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ABSTRACT OF THE DISSERTATION

Bio-Image Analysis for Understanding Plant Development and Mosquito Behaviors

by

Katya Mkrtchyan

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2017
Professor Amit Roy-Chowdhury, Chairperson

Images play an increasingly important role in many fields of science and its applications.

Biology is one of the best examples of fields that have come to depend heavily upon images for

progress. Biological images contain a lot of objects and patterns, which may contain information

about underlying mechanism in biology. Image analysis provides a way to extract and quantify

objects and patterns in image data and obtain answers to meaningful biological questions. This

dissertation focuses on image analysis for biological applications in segmentation, registration and

count estimation problems.

Proper understanding of the causal relationship between cell growth patterns and gene ex-

pression dynamics is one of the major topics of interest in developmental biology. Information such

as rates and patterns of cell expansion play a critical role in explaining cell growth and deformation

dynamics. In our research, we focus on studying the developing plant with the goal of obtaining

very accurate cell development statistics. The image processing and analysis framework for gath-

ering the cell growth and division statistics comprises of three main parts - image registration, cell

segmentation and cell tracking. Without proper segmentation and registration the subsequent parts

in the image analysis system would fail. This dissertation addresses both these problems.

To provide proper segmentation of cells we propose a single framework that entails seg-
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mentation and tracking of plant cell images. We show how to optimally choose the parameters

in the watershed segmentation algorithm for high quality segmentation results. To register image

datasets we have provided an optimization based framework to select the best image slice correspon-

dence from consecutive image stacks by using the tissue characteristics in images. Also, we have

presented a novel landmark selection method where we use characteristics of neighboring cells as

unique features. To evaluate both our frameworks, cell correspondences across multiple slices and

time windows are fused to obtain cell lineages and compared to recent results in this area. Exper-

iments on multiple plant datasets show the proposed algorithms provide significantly longer, more

accurate cell lineages and more comprehensive identification of cell divisions.

Another contribution of this work is in count estimation. Mosquitoes and other blood-

feeding insects transmit deadly diseases to hundreds of millions of people, causing severe suffering

and more than a million deaths each year. Female mosquitoes that transmit deadly diseases locate

human hosts by detecting exhaled CO2 and skin odor. Quantitative analysis of a mosquito’s attrac-

tion to different odors is very important. It can lead to discoveries about mosquitoes that could have

a big impact on human health. We present a method to automate mosquito counting in videos. The

current manual analysis on these videos is not sufficient for quantitative analysis and available ob-

ject counting approaches do not work well. We propose an automated mosquito counting technique

which uses the softmax classifier with a sliding window technique to detect the mosquitoes in the

separated region of interest, where the over-detections resulting from the sliding window technique

are eliminated by non-maximum suppression method. The final counts of the mosquito detections

represent the desired mosquito counts in images. The proposed automated method has been applied

on different datasets and showed very good and consistent counts of mosquitoes.
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Chapter 1

Introduction

Images play an increasingly important role in many fields of science and its applications.

Biology is one of the best examples of fields that have come to depend heavily upon images for

progress. There are numerous imaging techniques developed and number of biological images taken

which contain spatial information or spatio-temporal information. This biological images contain a

lot of objects and patterns, which may contain information about underlying mechanism in biology.

Extracting this information by visual inspection and manual measurement is labor intensive, and the

results are potentially inaccurate and poorly reproducible. Therefore, there is a growing need for

computerized image analysis, where image analysis provides a way to extract and quantify objects

and patterns in image data and obtain answers to meaningful biological questions.

In this dissertation, we are focusing on image analysis for biological applications in seg-

mentation, registration and count estimation problems. We will present our methodology and pro-

vide experimental results to show the significance of our contribution in solving each of these prob-

lems.
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1.1 Image Analysis: Segmentation and Registration

A local spatio-temporal coordination of cell growth and cell division plays a critical role

in morphogenesis of both the plant and the animal tissues. The causal link between cell growth and

cell division patterns and how they, in turn, affect organ formation is not well understood. Informa-

tion such as rates and patterns of cell expansion play a critical role in explaining cell growth and

deformation dynamics. However manual analysis is extremely tedious because of the high dimen-

sionality and complexity of data. Therefore, the development of computational platforms that are

capable of identification of cellular coordinates, automated tracking of cells and cell division events

is important. Such computational platforms would facilitate the quantification of cellular parame-

ters such as rates and patterns of cell expansion, cell division, and extraction of such information

may lead to the development of growth models that can explain the causal relationships between

cell deformation dynamics, cell growth and cell division patterns. This process is a computational

challenge that has universal application to all developmental fields, both animals and plants.

To achieve the goal of quantification of biological parameters and observing their evo-

lution in time, advanced microscopy techniques are used to collect time lapse videos and quantify

the behavior of hundreds of cells in a tissue over multiple days. One of these techniques is the

Confocal Laser Scanning Microscopy (CLSM) based Live Cell Imaging. This technique allows us

to take optical cross sections of the cells in the tissue over multiple observational time points to

generate spatio-temporal 4D (X-Y-Z-T) image stacks. To analyze the details of the collected image

data a fully automated image processing and analysis framework has been created, which com-

prises of three main parts - image registration, cell segmentation and cell tracking. Cell tracking

module of this framework establishes cell correspondence across multiple slides and time windows
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and fuses these correspondences to obtain cell lineages, which contain cell life and division statis-

tics. The quality of the cell lineage statistics depends heavily on cellular coordinate evaluations

. Hence, without proper segmentation and registration the subsequent part in the image analysis

system would fail. In this dissertation, we provide our contribution in both cell segmentation and

image registration frameworks, with the goal of obtaining very accurate cell growth and division

statistics.

1.1.1 Cell Segmentation

The temporal and spatial growth of the living organisms are captured into 4D (X-Y-Z-T)

image stacks with Confocal laser scanning microscopy. To keep the plant alive for a long period of

time, it is necessary to limit its exposure to the laser. This results in poor image quality and presents

significant challenges to image analysis since the segmentation and the tracking needs to be robust

to the poor image quality. We use watershed segmentation and show how to optimally choose the

parameters in the watershed algorithm for high quality segmentation results. Collected experimental

results are compared to recent results in this area. Quantitative analysis shows that the proposed

algorithms provide significantly longer cell lineages and more comprehensive identification of cell

divisions.

1.1.2 Image Registration

The procedure capturing the spatio-temporal 4D (X-Y-Z-T) image stacks causes both tem-

poral and spatial misalignments in this live imaging stacks. The spatial shifts between images from

different temporal stacks are caused from the involvement of manual work in noncontinuous imag-

ing procedure (physically moving the specimen from one place to another). Also, because of contin-
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uous growth of the living organism during the imaging procedure there is also a slice matching issue

in consecutive stacks to be solved. The presence of these misalignments in image stacks causes col-

lection of non accurate statistics. We present a fully automated 4D(X-Y-Z-T) registration method of

live imaging stacks that takes care of both temporal and spatial misalignments. We present a novel

landmark selection methodology where the shape features of individual cells are not of high quality

and highly distinguishable. The proposed registration method finds the best image slice correspon-

dence from consecutive image stacks to account for vertical growth in the tissue and the discrepancy

in the choice of the starting focal point. Then it uses local graph-based approach to automatically

find corresponding landmark pairs, and finally the registration parameters are used to register the

entire image stack. The proposed registration algorithm combined with an existing tracking method

is tested on multiple image stacks of tightly packed cells of Arabidopsis shoot apical meristem and

the results show that it significantly improves the accuracy of cell lineages and division statistics.

1.2 Count estimation

Object counting, which is the estimation of the number of objects in a still image or video

frame, is a tedious and time consuming task in image processing. It appears in a wide range of

domains: biology (cell counting in microscopic images), surveillance systems (crowd monitoring),

biodiversity (animal population study), agriculture (counting the number of trees in an aerial image

of a forest), marine science research (fish population estimation), etc. Object counting is important

for quantitative analysis that depends on estimation of certain elements. The traditional method for

object counting is manual. There are many limitations related with manual counting; limited amount

of data can be analyzed manually, continuous manual counting leads to eye fatigue and affects the
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accuracy of results, the process of counting objects is not always straightforward or trivial, even

performed manually. Therefore, manual method must be replaced by automated ones as the results

of this method are erroneous and time consuming.

Mosquitoes and other blood-feeding insects are considered one of the most dangerous

creatures on the planet because of their ability to spread deadly diseases. Biologists are trying

to find solutions to prevent, control or treat these diseases. Mosquitoes host seeking behavior is

important as it is at the core of the processes involved in the contact between a fly and a human.

