STIP
feature, we collect two more features from these activity
segments, namely Gist3D [7] and Action Bank [6].

STIP is a spatio-temporal local feature and widely used
for representing human action in video. After collecting
STIP features, an action video clip is represented by a his-
togram of BoW of these features [5]. On the other hand,
Gist3D is a global video descriptor, which is computed by
applying a bank of 3-D spatiotemporal filters on the fre-
quency spectrum of a video sequence. Then dimensional-
ity reduction methods can be applied to reduce the size of
the feature vector. Unlike STIP and Gist3D, Action Bank
is a higher level representation of human action, where an
action clip is represented as the collected output of many
template based action detectors. We select these three fea-
tures from three different categories- low-level, global, and
high-level respectively and use them separately to prove that
our framework is independent of the type of feature used to
represent an activity. We expect that the asymptotic perfor-
mance of the framework would remain same for any other
features.

3.2. Activity Model

We use an ensemble of multi-class linear Support Vec-
tor Machines (SVM) for activity modeling, which can be
defined as follows: H(x) =

∑
t log

1
βt
ht(x), where ht is

the tth classifier in the ensemble, βt = εt/(1 − εt) is the
corresponding weight, and εt is the normalized error due to
ht. A detailed mathematical analysis of ensemble of SVM
classifiers can be found in [24].
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Figure 3: Flowchart of selecting examples for incremental learn-
ing and how to get the correct labels of these examples through
active learning. S(x) and G(x) are defined in Section 3.3.

3.3. Active Learning System

According to [14], active learning can achieve greater
learning accuracy with fewer training labels if the learner is
allowed to choose the training data from which it learns. An
active learner usually poses queries in the form of unlabeled
training data instances to be labeled by an oracle. However,
based on the type of teacher (oracle) available, the active
learning system can be classified into two broad categories:
strong teacher and weak teacher. Strong teachers are as-
sumed to give correct and unambiguous class labels. Most,
but not all, strong teachers are humans, which are assumed
to have a significant cost. On the other hand, weak teachers
generally provide more tentative labels. Most, but not all,
weak teachers are assumed to be classification algorithms
that make errors but perform above the accuracy of random
guess [25]. Our proposed framework provides the opportu-
nity to take advantages of both kind of teachers.

Active learning works within two common schemes:
pool-based sampling and stream-based sampling [14]. In
our proposed framework, we take the advantages of stream-
based sampling, where unlabeled examples are presented
one at a time and the learner must decide whether or not it
is worth to invoke a teacher to label the example. Now, the
following questions remain: When we should ask a teacher?
Which teacher to invoke? And what action should we per-
form in response?



Teacher Selection: Details of the active learning mech-
anism are illustrated in Figure 3 using a flowchart. When-
ever an unlabeled activity is presented to the system, the
current activity recognition model is applied on the activ-
ity, which generates a tentative decision H(x), with a con-
fidence score S(x). Let the second highest confidence
score be G(x). S(x) and G(x) are defined as follows:
S(x) = maxy∈Y

∑
k

∑
t:Ht(x)=y

log 1
Bt
, and G(x) =

maxy∈(Y−H(x))

∑
k

∑
t:Ht(x)=y

log 1
Bt
, where x ∈ Rn is

the input activity, y ∈ {1, . . . , Y } are class labels,Ht(x) is
a classifier, and log(1/Bt) is the corresponding weight. We
invoke the weak teacher when the tentative decision H(x)
has sufficiently large confidence score. That means, if S(x)
is greater than a threshold δ, the unlabeled activity is la-
beled using the label H(x) from the current model. Else if,
|S(x) − G(x)| is less than a threshold ε, the current model
is not confident enough to decide about the label. This ex-
ample lies near the decision boundary and possesses valu-
able information. In this case, the system invokes the strong
teacher and obtains the label. Otherwise, the unlabeled ac-
tivity is not used for incremental learning. When the system
has accomplished the task of labeling the unlabeled activity,
new activity x with label y is stored in a buffer temporarily.
Choice of the parameters δ and ε are domain dependent and
can be updated regularly based on system’s performance.
If the current model performs better on the unseen valida-
tion data, these parameters can be set such that the costly
strong teacher is invoked rarely during training. Sensitivity
analysis of these two parameters are provide in Section 4.