In laboratory conditions, it is easy to have thousands of mosquitoes under different experimental

conditions. One of these experiments aims to discover the reaction of mosquitoes around different

odors, for which a special environment called arm-in-cage is created and the mosquitoes behavior is

captured in a video. The count of the mosquitoes is used to describe the interest of the mosquitoes to

each odor. In this work, we present an automated object counting method for counting mosquitoes

captured in video, recorded in arm-in-cage environment. In our automated approach the softmax

classifier with a sliding window technique is used to detect mosquitoes. Next NMS (non-maxima

suppression) method is used to eliminate over-detection resulting from the sliding window tech-

nique. The results of the NMS method correspond to the final mosquito counts. We demonstrate

our method on multiple videos collected by biologists which have been analyzed manually. Our au-

tomated method provides very close to manually obtained ground-truth results. The results of this

study would be of considerable importance to biologists by presenting a fast and accurate method

for estimating mosquito counts compared to existing manual processes.
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1.2.1 Organization of the Thesis

The rest of the thesis is organized as follows. Chapters 2 and 3 present correspondingly

detailed cell segmentation and image registration approaches on 4D spatio-temporal image stacks

[39, 40]. In Chapter 4 we present automated mosquito counting method for evaluating the number

of mosquitoes in videos. We conclude the thesis in Chapter 5 with an outline of the future direction

of research.
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Chapter 2

Efficient Cell Segmentation and

Tracking of Developing Plant Meristem

2.1 Introduction

Proper understanding of the causal relationship between cell growth patterns and gene ex-

pression dynamics is one of the major topics of interest in developmental biology. Information such

as rates and patterns of cell expansion play a critical role in explaining cell growth and deformation

dynamics. The need for quantification of these biological parameters is important to biologists.

However manual analysis is extremely tedious because of the high dimensionality and complexity

of data.

The subject of this study, the shoot apical meristems (SAMs) also referred to as the stem-

cell niche, is the most important part of the plant body plan because cells for all the above ground

plant parts are supplied from it. At the same time, the size of the stem-cell niche remains stable

in spite of a continuous displacement and diversion of cells into a differentiation program. Under-
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standing this dynamics is a major research thrust for developmental biologists. In this work, we

focus on studying the developing plant meristem with the goal of obtaining very accurate segmenta-

tion and tracking. Confocal laser scanning microscopy is used to observe given set of SAMs labeled

with plasma membrane localized yellow fluorescent protein (YFP), repeatedly for about 3 days by

taking serial images at every 3 hour intervals. At each time point, multiple images are obtained at

different depths. Each stack from all time points is registered by method of maximization of mutual

information [35, 50]. As a result, the images taken from different time points but at the same slice

are registered. Fig. 2.1 shows an example of the time lapse images. To keep the plant alive for a long

period of time, it is necessary to limit its exposure to the laser. This results in poor image quality.

This presents significant challenges to image analysis since the segmentation and the tracking needs

to be robust to the poor image quality.

Figure 2.1: Example of three images at three time instants. Arrows show same set of cells at time
points noted on each panel.

Of late, there has been some work on automated processing of such time lapse images

in both plants and animals. The multiple-level-set approach is an active-contour based algorithm,

which simultaneously segments cells and also tracks them [13, 30]. However, this method is not

suitable for tracking of SAM cells. The method in [53] presents an approach for cell segmentation,
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but has not been applied to plant cells. In [17] Softassign Procrustes algorithm was used to compute

cell lineages, and to detect cell divisions, but its application to plant cells is limited. A recent

work [32] addressed the problem of tracking in plant cells and especially the issue of robustness

of the trackers. However, they assumed an existing level-set based segmentation method and their

performance suffered due to poor quality of the segmentation in many images.

In this work, we propose a single framework that entails segmentation and tracking of

plant cell images. Section 2.2 and Section 2.3 detail these two parts of the algorithm. Section 2.4

describes the experiments and results of our methods.

2.2 Segmentation

The authors in [32] used a level set algorithm for segmentation. Since the input raw

images have low signal to noise ratio in the periphery and also in the central regions of the plant

stem, the segmentation results of this work are of poor quality.

We used watershed transformation [42] to segment cell boundaries. Watershed treats the

input image as a continuous field of basins (low intensity pixel regions) and barriers (high intensity

pixel regions), and outputs the barriers, which are the cell boundaries of all the cells in the image.

Prior to applying the watershed algorithm, the input image from the confocal microscope undergoes

low pass filtering. This Gaussian filtered image is further processed using H-minima transforma-

tion in which all the pixels below a certain threshold percentage h are discarded. These two steps

minimize the effects of noise in our segmentation. The threshold value h plays a very crucial role

in the watershed algorithm. Generally, a higher value of the threshold parameter h performs under-

segmentation on the image, and inversely a lower value over-segments it, as shown in Fig. 2.2.
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Moreover, if the input image is very noisy, then it becomes extremely important to choose an ap-

Figure 2.2: The detection of cell boundaries varies with the different values of watershed threshold
h. First image is the raw input image. Over-segmentation using watershed is shown in the middle
image, and under-segmentation in the right most image.

propriate threshold value such that only the correct cell boundaries are detected by watershed. One

of the main contributions of this work is a quantitative metric to evaluate the “correctness” of the

segmentation. We observe that the area of all the cells in a plant is almost uniform in the image.

Thus watershed should ideally produce a segmented image that contains similar sized cells. We use

variance in the area of the cells as a metric to measure correctness of segmentation. Thus, the value

of h should be chosen such that variance of area in the segmented image is minimum. Since it is a

quantitative metric, the optimal value of h is found automatically without manual intervention. The

appropriateness of this metric is also verified through the successful use of these segmented images

in tracking with significantly improved results.

Figure 2.3 illustrates the automatic evaluation of h for the given sample image. The

segmented image obtained after watershed segmentation is a binary image.

Comparison with [32]: Since the tracking algorithm uses cell properties such as area of the cell

and its centroid, it is important to retain the shape and structure of cells in the segmented images.

In a noisy image, level-set method fails to preserve these cell properties, which leads to incomplete
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Figure X:  The graph shows the watershed threshold in the X axis, and the variance in the 
areas of the segmented cells in the Y-axis. Image A shows the input raw image, while 
images B, C, and D show the segmentation results for different values of $h$. Notice 
that image B shows over-segmentation and image D shows under-segmentation. The 
correlation between the minimum variance in the areas of the cells and appropriate  
segmentation is clearly demonstrated in image C. 

A

B C D

DONE

Figure 2.3: The graph shows the watershed threshold h in the X axis, and the variance in the area
of the segmented cells in the Y-axis. Image A shows the input raw image, images B, C, D show the
segmentation results for different values of h. Image B shows over-segmentation, image D shows
under-segmentation. The correlation between the minimum variance in the areas of the cells and
appropriate segmentation is clearly demonstrated in image C.

or faulty tracking of cells. On the other hand, watershed segmentation algorithm finds the geometry

and other observed properties of the plant cells more accurately than the level-set, thus producing

significantly better correspondence results in tracking (see Fig. 2.4).

2.3 Tracking Stem Cells

Graphical abstraction is created on a collection of cells in an image. In this process every

cell is characterized by a vertex in the graph and neighboring vertices are connected by an edge.

The structure of these graphs automatically contains the relative distance between two neighboring
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Figure 2.4: Raw image in the first column is segmented using both watershed and level-set seg-
mentations. Second column displays watershed segmentation, while the third column is the result
of level set segmentation. Qualitatively, watershed far surpasses level-set segmentation as demon-
strated in this figure.

cells (the edge length) and the edge orientation. The topology and the geometry of the local graphs

should not change if there is no cell division or the images are not noisy. Taking into account above

conditions, the correspondences between cells are identified by matching the local graphs (Fig. 2.5

(A)). To find a correspondence between cells ci and cj across different time instants t and t+ 1, the

Figure 2.5: Image A: The matched local graphs G1 at t and G2 at t + 1 time points, the correspon-
dence of the seed cell pair (1,1’), as well as the correspondences of the neighboring cells, such as
(2,2’) and (4,4’). Image B: A diagram to describe the relative position of the mother cell and the
daughter cells.
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distance measure between two local graphs is defined as follows:

DL(ci, cj) =

∑
cki∈N(ci),ckj∈N(cj)

(lcki
,ci (t)−lckj ,cj (t+1))2

lcki
,ci (t)

2

+λ
∑

cki∈N(ci),ckj∈N(cj)(θcki ,ci(t)− θckj ,cj (t+ 1))2

+
‖Pci (t)−Pcj (t+1)‖

∆2

where cki is a neighboring cell of ci, and ckj is a neighboring cell of cj , N(c) is the neighboring

cell set (set of cells that are within a certain distance around cell c), lcki ,ci(t) and lckj ,cj (t + 1)

are the edge lengths, θcki ,ci(t) and θckj ,cj (t + 1) are the orientation angles in radians of the edges

measured relative to a horizontal axis, Pci(t) and Pcj (t + 1) are the cell position vectors, and ∆ is

the average distance between two neighboring cells. If two local graphs match, which is when the

distance measure is small, we can say that the central cells ci and cj are a corresponding cell pair.

Overall, tracking of stem cells from any two consecutive cell image stacks using local graph match-

ing [32] consists of the following parts: finding the seed cell pairs, finding the correspondences of

the neighboring cells from the seed pairs across time (Fig. 2.6), and detecting cell divisions (Fig.