3.4. Incremental Activity Modeling

We present the detailed incremental activity modeling
approach in Algorithm 1, while each of the steps is de-
scribed in the following subsections.

Learning Prior Model: At first, we learn a prior model
H0 using very few labeled training examples. In this work,
we use an ensemble of SVMs as described in Section 3.2
as the prior model. Prior model learning stage is neither
intensive like other state-of-the-art approaches, nor exhaus-
tive in terms of covering all activity classes or in modeling
the variation within the class. It is used as the starting point
for the incremental learning.

Activity Segmentation and Active Learning: Let us
consider that we have a video stream V , starting at timestep
t0. As time progress, new activities are arriving from the
streaming video. We segment an activity xi at time t0 + i
and collect features using the methods described in Sec-
tion 3.1. We apply the current model Hk on the unlabeled
activity xi to get a label yi using the active learning sys-
tem described in Section 3.3. We store the labeled activity
(xi, yi) temporarily in a buffer Bk, where k stands for kth

incremental training step.

Algorithm 1: Incremental Activity Modeling.
Data: V: Continuous Streaming Video.
Result: H: Activity Recognition Model

[(xt0+i, yt0+i)|i = 1, . . .]: Labeled Activities.
Parameters: Number of SVMs to be trained for batch k,
Tk. Active learning parameters δ and ε.
Step 0: Learn the prior modelH0 using fewer training data
available.
Step 1: Segment the video V at timestamp (t0 + i) to get an
unlabeled activity segment, xi (Section 3.1).
Step 2: Apply the current modelHk on xi. Based on the
condition met, get a label yi for xi (Section 3.3) and put
(xi, yi) in the buffer, Bk.
Step 3: If Bk contains m training examples, goto step 4 for
next incremental learning, otherwise goto step 1.
Step 4: Initialize the distribution for selecting training
examples: w1(i) = D(i) = 1

m
, ∀i = {1, . . . ,m}

Step 5:
for t = 1 to Tk do

1. Normalize distribution: Dt = wt/
∑m

i=1 wt(i)
2. From Bk, randomly choose 2/3 examples according
to Dt. Lets say them Trt.
3. Error: εt = 1
4. while εt > 0.5 do

Train a linear SVM, ht : x→ y using Trt.
Error of ht on Bk, εt =

∑
i:ht(xi)6=yi

Dt(i).
end
5. Normalized error: βt = εt/(1− εt)
6. Obtain the composite hypothesis and error:
Ht = arg max

y∈Y

∑
t:ht(xi)=y

log(1/βt)

Et =
∑

i:Ht(xi)6=yi

Dt(i) =

m∑
i

Dt(i)|Ht(xi) 6= yi|

7. If Et > 0.5, set t = t−1, discardHt and goto line 2.
8. Normalized composite error, Bt = Et/(1− Et)
9. Update the distribution of the training examples:
wt+1(i) = wt(i)×B1−|Ht(xi)6=yi|

t

end
Step 6: Final decision on an unlabeled activity x:

H(x) = arg max
y∈Y

∑
k

∑
t:Ht(x)=y

log
1

Bt

Step 7: Empty the buffer. Goto step 1 for incremental
learning with next batch of training examples.

Incremental Learning: As in [12], our incremental
learning approach is based on the following intuition: each
new classifier added to the ensemble is trained using a set of
examples drawn according to a distribution, which ensures
that examples that are misclassified by the current ensemble
have a high probability of being sampled in the next round.
Weight update mechanism of the individual SVMs remains
same as in [12], which we describe below.

Let us consider that inputs to the kth incremental learn-
ing stage are a sequence of training examples, Bk =



Feature 

Histogram

Current Model

Video 

Stream [1]

Timestamp

Confidence 

Score

Active 

Learning

𝑡0 + 𝑖 𝑡0 + (𝑖 + 1) 𝑡0 + (𝑖 + 2)

Incremental Learning

Temporary Buffer

Weak Teacher Strong Teacher Ignore

Figure 4: A sample run of our proposed incremental activity
learning framework. After segmenting an activity from the video
stream, we generate features and obtain a tentative label with a
confidence score from the current model. Our active learning sys-
tem analyzes the score and obtains the correct label for the activity
by invoking a teacher. We temporarily store this new activity with
the label for the next incremental learning step.