2.5 (B)). Formal description of each procedure is described in [32] in depth.

2.4 Experimental Results

Raw images segmented using watershed improves temporal tracking dramatically. Cell

division largely depends on faithful detection of cell boundaries in the raw image. Because water-
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Figure 2.6: Growing cell correspondences from a seed to its neighbors. The first column denotes the
seed cell pair, the middle column denotes the tracking results after the first step of the recursion of
growing the correspondences, while the third column denotes the tracking results after the second
step. The same color shows the matched cells.

shed produces faithful segmentation, there are less false positives as compared to level-set. We have

tested watershed segmentation and tracking on different datasets of SAMs. The experimental re-

sults are shown on images obtained from plant cells and observed for 72 hours taken at every 3 hour

intervals. Watershed segmentation is applied on images taken from all 24 time points at the same

depth level. Then tracking is run on every 2 consecutive segmented images to get information about

the cells such as cell lineage, division, area. Fig. 2.7 compares the results of temporal tracking with

level-set and watershed segmentation. Biologists manually verified the accuracy of segmentation

results by watershed algorithm. Also in order to verify the overall improvement of the proposed

algorithm we do comparison of watershed with level-set algorithm.

The number of correctly tracked cells obtained from tracking images in consecutive time

points for some period of time is compared in Table 2.1. The comparison is done on the different
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datasets and we can see significant increase in the number of tracked cells obtained from watershed

segmentation.

Table 2.1: Sum of the number of cells being tracked from watershed segmentation data and level-set
segmentation data

Dataset Time (h) Watershed
segmentation

Level-set
segmentation

Dataset1 72 2052 (%90) 1630 (%71)
Dataset2 36 491 (%71) 215 (%31)

One of the important data to obtain is the lineage of a cell. Table 2.2 shows the compar-

ison of average cell lineage lengths between watershed and level-set algorithms and confirms that

watershed segmentation improved those results too.

Table 2.2: Average lineage length

Dataset Watershed
segmenta-
tion

Level-set
segmentation

Dataset1 50 25
Dataset2 42 6

Figure 2.7: Improvements in temporal tracking using watershed segmentation. Top row shows
temporal tracking using level-set segmentation, whereas the bottom row is obtained using watershed
segmentation. Cells are tracked for 24 hours. The same color denotes the same cell.
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2.5 Conclusion

In this chapter we proposed a novel algorithm for plant cell segmentation using watershed

transformation. Specifically, we proposed a new metric for this application to find the optimal

threshold parameter automatically. We show improved results of temporal tracking of cells using

the proposed segmentation when compared to recent earlier results of segmentation that uses level

set functions. This we believe will significantly benefit the plant biologists to find correct lineages

of cell division and death for a more accurate statistical evaluation of plant growth.
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Chapter 3

Optimal Landmark Selection for

Registration of 4D Confocal Image

Stacks in Arabidopsis

3.1 Introduction

Proper understanding of the causal relationship between cell growth patterns and gene

expression dynamics is one of the major topics of interest in developmental biology. Information,

such as rates and patterns of cell expansion and division, play a critical role in explaining cell

growth and deformation dynamics. The need for quantification of these biological parameters and

observing their evolution in time is very important. To achieve this goal, advanced microscopy

techniques are used to collect time lapse videos and quantify the behavior of hundreds of cells in

a tissue over multiple days. One of these techniques is the Confocal Laser Scanning Microscopy
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(CLSM) based Live Cell Imaging. This technique allows us to take optical cross sections of the

cells in the tissue over multiple observational time points to generate spatio-temporal 4D (X-Y-Z-

T) image stacks. To analyze the details of the collected image data, it is necessary to develop a

fully automated image processing and analysis framework which gives rise to many new automated

visual analysis challenges.

The image processing and analysis framework for gathering the cell growth and division

statistics comprises of three main parts - image registration, cell segmentation and cell tracking.

Without proper registration the subsequent parts in the image analysis system would fail. The

misalignments present in the live imaging stacks are both temporal and spatial. The spatial shifts

between images from different temporal stacks are caused from the involvement of manual work

in noncontinuous imaging procedure (physically moving the specimen from one place to another).

Note that because of the robustness of microscopy techniques the images in one spatial (X-Y-Z)

stack are almost registered. But because of continuous growth of the living organism during the

imaging procedure there is also a slice matching issue in consecutive stacks to be solved. The

presence of the slice mismatch between image stacks and significant shifts between images prevent

getting accurate cell tracking and cell division detection, which causes collection of non accurate

statistics. That is why the issue of registration is very important.

As an example let us consider this scenario; 3D confocal laser scanning microscopy is

used to capture 4D (depth/time) image stacks of ’Shoot Apical Meristem’ (SAM) of the plant Ara-

bidopsis. The SAM of Arabidopsis Thaliana consists of approximately 500 cells and they are or-

ganized into multiple cell layers that are clonally distinct from one another and are tightly packed

with each other. At each imaging time there is no control over which depth of the meristem the

imaging starts. Also at each imaging/observational time point the plant is moved and placed under
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microscope to acquire the images. Because of this replacement of the plant under the microscope

and the lack of control on the imaging depth the 4D dataset contains unregistered image stacks. Fig-

ure 3.1 demonstrates three consecutive stacks imaged at three different depths where the the same

depth slices do not correspond. The figure also demonstrates images with noticeable shifts between

images from different time instances. Automated analysis of cell lineages, cell growth dynamics

requires the 4D image stacks to be registered. We will show experimental results on this particular

application setting.

3.1.1 Contribution

In this work we present a fully automated spatio-temporal registration framework for reg-

istering live imaging stacks. This framework is suitable across tissues which show the characteristic

of having tightly packed cells.

We have provided an optimization based framework to select the best image slice corre-

spondence from consecutive image stacks by using the tissue characteristics in images. Also we

have presented a novel landmark selection methodology where the shape features of individual cells

are not of high quality and often non-discriminative. We solved the problem by choosing the relative

positions and ordered orientation of the neighboring cells as unique features. We represented the

local neighborhood structures of cells as graphs and selected those landmark points that have the

minimum distance between the local graphs built around them.

A preliminary version of this work was presented in [38] where we assumed that the slice

correspondences between Z-stacks were given. In [38] the input comprised of any two confocal

image slices from two Z-stacks. The method proposed in this work is a truly automated 4D regis-

tration method as the input to this method is a complete time lapse confocal image stack. Finding
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the corresponding slices needed to register is a big step in order to scale the problem and it is a

fundamental problem that we are addressing in this work. Also we are looking at how the choice

of the stack is reflected in the registration problem. Our analysis, presented in (Figure 3.6), shows

the fundamental effect of a proper slice selection on the registration and subsequent image analysis

results. We have shown the effect of using optimal image slice correspondences in the registration

module and the improvements in results are evident in Figure 3.6. As explained in the Section 3.3,

there is a significant increase in number of tracked cells and lengths of cell lineages, which validates

the use of the slice correspondence method in the registration framework.

Also, we have improved the theoretical side of the landmark selection method over [38]

by forcing a constraint into the optimization. It was done to insure feasibility on the selected set of

landmark point pairs. The reason behind this change is that the rotation is governed by the rotation

of the tissue, the cell independently cannot rotate by different amounts.

To show the significance of the registration and to show that our proposed registration

method provides good results we considered the CLSM image stacks of tightly packed cells of a

live Arabidopsis shoot meristem (SAM) (the spatio-temporal misaligments present in the sample

CLSM image stack of a Arabidopsis shoot meristem are shown in Figure 3.1). We combined our

proposed registration method with local-graph matching based robust cell tracking algorithm [32]

and show significant improvement in accuracy of cell lineages and division statistics.

3.1.2 Relation to Existing Work

Amongst the different components of the general image analysis pipeline there has been

some work done on image segmentation and cell tracking in live imaging stacks. For cell seg-

mentation, both the Watershed [47] and the Level-set method [13] have been shown to provide good
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Figure 3.1: Three consecutive Z-stacks with three consecutive slices shown. The black arrows
between images show the slice correspondence between Z-stacks. The same color circles show the
same collection of cells through the spatio-temporal slices.

results. In general, any segmentation method, e.g. [5,31], can be used as a preprocessing step. Many

tracking methods have been proposed that attempt to find correspondences between 2D segmented

cells. For example, [32] exploits the local geometric structures around a cell to find correspon-

dences between cells. [33] integrates the segmentation and tracking modules to reach an optimized

segmentation and tracking result. In [15] multiangle image acquisition, three-dimensional recon-

struction and cell segmentation lineage tracking approach is developed in which SAM is imaged

from multiple angles. But all of these methods rely on the availability of registered image stacks of

the tissue.

In many works e.g. [10, 21, 32–34, 36], the images are registered with maximization of

the mutual information method [50]. But this method may not be always effective. For example,
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we have looked at the confocal imagery of the Arabidopsis SAM for experiments in this work. The

mutual information based tracker fails to perform satisfactorily as it uses the pixel intensities to

acquire the registration. Pixel intensities in the Arabidopsis SAM images are not discriminative

features. The landmark-based registration is more suitable for noisy and Z-sparse confocal images

than registration based on maximization of the mutual information, which we demonstrate in the

experimental results section.

A recent work [15] uses SAM images acquired from multiple angles to automate tracking

and modeling. In this work, for pair of images to be registered, the user identified correspondences

by pairing a few anchor points (referred as landmark points in this work). In this work, we present

a fully automated method to find the corresponding temporal slices from Z-stacks of images and

a fully automated landmark-based registration method that can find out correspondences between

two images and utilize these correspondences to yield a better registration result. This method is

suitable across tissues which show the characteristic of having tightly packed cells.

A commonly used landmark-based registration algorithm is the Iterative Closest Point al-

gorithm [9], which is very sensitive to initialization. There are number of subsequent variations

of this algorithm, e.g. Iterative Closest Point using Invariant Features [11], which uses features

like eccentricity and curvature to overcome the issue. There are other registration works [18, 55]

that acquire the registration using features like intensity, surfaces, and SIFT. But in tissues (e.g.

Arabidopsis SAM) that are comprised of tightly packed cells with stereotypical shapes and sizes,

eccentricity and other common features are not discriminative enough to be used for the selection

of landmarks for registration. This is why we need to develop a novel feature to register this type

of images. The novel landmark estimation method presented in this work exploits the tight spatial

topology of the tissues under study and proposes a feature descriptor based on the local neighbor-
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hood structure around a cell for a robust registration method.

3.1.3 Organization

The rest of the work is organized as follows. The algorithmic details of the proposed

framework; finding the best image slices correspondence, feature matching in the selected images

and entire Z-stack registration are provided in Section 3.2. We have shown experimental results and

validation of our approach in Section 3.3 followed by concluding discussion in Section 3.4.

3.2 Detailed Registration Framework

The spatio-temporal registration of live imaging stacks comprises of three major steps:

finding corresponding image slices from two consecutive image stacks, feature matching in the

selected corresponding images, and aligning two stacks of images.

The next three sections present details of each step of the registration.

3.2.1 Finding Corresponding Temporal Slices

In most cases, for any two Z-stacks imaged at consecutive time intervals, the same depth

image slices will not correspond. We consider all slice pairings between two consecutive Z-stacks

and define distance on each pair correspondence. The distances are computed based on the tissue

characteristics in images. Specifically the number of cells and the area of the tissue in the image are

used to compute the distance.

Let us consider two consecutive Z-stacks I(t) and I(t+1) taken at time t and t + 1. The

image i corresponds to the confocal slice image taken at time t and at the depth hi µm and image

j, corresponds to the confocal slice image taken at time t+ 1 and at the depth hj µm. Let n(t)
i and
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n
(t+1)
j be the number of cells and let a(t)

i and a(t+1)
j be the area of the tissue in images i and j, taken

at time t and t + 1 respectively. We define the distance for the image pair (i, j) to be the best pair

candidate as d(i, j) the following way:

d(i, j) =
|n(t)
i − n

(t+1)
j |

n
(t)
i + n

(t+1)
j

+
|a(t)
i − a

(t+1)
j |

a
(t)
i + a

(t+1)
j

(3.1)

The constructed distance matrix d will contain distance values for all possible pairs be-

tween the two Z-stacks. We can see from the way the distances are computed that the smaller the

distance corresponding to the image pair is the better image slice candidate the pair is. So the final

slice correspondence between consecutive Z-stacks I(t)
i and I(t+1)

j is defined as:

(i, j) = arg min
i∈I(t),j∈I(t+1)

d(i, j) (3.2)

Essentially, the above described problem of finding corresponding slices is analogous to

the shortest path problem [12], which is to find a path between two vertices (nodes) in a graph such

that the sum of the weights of its constituent edges is minimized, where in our case every slice

becomes a node. So the problem of finding corresponding temporal slices from the Z-stacks can

be posed as a shortest path algorithm and can be solved using Dijkstra’s algorithm [51], where the

shortest path is only in temporal direction.

3.2.2 Feature Matching in Selected Images

Assuming that the best image slices between two Z-stacks are chosen, we want to find

the features that can be used to find corresponding landmark point pairs to register one image stack

onto the other.
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When using landmark-based registration method, the quality of the image registration re-

sult depends on the accuracy of the choice of the landmark points. Finding corresponding landmark

point pairs from two images depends on the feature selection. Motivated by the idea presented

in [32], we use the relative positions and ordered orientation of the neighboring cells as unique fea-

tures. To exploit these properties we represent these local neighborhood structures as graphs and

select the best candidate landmark points that have the minimum distance between the local graphs

built around them.

Local Graphs as features

Graphical abstraction is created on the collection of cells. Vertices in the graph are the

centers of the cells and neighboring vertices are connected by an edge. Neighborhood set N(C) of

a cell C contains the set of cells that share a boundary with C. Thus every graph consists of a cell

C and a set of clockwise ordered neighboring cells (Figure 3.2 (A,D)). The ordering of the cells in

N(C) is important because under non-reflective similarity transformation, the absolute positions of

the neighboring cells could change but the cyclic order of the cells remains invariant.

Landmark point pair estimation from local graphs

Cell divisions happen throughout the entire imaging period but at the consecutive images

only a few cell divisions are present. Ideally, in the areas where there is no cell division, the local

graph topology should not change (segmentation errors will circumvent this in practice). We exploit

these conditions to find the corresponding landmark pairs in two images. Let G(t)
1 and G(t+1)

2 be

two local graphs constructed around the cells C and C ′ in consecutive temporal slices (Figure 3.2).
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Figure 3.2: Local graphs and two enlarged triangle subgraphs with indicated features.

For each subgraph of the local graph G(t), we define feature vector the following way;

FC(t) = [f1f2f3f4f5]T ,where

f1 = θNi1
,C,Ni2

(t),

f2 = lC,Ni1
(t), f3 = lC,Ni2

(t),

f4 = ANi1
(t), f5 = ANi2

(t)

We define the distance between two triangle subgraphs as

DTS

(
FCi (t)), (FC

′
j (t+ 1))

)
=

5∑
k=1

(
fk−f ′k
fk

)2
,

where fk ∈ FCi (t), f ′k ∈ FC
′

j (t+ 1).

(3.3)

To ensure that our landmark estimation method takes care of the rotation of the local area,

we consider all cyclic permutations of the clockwise ordered neighbor set {N ′1, N ′2, . . . , N ′m} of the

cell C ′ from the input image. The cyclic permutations of the set {x1, x2, . . . , xm} can be written
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in terms of the shift k (k = 0, 1, . . . , (m − 1)) as the set {x(1+k−1)mod(m)+1, x(2+k−1)mod(m)+1,

. . . , x(m+k−1)mod(m)+1}. As an example, if (1, 2, 3) is the given sequence, then possible values of

the shift k = 0, 1, 2 and all the cyclic permutations of the sequence (1, 2, 3) will be (1, 2, 3), (2, 3, 1),

(3, 1, 2) for k = 0, 1, 2. We consider all cyclic permutations of the clockwise ordered neighbor set

{N ′1, N ′2, . . . , N ′m} of the cell C ′ from the input image and define the distance D(G1, G
k
2) between

two local graphs G1 and G2 based on the chosen permutation corresponding to shift k as

D(G1, G
k
2) =

∑
{i,j}

DTS

(
FCi (t)), (FC

′
j (t+ 1))

)
∀i ∈ {1, 2, . . . ,m}, j = [(i+ k − 1)mod(m) + 1]

(3.4)

for k ∈ {0, 1, 2, . . . , (m − 1)}. We compute the sum of the distances between each of the ordered

pairs of triangle-subgraphs for each permutation k.

It is important to notice that in the calculation of the distance d(i, j) (Eqn. 3.1), which is

used to find corresponding temporal slices, feature vector F , which is part of landmark point pair

estimation, is not used. The reason is that the image stack slices are very stereotypical; there can be

different local graph patters which can be similar in shape but be from different slices. In confocal

imaging a cell is imaged in multiple Z slices along time. This may result in having all cells in a

cluster of tightly packed cells being imaged at slices z, z+ 1, z+ 2 and at time points t and t+ 1. If

we want to use this micro feature F to choose the corresponding temporal slices, essentially there

is a discrimination why slice z at time point t should match with slice z at time point t+ 1. Because

there is no difference in the cell cluster, it is equally possible that slice z at time point t can also

match with slice z + 1 at time point t + 1. This feature vector F is kind of invariant across Z,

it discriminates cells spatially in one slice along time but it is not a discriminative enough feature
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to understand which slice should match to which slice as the same local graph (cell cluster) may

be preserved along different depths. So these components of the feature vector F are micro level

features and they do not capture the slice information. That is the reason why F does not capture the

effect of the depth at which the cells are imaged and is not used to find the corresponding temporal

slices.

The minimum distance D?(G1, G2) between two graphs G1 and G2 corresponding to

cells (C,C ′) for all permutations k is

D?(G1, G2) = minD(G1, G
k
2) (3.5)

where k ∈ {0, 1, . . . , (m − 1)}. This guarantees that our landmark estimation method is invariant

of the rotation in the local area.