{(x1, y1), . . . , (xm, ym)}, where xis are the training in-
stances and yis are the corresponding labels. Let us assume
that a weak baseline SVM classifier model is known, and
let Tk be the number of classifiers to be learned at the kth

stage. At first, training example distribution D is initial-
ized by giving equal probability to all of the training ex-
amples. A subset of training examples Trt from Bk are
selected according to the current distribution Dt at tth clas-
sifier training step during kth stage. A new weak baseline
SVM classifier ht is trained using these training examples.
If the error associated with this new classifier, εt, is higher
than a threshold 0.5, it will be rejected, otherwise it will be
added to the ensemble Ht. Then, error Et of the ensemble
Ht is computed on the training data. If the error associated
with this updated ensemble Ht is higher than a threshold
0.5, the new update will be rejected and training ht starts
over again with new Trt. Training data distribution is up-
dated at this point so that in the next round examples for
which errors occurred get higher priority to be selected as
the training example.

A sample run of our incremental learning framework on
KTH dataset using STIP feature is illustrated in Figure 4.
An activity is segmented at timestamp t0 + i, which is fol-
lowed by feature generation. New activity is labeled as
“boxing” by the current model with a very high confidence
score that leads the system to invoke the weak teacher. At
timestamp t0 + (i+ 1), current model labeled another new
activity as “walking” with a lower confidence score, which
leads the system to invoke the strong teacher. At timestamp
t0 + (i+ 2), the segmented activity is labeled as “waving”,

which is eventually ignored by the active learning system
because the score is neither confident enough nor it is close
to the decision boundary. Activities in the first two cases
are stored temporarily in a buffer to be used as the training
examples for the next incremental learning step.

4. Experiments
We conduct three experiments to verify the efficacy of

our framework. Two of the experiments are carried out on
the benchmark datasets KTH [1] and UCF11 [2], where we
assume that activity segmentation is already done. We send
the training examples as the unlabeled data to the incremen-
tal learning framework sequentially. We perform the third
experiment on VIRAT ground human activity dataset [3],
where we have to segment the activities from the video.

Objective: The main objective of these experiments is to
analyze how well our framework incrementally learns the
activity model with unlabeled data. We compare the per-
formance of our framework (IL-unlabeled) with following
three methods. Baseline-1: one time exhaustive learning
with all of the available training examples. Baseline-2: one
time exhaustive learning but with half of the available train-
ing examples, which are selected randomly. IL-labeled: our
proposed incremental learning framework that uses only la-
beled examples.

Experiment Setup: We abide by the following rules
during all experiments:
1. Due to the random selection of examples during train-
ing of SVM classifiers, each run of incremental learning on
same dataset and features shows significant variance in ac-
curacy. In order to get rid of this randomness, we average
our results over multiple runs containing different random
orders in which the data is presented.
2. For splitting training and test data, we perform five fold
cross validation and then, average the results over these
folds.

Presentation of Results: In the plots, we only show one
accuracy (correct classification rate) over all of the activity
classes. For example, KTH has six activity classes and the
classification accuracy may be different for different activ-
ity classes. We average the results over all activity classes
and show only this average accuracy in the plot due to space
limitation. The x-axis in a plot illustrated in Figure 5 shows
the fraction of training examples presented so far to the
incremental learning methods, while the y-axis shows the
classification accuracy on unknown test activities. Each of
the results illustrated in Figure 5 was generated by us using
the code provided by the original authors. There might be
slight discrepancy between the shown results and the results
that were claimed in the original paper. This is mainly due
to the choices of different parameters during feature gener-
ation and classifier training. Parameters that were common
across the different comparison methods were kept fixed as
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Figure 5: Top and Middle rows: performance comparison of our proposed method IL-unlabeled with Baseline-1, Baseline-2, and IL-
labeled on KTH (top row) and UCF11 (middle row). Bottom row-left: performance on VIRAT. Bottom row-middle: sensitivity analysis of
parameter Tk. Bottom row-right: sensitivity analysis of parameter δ. X-axis is the fraction of examples presented so far to the incremental
learning framework and Y-axis is the accuracy of the classification. Plots are best viewable in color.

control variables. Additional results and analysis can be
found in the supplementary material.