For all cell pairs Ci, C ′j and corresponding graphs Gi, Gj from two consecutive images,

we compute the distance D?(Gi, Gj). Now, our objective is to obtain the set of best q cell pairs for

which the local graphs around these cell pairs are maximally similar. However, for each of these

chosen cell pairs, the optimal shift (corresponding to the minimum distances between the graphs)

must result in approximately similar angles of rotation. This uniformity between the rotation of the

individual graphs is obvious as all the cells are tightly packed and the rotations of individual cell

clusters (the ‘local graphs’) are uniformly affected by the global rotation of the entire tissue. Thus,

as a corollary, if any set of q cell pairs show large variations in the optimum angle of rotation, the

set must contain one or more incorrectly associated local graph pairs.
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Measurement of Angle of Rotation Between Pairs of Graphs

Between two graphs G1 and G2, the circular shift k∗ corresponding to the minimum

distance D∗(G1, G2) is given as,

k∗ = arg min
k

D(G1, G
k
2) (3.6)

Assuming that the rotated graph Gk
∗

2 is a candidate match for the graph G1, the angle of rotation

Θ∗(G1, G2) = Θ(G1, G
k∗
2 ) could be computed as follows.

Let in graphG1, the central cell is C and the set of neighboring cell slices around C being

{N1, N2, · · ·Nm}. Likewise, the central cell in the graph G2 is C
′

and the neighbors around it are

{N ′1, N
′
2, · · ·N

′
m}. Now, ifGk

∗
2 is the transformed version ofG1, then the amount of rotation would

be obtained as,

Θ(G1, G
k∗
2 ) =

1

2π

(
θ
N
′
k∗+1

,C′ ,Y ′ − θN1,C,Y

)
(3.7)

The angles θN1,C,Y and θ
N
′
k∗+1

,C′ ,Y ′ are described through Figure 3.3. The angle Θ(G1, G
k∗
2 )

represents the amount of counterclockwise rotation that G2 must undergo with respect to C
′

to

align N ′k∗+1C
′ with N1C in G1.

Optimum Set of Landmarks: Simultaneously Minimizing Dissimilarities And Variance In

Angles of Rotation Between The Local Graphs

The final objective is to obtain a set of q cell pairs from the two image slices such that the

individual pairs of local graphs around those slices are maximally similar as well as the variation

in the angles of rotation in this set is least. This set, denoted as s∗q = {(Gi1 , G
k∗1
j1

), (Gi2 , G
k∗2
j2

), · · ·
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G1

Figure 3.3: Measuring the angle of rotation of a local graph. (A) A cell cluster at any given time
instant t, centered around the cell C. The neighboring cells N1, · · ·N6, along with the central cell
C constitutes the nodes of the local graph G1. (B) The same cell cluster at time t + 1. The graph
G2 is a rotated version of G1. The optimum shift(k∗) is estimated as 2 and hence N1C is rotated
clockwise to N ′3C

′ in G2. Therefore, the relative normalized angle of rotation between G1 and G2

can be computed as Θ∗(G1, G2) = 1
2π

(
θ
N
′
3,C
′ ,Y ′ − θN1,C,Y

)
.

(Giq , G
k∗q
jq

)}, is the set of landmark pairs required for registration of the image pairs, where the

individual landmarks are the centroids of the 2D cell slices.

Let the superset of all such possible q-pairs be {s1
q , s

2
q , · · · sVq }, and let it be denoted by S.

For any candidate set for landmarks slq ⊂ S ∀l = 1, 2, · · ·V , the average normalized dissimilarity

between all pairs of local graphs in this set would be,

D
∗
l =

1

q

∑
(G1,G2)∈slq

D∗(G1, G2)

Dl
max

(3.8)

where,Dl
max = maxD∗(G1, G2) ∀ (G1, G2) ∈ slq. The normalization is done to scale the average

value between 0 and 1.

The variance in the angles of rotation over the set slq is computed as,
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(3.9)

σ2
Θ,l =

1

q

∑
(G1,G2)∈slq

Θ∗(G1, G2)2 −

1

q

∑
(G1,G2)∈slq

Θ∗(G1, G2)

2

The overall cost function is defined as a weighted sum of D∗l and σ2
Θ,l and the best set of

q landmark pairs is estimated by minimizing this cost function.

s∗q = arg min
slq∈S

{
w D

∗
l + (1− w) σ2

Θ,l

}
(3.10)

The weight w can be user-defined. Since the feature distance is the main parameter in

finding the landmark point pairs, we varied the value of w between 0.5 and 1. The registration

results were not changed. For all our experiments, the w is fixed at 0.5. The choice of q is described

later in the Section 3.2.3.

Once we have the landmark point pairs, the positions of the landmark pairs in the two

images are used to estimate the parameters of the transformation model (affine, non-reflective simi-

larity etc.).Then the estimated transformation function maps the rest of the points in the input image

to the reference image. The Section 3.2.3 presents details on computing the spatial transformation

between the images and final image registration.

3.2.3 Image Registration

After the corresponding image slices across two stacks of images taken at two consecutive

time points are selected and the corresponding landmark point pairs in the selected images are

acquired, we find the spatial transformation between these images. Then we use the estimated
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transformation to register the entire Z-stacks.

Finding the spatial transformation between two images

Once we have the landmark point pairs corresponding to the input (the image that we

wish to transform) and reference (the image against which we want to register the input) images, we

find the spatial transformation between them. Transformations present in the live image stack of a

multilayer, multicellular structure where the cells are tightly packed together, include a rotation and

a translation. The non-reflective similarity transformation is chosen as a type of transformation to

proceed with. Finding the nonreflective similarity transformation between two images is a problem

of solving a set of two linear equations. For better accuracy of transformation parameters the top

q landmark point pairs are used in a least square parameter estimation framework. But, as known,

greater the number of landmark point pairs is, better the estimated solution of the Least Square tech-

nique is. In order to choose the best landmark point pairs we rank them according to the similarity

of local graphs created on the neighboring cell structure. Choosing more landmark points will mean

finding transformation between two images based on points that have less possibility to be correct

corresponding points, which will eventually lead to bad registration. So there is a trade-off between

these aspects. In our experiments we choose four, five or six landmark point pairs depending on the

CLSM dataset image quality.

Z-stack Registration

Depending on the procedure the living tissue imaging is done, the transformations be-

tween corresponding image slices from consecutive image stacks are the same. So the transfor-

mation parameters corresponding to the selected image slices from these Z-stacks will also be the
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transformation parameters between the rest of the image pairs in these two Z-stacks. So, by apply-

ing the computed transformation parameters for the selected image slices on the rest of the image

pairs from the two Z-stacks, the entire Z-stack taken at time point t + 1 will be registered to the

Z-stack taken at time point t.

3.3 Experimental Results

3.3.1 Imaging Setup

For the experiments performed in the present study, the 3D structure of the tissues are

imaged using single-photon confocal laser scanning microscope and we have specially dealt with

the ’Shoot Apical Meristem’ (SAM) of the plant Arabidopsis. The SAM of Arabidopsis Thaliana

consists of approximately 500 cells and they are organized into multiple cell layers that are clonally

distinct from one another and are tightly packed with each other. By changing the depth of the

focal plane, CLSM can provide infocus images from various depths of the specimen. To visualize

cell boundaries of all the cells in the SAM, plasma membrane-localized Yellow Fluorescent Protein

(YFP) is used. The set of images, thus obtained at each time point, constitute a 3-D stack, also

known as the ’Z-stack’. Each Z-stack is imaged at a certain time interval (e.g. 3 or 6 hours between

successive observations) and it is comprised of a series of optical cross sections of SAMs that are

separated by approx. 1.5 µm, and a standard shoot apical meristematic cell has a diameter of about

5 - 6 µm.

At each imaging time there is no control over in which depth of the meristem the imaging

starts, so in each Z-stack the first slice imaged is at random depth and the rest of the images in the

stack are 1.5µm deep from each other. This means that for any two Z-stacks imaged at consecutive
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time intervals, in most cases, the same depth slices of the specimen won’t correspond, there will

be a shift in the slice correspondence. Figure 3.1 demonstrates three consecutive stacks imaged at

three different depths where the the same depth slices do not correspond.

In practice, the live cell imaging of Arabidopsis SAM comprises of several steps, where

the plant has to be physically moved between different places. For normal growth of the plant, it has

to be kept in a place having specific physical conditions (such as a temperature of 24oC). The plant

is moved and placed under microscope at the imaging/observational time points, before it is placed

back to the aforementioned place once again. For 72 hours overall, this process is repeated every 3

hours. Because of this process of replacement of the plant under the microscope and also since the

plant keeps growing during these 72 hours, various shifts can occur between two Z-stacks of images

taken in consecutive time points, though images in any Z-stack are automatically registered. Figure

3.1 demonstrates images from a data set with noticeable shifts between images from different time

instances.