KTH Human Action Dataset: There are six actions in
KTH [1] dataset: boxing, handclapping, handwaving, jog-
ging, running and walking. These actions are performed by
25 subjects in four different scenarios: outdoors, outdoors
with scale variation, outdoors with different clothes, and in-
doors with lighting variation. There are totally 599 video
clips with the resolution of 160× 120 pixels.

Parameters in KTH Experiment: STIP: descriptor:
HOG/HOF, descriptor size: 162, BoW dictionary size: 100,
encoding type: 2x2 spatial, final feature vector size of an
action clip: 400, Tk = 10, δ = 0.8, ε = 0.2. Gist3D: No.
of clips: 3, size of feature vector: 104448, size of feature
vector after PCA: 400, Tk = 10, δ = 0.7, ε = 0.2. AB:
Size of feature vector: 14400, all other parameters remain
same as in the original paper, Tk = 2, δ = 0.9, ε = 0.3.

UCF11 Human Action Dataset: The second experi-
ment is performed on more challenging UCF11 dataset [2].
There are eleven actions in this dataset: basketball, biking,
diving, golf swing, horse riding, soccer juggling, swing,
tennis swing, trampoline jumping, volleyball spiking, and
walking. These actions are performed by 25 subjects under
different scenarios and illumination conditions. There are
1600 video clips with the resolution of 320× 240 pixels.

Parameters in UCF11 Experiment: STIP: descriptor:
HOG/HOF, descriptor size: 162, BoW dictionary size: 400,
encoding type: 2x2 spatial, final feature vector size of an
action clip: 1600, Tk = 10, δ = 0.5, ε = 0.3. Gist3D: No.
of clips: 3, size of feature vector: 104448, size of feature
vector after PCA: 1200, Tk = 10, δ = 0.6, ε = 0.3. AB:
Size of feature vector: 14400, all other parameters remain
same as in the original paper, Tk = 10, δ = 0.6, ε = 0.3.



VIRAT Human Activity Dataset: VIRAT Ground
dataset [3] is a state-of-the-art streaming activity dataset
with many challenging characteristics, such as wide vari-
ation in the activities and clutter in the scene. The dataset
consists of surveillance videos of realistic scenes with dif-
ferent scales and resolution, each lasting 2 to 15 minutes
and containing upto 30 events with 1920 × 1080 pixel res-
olution. The activities are 1. person loading an object to a
vehicle; 2. person unloading an object from a vehicle; 3.
person opening a vehicle trunk; 4. person closing a vehicle
trunk; 5. person getting into a vehicle; 6. person getting
out of a vehicle; 7. person gesturing; 8. person carrying an
object; 9. person running; 10. person walking; 11. person
entering a facility; and 12. person exiting a facility. We
perform experiments using activities 1-6, 11, and 12 using
only STIP feature. VIRAT is a new dataset, where existing
methods are available only with STIP features and hence,
we choose to restrict ourselves to this.

Parameters in VIRAT Experiment: STIP: descriptor
type: HOG/HOF, descriptor vector size: 162, BoW dictio-
nary size: 400, encoding type: None, final feature vector
size for an action clip: 400, Tk = 10, δ = 0.6, ε = 0.2.

Results and Discussion: Results on the KTH dataset are
shown in the top-row of Figure 5. It shows that incremen-
tal learning with labeled data using all of the three features-
STIP, Gist3D, and AB- cross the accuracy of Baseline-2,
while it touches the accuracy of Baseline-1 in case of STIP
and Gist3D. The accuracy of incremental learning using un-
labeled data is just below the accuracy of incremental learn-
ing using labeled data. Results on the UCF11 dataset are
shown in the middle-row of Figure 5. It shows that incre-
mental learning using features- STIP, Gist3D and AB with
labeled data cross the accuracy of Baseline-2, while only
STIP reaches near the accuracy of Baseline-1. With unla-
beled data, STIP and AB cross the Baseline-2. Results on
the VIRAT dataset are shown in the left plot of the bottom-
row of Figure 5. It shows that incremental learning with
labeled data and unlabeled data using STIP feature reach
the accuracy between Baseline-1 and Baseline-2.