3.3.2 Experimental Results and Analysis

We further evaluate the performance of the proposed automatic spatio-temporal regis-

tration and show numerical results. As the numerical results as direct comparison of registration

results are not trivial we evaluate the tracking accuracy after and before registration and show the

performance improvement.

We have tested our proposed automatic spatio-temporal registration of live imaging stacks

method on different datasets that consist of 4D image stacks taken at six hour intervals for 72 hours

overall. First for each two consecutive Z-stacks of every dataset, we run our method to find the

corresponding image slices. Then using the image correspondence information from corresponding
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Z-stacks we chose a temporal stack and applied the watershed segmentation [47] and local graph

matching based tracking [32] methods and compared the obtained results. We compared tracking

results of the proposed method with results obtained without registration, with semi-automated

registration (the landmark pairs are chosen manually, the transformation is obtained automatically)

and with Matlab registration module which is based on the maximization of the mutual information.

Pairwise Tracking - Figure 3.4 (A-E) shows cell tracking results from two consecutive

images (30th and 36th hour), obtained with different approaches. We can see that for the chosen two

consecutive images (30th and 36th hour) the results with maximization of the mutual information

based registration and without registration show incorrect cell tracks. Whereas the proposed method

and semi-automated registration correctly registered two images with 100% correct tracking results.

Detailed results for the same dataset are shown in Figure 3.5. We can see that from 33 and 27 cells,

present in the images at time points 5 (30th hour) to 6 (36th hour) respectively, none are tracked

by the tracker run on the images registered with the registration based on the maximization of the

mutual information and not registered images (as in Figure 3.4 (A-E)). The same result is seen for

the tracking results in images at time points 6 to 7. But the tracking results obtained with proposed

and semi-automated methods provided very close to manual results.

Image Slice Correspondence Figure 3.6 shows two different tracking result comparisons

on a temporal stack between the case where the temporal stack is constructed from the proposed

automated image slice correspondence module and the case where from each Z-stack the same slice

image is chosen. Figure 3.6 A) shows the number of tracked cells across each two consecutive

images in the temporal stack and Figure 3.6 B) shows the lengths of cell lineages (for how many

consecutive frames the same cell was tracked). All of these results are manually verified. We can

see significant increase in number of tracked cells and lengths of cell lineages in the case where the
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Figure 3.4: A) Raw consecutive images (the same color arrows represent the same cells). Tracking
results obtained B) without registration C) with registration based on maximization of the mutual
information, D) with semi-automated registration (the landmark pairs are chosen manually, the
transformation is obtained automatically), E) with proposed automatic registration. The same colors
represent the same cell.

Figure 3.5: Number of tracked cells across two consecutive images.
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dataset is constructed from our proposed image slice correspondence module which validates the

use of the slice correspondence module in the registration framework.

Pairwise Registration - The result of the registration depends on the clearness of the

images. Although, in the proposed method, we need very few landmark points we cannot control

the regions of the images in which the landmark points may appear, so in the process of the selection

of the landmark points we might take false positive landmarks which will result in pure registration.

Figure 3.7 shows three pairwise registration results with images from three different depths, with

different SNRs. As we can see the column A) in the figure shows three different images taken at

hour 18 with different SNRs sorted from image with high to low SNR accordingly. Images in the

column B) are registered to the images in the column A) accordingly and column C) shows the

same image after registration. As the white arrows in the figure show we have registration with high

tracking error in the images from the first row (high SNR), registration with medium tracking error

in the images from the second row (midium SNR), and registration with low tracking error in the

images from the third row (low SNR). These results can also be clearly seen in the columns D) and

E) which show the fused images before registration and after registration. This shows the robustness

of our algorithm.

Figure 3.6: Tracking results on a temporal image stack where the images are chosen from the Z-
stacks based on the proposed slice correspondence and where the same slice is chosen from all
Z-stacks - A) Number of tracked cells across two consecutive images, B) Length of cell lineages.
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Figure 3.7: Registration results on three pairwise images from three different depths and with differ-
ent SNRs. Column A), B) show the raw images from the hour 18 and 24 correspondingly, column
C) shows the image in the column B) after registration, and column D) and E) show the fused images
before registration and after registration (white arrows show the same cells)

Lineage Analysis - Figure 3.8 shows lengths of the cell lineages calculated with the pro-

posed method, semi-automated registration, registration based on maximization of the mutual infor-

mation and without registration. These results contain numbers from two different datasets; three

hour dataset(G) and six hour dataset, where six or three indicate the interval between two succes-

sive imaging of Z-stacks. Longer the lineages are, better the results are. We can see that in tracking

without registration and after registration with maximization of the mutual information, there are

no cells that have lineage lengths greater then four (Figure 3.8 (A)), greater then eight (Figure 3.8

(C)) etc., as opposed to the case with the proposed and semi-automated registration, where cells

have lineages for the entire 72 hours. The reason for such results is that there is a big shift between

two images from consecutive time points in the middle time points. Without proper registration
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Figure 3.8: Length of cell lineages for different datasets A-H. Each bar in each graph represents
how many cells (number of cells) have that lineage length. I) Average length of cell lineages across
all eight datasets.

the tracking algorithm is not able to provide correct cell correspondence results, which interrupts

the lineage of the cells. Figure 3.8 (I) shows the length of lineage length averaged across all eight

datasets. We can see that on average we find more cells with longer lineages with our method and

the semi-automated method compared to the results with registration with mutual information and

without registration, where those long lineages are found in shorter peaces. Figure 3.8 (A) result

can be also related to Figure 3.5 since they are representing statistics from the same dataset. Since

no cells have been tracked in frames five to six and overall there are eleven frames, then no cell can

have a lineage life with the length greater than or equal to five.

Table 3.1 shows the number of cell divisions in 72 hours. We can see that the semi-

automated and the proposed registration provide results that are close to the manual results as op-

posed to without registration and registration based on maximization of the mutual information.
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Table 3.1: Total Number of Cell Divisions/Ground Truth

Data OurMethod Semi-Auto. MutualInfo. NoRegistration
1 28/34 30/34 23/34 25/34
2 17/21 17/21 11/21 12/21
3 15/15 15/15 9/15 9.5/15
4 11.5/16 12.5/16 9.5/16 10/16
5 21/23 23/23 17/23 19/23
6 12.5/16 13.5/16 9/16 9.5/16

3.3.3 Discussion on the Limitations of the Proposed Method

The accuracy of the proposed image registration method depends on quality of the images

and on the consistency of the cell neighborhood structure. As we have shown in our experiments,

the proposed registration method can handle moderate deformations of the growing cells. However,

if the deformation changes the topology of cells local neighborhood, it becomes more challenging

and in some cases leads to failure of the registration module.

The image registration is acquired after the cell segmentation module, so the registration

results rely on the cell segmentation results. In general in confocal microscopy based live cell

imaging there could be situations where a part of the image is noisier than the other parts, especially

the central regions, and hence the segmentation results sometimes are not as good as in the deeper

layers. But in the proposed method we try to overcome this situation by providing landmark based

registration, where it is not the entire image that is used to do the registration. We essentially find the

best points from multiple images which could be used as landmark pairs. Often these corresponding

points come from the better segmented regions (clearer sections of images) and it is highly unlikely

that we find a very good match in the blurred section. So the proposed method is robust to noise in

part of the image and segmentation errors to a certain extent; however for a very noisy image where

the segmentation is not satisfactory over the whole image the registration method is quit affected by

41



such cases.

As shown in Figure 7, for well segmented or clearer images (Fig. 7 row 1) we have a

very good registration, for not so well segmented or not so clean images (Fig. 7 row 2) we also

have good registration, but where the noisy region is almost everywhere (Fig. 7 row 3) (there are

more chances of finding bad landmark pairs because the nosy region is larger), we can see that the

registration results are not as good as the previous cases.

Future work can consider other registration approaches to improve the results, including

non-linear registration methods.

3.4 Conclusion

Automated image analysis such as registration, segmentation and tracking of cells in

actively developing tissues can provide high-throughput and quantitative spatiotemporal measure-

ments of a range of cell behaviors; cell expansion and cell-division kinetics, which will lead to a

better understanding of the underlying dynamics of morphogenesis. In this work, we have described

an automated spatio-temporal registration method of 4D live imaging stacks of tightly packed cells,

and this method is suitable across tissues which have this spatial organization of the cells in a neigh-

borhood. The proposed registration method first finds the best image slice correspondence from

consecutive image stacks. Then our proposed landmark-based registration method uses local graph-

based approach to automatically find corresponding landmark pairs in the images, and finally the

registration parameters computed on the selected image pairs are used to register the entire image

stack. The proposed registration algorithm combined with an existing tracking method is tested on

multiple confocal image stacks of Arabidopsis shoot apical meristem and the results show that it
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significantly improves the accuracy of cell lineages and division statistics.
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Chapter 4

Automated count of mosquitoes

4.1 Introduction

Object counting is a very common task frequently encountered in biology, remote sens-

ing and surveillance data analysis. The counted objects are used to do quantitative and qualitative

analysis. Many methods rely on manual counting of the objects, which is extremely tedious and

error-prone. Automatic counting of objects has been done in many different applications, such as

counting cells in microscopic images [2,3,19,49], monitoring crowds in surveillance systems [6,23],

counting the number of trees in an image of a forest [8, 16], fish population estimation and fish

species classification in marine science research [20, 41], etc. Automatic counting becomes chal-

lenging when different objects are not easily distinguishable, and surrounded by noisy background.

In addition, different lab conditions bring in new scenarios for which available counting methods are

not applicable and new approaches are needed. In this work we present an automated object count-

ing method for counting mosquitoes captured in video. We demonstrate our methods on multiple

videos collected by entomologists in their labs and which have been, hitherto, analyzed manually.
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Mosquitoes and other blood-feeding insects transmit deadly diseases such as malaria,

West Nile fever, Yellow fever, and sleeping sickness to hundreds of millions of people, causing

severe suffering and more than a million deaths each year. Biologists perform different experiments

on mosquitoes to find solutions to this very important problem. One of these experiments aims

to discover the reaction of mosquitoes around different odors, for which a special environment

called arm-in-cage is created and the mosquitoes’ behavior is captured in a video. The count of the

mosquitoes is used to describe the interest of the mosquitoes to each odor. In this work we develop

an automated object counting method that efficiently counts the number of mosquitoes. As shown

in section 4.4 our automated method provides very close to manually obtained ground-truth results.

In our automated approach the softmax classifier with a sliding window technique is used

to detect mosquitoes. The over-detection resulting from the sliding window technique is eliminated

by the NMS (non-maxima suppression) method. The results of the NMS method correspond to the

final mosquito counts. Currently, the counting of the mosquitoes is done manually by biologists, but

the continuous counting by the human observer is time-consuming, leads to eye fatigue and affects

the accuracy of results. In addition, the available experimental setup gives the opportunity to gather

a lot of data whereas only a small amount is being analyzed by the biologists, resulting in slowing

down the findings of important discoveries. Our automated mosquito counting method will help

biologists to make inferences from their entire data, and discover new and useful findings about

mosquitoes that could have a big impact on human health.

The rest of this work is organized as follows: section 4.2 reviews the related works. Sec-

tion 4.3.2 describes the methodology of our work. Section 4.4 contains experimental results and

analysis. Finally, section 4.5 concludes this work.
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4.2 Literature Review

Object counting has huge applications in a wide variety of fields, where different types of

objects (cells, people, insects, flies etc.) are counted. Object counting becomes challenging when

different objects are not easily distinguishable, vary in size and surrounded by noisy background.

Several methods for automatically counting the objects of interest have been proposed [29] which

can be divided into the following categories; counting by detection, counting by regression, counting

by similarity grouping. Counting by detection approaches depend on object detection in the image,

where the number of detections represents the final count of objects. The main procedure of object

detection is to detect the objects in a local area and then clear out those detections into an individual

one for each object by applying non-maximum suppression [14], thresholding, or making some

assumptions about the relations of the object parts [7, 28, 52]. Segmentation (level set, watershed

[42], etc.) and background subtraction are another approaches to be used to detect objects in an

image [6, 27, 54]. The simplest background subtraction technique is capturing the same scene with

the objects present and absent, under the exact same conditions, and then subtracting the first image

from the second. Background subtraction technique is very sensitive to background changes and

may produce miss detections. These counting by detection methods achieve the best results with

situations when there are small number of objects in images. To avoid the object detection in the

counting problem regression analysis is used. In case of counting by regression, a direct mapping

is learned between image characteristics and the number of objects [26]. Counting by similarity

grouping is mostly acquired by self-similarity grouping [4] or motion similarity grouping [44],

which is especially useful in counting tasks that are too challenging for object detection, such as

crowded scene [6, 23]. However, this counting methods have very limited accuracy.
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In [22], the authors present a detailed review of different kinds of tracking methods for

tracking insects under different lab conditions. The conditions that we have are very different from

any of these methods. 3DTracker,Ctrax,Flydra, idTracker softwares from [22] require contstant

and uncluttered background which is not the case with our dataset and results in need to generate

a different approach. To detect the objects for further tracking, [22] uses background subtraction

method which is applicable with constant background. In [43], the authors use laser systems for

identification and tracking flying insects, detects the insects in the images by background subtraction

method as well. The videos, that are generated with arm-in-cage experimental setup contain small

mosquitoes that are moving on an odor treatment mesh that has very small openings, so any small

errors in background subtraction method will lead to mosquito miscount. In this work, we provide

a different approach to identify and count mosquitoes in these videos.

ImageJ sofware [1] has been used to count different objects [25, 37, 48]. We have used

ImageJ to count number of mosquitoes from our videos and compared the results with our results

obtained with automated method provided in this work. Our automated method performed better on

different aspects: our method provided more accurate results, our method is completely automated,

whereas with imageJ majority of the steps are manual.

4.3 Methods

In this section we present the special setup of our experiments, which is followed by

detailed explanation of our methodology.
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4.3.1 Experimental Setup

Arm-in-Cage experiments were performed with 40 mated A. aegypti female mosquitoes

held in 30cm × 30cm × 30cm cages with a glass top. A human arm was inserted in a glove con-

taining a window covered with a double-layer of netting. Attraction towards the arm was measured

using video recordings which was done through the glass top. Each test compound solution was

applied evenly to a white rectangular 7cm × 6cm polyester netting (mesh size 26 × 22 holes per

square inch) in a glass petri-dish and suspended in the air for 30 minutes to allow solvent evapora-

tion. A nitrile glove (Sol-vex) was modified such that a 5.8cm × 5cm window was present for skin

odour exposure. A set of magnetic window frames were designed to secure the treated net ∼ 1.5

mm above the skin, and a second untreated netting ∼ 4.5 mm above the treated net in a manner so

that mosquitoes were attracted to skin emanations in the open window but unable to contact treated

Figure 4.1: A) Arm-in-cage experimental setup, B)Assembly of the glove: a rubber glove with a
window cut into the hand, a magnet glued around the cut window, a control or test odor treatment
mesh, three spacer magnets that prevent mosquitoes from biting through to the hand, untreated mesh
to prevent mosquitoes from touching the treated mesh, and finally a top magnet. One metal clip is
then used on each side of the stack to further reinforce the arrangement of magnets and mesh.

nets with tarsi (leg segment), or contact and cut or pass through skin (Figure 4.1). Additionally the
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test compound had minimal contact with skin. A clean set of gloves and magnets were used for

every trial. Care was taken that the experimenter did not use cosmetics, soap, etc. on arms. For

each trial the arm was inserted for 5 min and the number of mosquitoes landing or escaping the test

window was recorded on video for a 5-min period. No cage was tested more than once within 1

hour of a testing session and not more than twice on any single day. The details of the experimental

setup are presented in [24].

In Figure 4.2 are shown three different examples from three different videos of arm-in-

cage experimental setup.

4.3.2 Methodology

We now present a detailed description of the proposed methodology. A block diagram of

the proposed system is shown in Figure 4.3. First, from each frame the ROI (Region of Interest) is

extracted. Next, the mosquitoes present in the ROI are detected by scanning a classifier across the

image in both horizontal and vertical directions. This stage may result in generating over-detections

for a mosquito. In the third stage non-maxima suppression is applied to remove over-detection of

each mosquito, and finally the number of mosquitoes is counted.

4.3.3 ROI Extraction

As can be seen in Figure 4.3A, our interest is in counting the number of mosquitoes in the

mesh area of the frame, inside the black magnet ends. To find that ROI from a frame we apply the

Sobel edge detector. The Sobel operator performs a 2-D spatial gradient measurement on an image

and so emphasizes regions of high spatial frequency that correspond to edges.

The Sobel operator consists of a pair of 3× 3 convolution kernels where one kernel is the
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Figure 4.2: A) Different frames from three different videos. Each row is presenting frames from
the video and each column is a frame captured during the first minute, third minute and fifth minute
accordingly.
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Figure 4.3: Block diagram of the proposed system: A) original image, B) result of ROI extrac-
tion from the original image, C) initial mosquito detections, D) non-overlapping detections of
mosquitoes, E) final count of mosquitoes in the original image.

90 rotation of the other. Each of these kernels are applied separately to the input image and they

produce measurements (Gx and Gy) of the gradient component in each orientation (horizontally

and vertically). Then these two gradient measurements are combined together to find the absolute

magnitude of the gradient (G) at each point:
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√
G2
x +G2
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Figure 4.4 shows in detail all the steps of the ROI extraction applied to a frame from our

dataset. As can be seen in Figure 4.4B, applying of the Sobel edge detection on our dataset separates

the ROI from the rest of the image, but the edge found is not a closed outer boundery edge of the

ROI. Next we find the convex hull of the detected edge points (Figure 4.4C) which computes the

outer boundery lines of the ROI. We finally compute the minimum bounding quadrilateral of points

representing the convex hull of the ROI (Figure 4.4D) which ends up being the quadrilateral that
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tightly contains the ROI. The rest of our approach will be applied on the computed ROI.