Above results demonstrate the effectiveness of the incre-
mental learning framework- we achieve almost the same in-
cremental learning accuracy as would have been the case
if all the examples were previously labeled. Also, in most
cases, we achieve close to the accuracy that would be ob-
tained with a complete prior training phase. Exhaustive
training in methods Baseline-1 and Baseline-2 require all of
the examples to be available during training. On the other
hand, incremental learning methods, labeled or unlabeled,
do not require all of the previously seen data to be avail-
able. They only require to store a small amount of data for
the current run of incremental learning. So, it would be un-
realistic to expect that the maximum accuracy of the incre-
mental learning methods would be better than the accuracy

of Baseline-1. But we do expect that the accuracy of the
incremental learning methods to be asymptotically increas-
ing and at least better than the Baseline-2 method, which is
exhibited in most of the cases.

Since, IL-labeled uses only the labeled data, the train-
ing accuracy is expected to be greater than the accuracy of
IL-unlabeled. However, we see that the difference with the
unlabeled case is very small, thus proving the efficiency of
our proposed framework. Noticeably, IL-labeled and IL-
unlabeled both perform better on KTH dataset than other
two datasets by achieving performance closer to Baseline-
1. The reason is that UCF11 and VIRAT are more chal-
lenging than KTH and it would require more examples to
achieve the similar performance for these datasets. We
show the performance of the proposed incremental activity
learning framework on individual test action clips of differ-
ent datasets in Figure 6.

Comparison with Other Methods: As discussed in
Section 2, constraints of [19] (96.1%), [8] (90.3%) and [18]
(96.3%) make them difficult to apply on streaming videos.
Despite not assuming these constraints, our results (IL-
labeled: 97%, IL-unlabeled: 96% using AB feature) are
comparable or better on KTH (the only common dataset).

Percentage of Manual Labeling: Baseline-1 and
Baseline-2 require manual labeling of 100% and 50% of all
the data respectively. Also IL-labeled requires 100% man-
ual labeling, although, data are presented to the system in-
crementally. However, in case of IL-unlabeled, about 15%
and 25% data was needed to be manually labeled for KTH
and UCF11 respectively. This shows that we can achieve
close to state-of-the-art performance with far less tedious
manual labor in labeling the examples.

Parameter Sensitivity: We analyze the sensitivity of
two parameters Tk and δ on the system performance on
KTH dataset using STIP features. Results of the sensitivity
analysis of Tk (range 2 to 12) is shown in the middle plot
of the bottom-row in Figure 5, while the sensitivity analy-
sis of δ (range 0.7 to 0.9) is shown in the right plot of the
bottom-row in Figure 5. Lower standard deviation of the ac-
curacy proves that the choice of these parameters does not
significantly effect the overall system performance.

5. Conclusion and Future Works
In this work, we proposed a framework for incremen-

tal activity modeling. Our framework took advantage of
state-of-the-art machine learning tools and active learn-
ing to learn activity models incrementally over time. We
performed detailed experiments on multiple challenging
datasets. Results show the robustness of our approach as
accuracy asymptotically increases in all of the cases. Fu-
ture works will investigate new tools and techniques so that
we can incrementally learn unseen activity classes as well.
We will also improve our framework so that we can model
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Figure 6: This figure shows the performance of the proposed incremental activity modeling framework on individual test action clips of
different datasets. Above illustrated actions are as follows (left to right, top to bottom): a) KTH:jogging, walking, handclapping; b) running,
boxing, UCF11:golf swing; c) diving, tennis swing, biking; d) socer juggling, VIRAT:facility out, and vehicle in. X-axis is the fraction of
the examples presented so far to the incremental learning framework and Y-axis is the normalized confidence scoreH(x). Blue line means
correct classification of the action, while red spots means missclassificaiton of the action at that particular instant. In most of the cases,
our proposed incremental learning framework increases the confidence score of an action and can retain the correct classification; in some
cases, updated model rectifies the missclassifications (red to blue). In some rare cases ( b- KTH:boxing and d- UCF11:socer juggling), our
framework failed to perform well and missclassified an action even though it was correctly classified before (blue to red). Plots are best
viewable in color.

more complex activities and update them in real time.
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