Figure 4.4: The ROI extraction procedure step-by-step: A) original image, B) the Sobel Edge
detector applied on the original image, on the right bottom zoomed in portion of the image, C) the
Convex hull of the Sobel edge detection points, D) the minimum bounding quadrilateral of points
representing the convex hull of the ROI in red, E) the final ROI boundary plotted on the original
image

4.3.4 Detection of Mosquitoes in ROI

The main challenge in object detection is the amount of variation in visual appearance.

In our dataset mosquitoes vary from the background in their shape and color. To differentiate a

mosquito from a background we used the HSV (Hue, Saturation and Value) and CIELab color

spaces features and the HOG (histogram of oriented gradients) shape feature. On the ROI we

trained a softmax classifier (multinomial logistic regression) using the specified features.

The softmax classifier has two major components: a score function that maps the pixel

values of an image to confidence scores for each class, and a loss function that quantifies the agree-

ment between the predicted scores and the ground truth labels. In other words the loss function is

used to measure the quality of the predictions. Below are the details of each of the functions.

Let us assume a training dataset of N image patches, labeled x1, . . . , xN , each having

dimensionD, andK distinct classes, numbered {1, . . . ,K}. Each image patch xi ∈ RD is assigned

a label yi ∈ {1, . . . ,K} indicating the class to which the image belongs. In our case we have a

training set of N = 1000 images, each of dimensions D = 480 × 720 × 3, and K = 2 classes

indicating whether an image patch contains a mosquito or not.
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Score function: The score function f maps each image patch x ∈ RD to a list of K num-

bers which represent the confidence scores for the image to have the corresponding label (mosquito

or not). The function f is defined by

f(x,W, b) = Wx+ b. (4.2)

For each image patch it computes the scores of the K classes as weighted sums of all of

the raw image’s pixel values across all 3 of its color channels. In equation 4.2 the parameter W is a

K ×D weight matrix where every row of W is a classifier for one of the classes and b is a K × 1

column vector. The training data is used to learn the parameters W, b. These parameters should be

such that the correct class of an image patch has a score that is higher than the scores of incorrect

classes. The choice of these parameters are described later.

Probabilistic interpretation of the scores: There is a probabilistic interpretation of the

score function in which the scores given to an image patch can be thought to represent the un-

normalized log probabilities of the image belonging to the various classes. More precisely, if the

image patch x has score vector f(x,W, b) = (z1, . . . , zK)t, then the numbers z1, . . . , zK can be

interpreted to mean that the probability that x belongs to class j is proportional to ezj for j ∈

{1, 2, . . . ,K}. Normalizing to get the probabilities to add to 1, we obtain the distribution

P (image x belongs to class j) =
ezj∑K
l=1 e

zl
.

Let us denote this distribution Px.

Loss function: The purpose of the loss function is to measure how good a particular choice

of the parameters W and b is. For a given choice of W, b, using the probabilistic interpretation,
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f(x,W, b) will give the probability of the image patch x being in each possible class. However,

for our training data {x1, . . . , xN} we know to which class each xi actually belongs. The actual

knowledge of the class can be specified by the distribution Qx which assigns probability 1 to the

correct class and probability 0 to the other classes. The loss function should measure how far the

distribution Px is from Qx for our training data. A good measure for this is the Kullback Leibler

divergence

DKL(Q‖P ) =
∑
j

Q(j) log
Q(j)

P (j)

from information theory, which measures the amount of information gained when one revises from

the prior distribution P to the posterior distribution Q.

Since in our case the entropy
∑

j Qx(j) logQx(j) ofQx is zero, this simplifies to the loss

function

L(x) =

K∑
j=1

−Qx(j) log
Qx(j)

Px(j)
= − log

ezm∑K
l=1 e

zl
,

where m is the correct class of the image patch x. This function is always non-negative, and is

zero only when Px and Qx match. Thus it is a good measure of how far Px is from the correct

distribution Qx.

Now the goal is to solve the optimization problem of finding parameters W and b which

minimize the total loss function
∑N

i=1 L(xi) for all the image patches in our training data. To

solve the optimization problem, gradient descent is applied on the loss function (the loss function is

repeatedly reevaluated by moving the parameters along a gradient).

Once the softmax classifier is trained we apply a classifier to subwindows of the image,

we apply the sliding window technique to classify each subwindow as a mosquito or a background.

Usually sliding window based approaches produce multiple windows close to the correct location
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of objects, which is a result of the visual correlation of close-by windows (Figure 4.5B). So to find

the correct number of mosquitoes in images we need to obtain only one detection per mosquito.

A B C

Figure 4.5: Results of the softmax classifier and the final counts: A) Original image, B) over-
detections of mosquitoes obtained by the softmax Classifier, C) final counts of mosquitoes after
applying non-maxima suppression on over-detections.

4.3.5 Non-maxima suppression (NMS) and final counts

NMS is a strategy for managing the over-detection. The goal of NMS is to avoid multiple

bounding boxes for the same object, avoid merging two objects as one and avoid missing objects in

the image. The input for the NMS method is: the list of all the bounding boxes, the confidence of

each bounding box containing a mosquito and a parameter overlap. In our case the confidence of a

bounding box is set to be the probability value that was computed during classification. Note that,

if the probability value returned by the softmax classifier is high then there is a high possibility that

the bounding box contains a mosquito, accordingly the confidence of that bounding box should be

high as well. The pseudocode of the NMS method is shown below.

Figure 4.6 shows results of how NMS cleans up the over-detections of the mosquitoes.

The number of bounding boxes returned by the NMS method represents the final count of

mosquitoes in the current frame (Figure 4.5C).
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Figure 4.6: The results of the NMS technique on the over detections of the mosquitoes on two
different images from different videos. First row - original frames, second row - over-detections of
mosquitoes generated by softmax classifier, third row - results of NMS clean up of over-detections
of mosquitoes.

4.4 Experimental Results

In this section we evaluate the performance of the proposed automatic mosquito counting

method and show numerical results.

We have tested our proposed automated mosquito count method on 5 recordings of Arm-

in-Cage experiments with each having about 10000 frames. There were 1000 frames chosen ran-

domly from all of the 5 datasets and the mosquitoes were counted manually from those frames.

Instantaneous Count Results - We ran our automatic method on all of 5 datasets and
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Input: list of boxes, confidence;
Result: list of picked boxes
sort the boxes in ascending order of confidence;
clear the list of picked boxes;
while there are boxes left do

add the last box to the list of picked boxes;
compute the intersections of the remaining boxes with the last one;
compute the areas of the intersections;
compute the ratios of the area of the intersection and the areas of the remaining
boxes;
remove from the list of boxes all the ones for which the ratio is larger than the
allowed overlap;

end
return the picked boxes;

Algorithm 1: Pseudocode of the NMS method.

computed the number of mosquitoes in each frame of each video. We randomly selected 2 per-

centage of frames to manually label the mosquitoes in each frame. Figure 4.7 shows the number

of mosquitoes computed from each frame of all 5 different videos, automated counted results are

shown in blue and manual results are shown in red. As the graph shows, the counts of mosquitoes

of our method are following the trend of counts.

Statistical Error Analysis - To evaluate the results in more detail we looked at the error

(the difference of the counts of the automatic and manual methods) distribution from randomly

selected 2 percentage of frames from all 5 datasets. The error distribution is provided in Figure

4.8. The numerical analysis showed that our method is on average 0.56 mosquitoes biased towards

estimating under-counts compared to the real counts. Also, the root-sqare-mean error (RMS) is 1.7

and the mean percentage error (MPE) is 1.85%.

We also took manual counts biologists have had and then we compared it against ours.

Those numbers are shown in Figure 4.9

We also took manual mosquito counts biologists have generated and worked with, and
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A

B

Figure 4.7: Number of mosquitoes counted on each frame of 5 different videos, with different
experimental setups. In each subimage blue bars represent the mosquito counts generated by our
automated method and red bars represent manual mosquito counts. It can be seen that counts gen-
erated by our automated method follow the trends of manual counts.
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Figure 4.8: Error(the difference of the count of the automatic method and the manual count) distri-
bution of the mosquito counts from randomly selected 2 percentage of frames from all 5 datasets.
Our method is on average 0.56 mosquitoes biased towards estimating under-counts compared to the
manual counts of mosquitoes.

compared those with our results. As mentioned earlier extracting information by visual inspection

and manual measurement is labor intensive, hence biologists worked with limited results. We com-

pared the average number of mosquitoes present in consecutive frames for 5 seconds with manual

counts generated by biologists. Figure 4.9 shows the average results on 4 different videos. We

combined the average results of all 5 datasets. The RMS for all 5 videos is 1.76. The MPE of all 5

videos is −0.45%.

Visual Examples - Figure 4.10 demonstrates the visual results of our automatic method.

The figure shows examples of good, average and bad performance of our method. The count of the

mosquitoes is expressed by the number of mosquitoes that have been detected by a green box. To

show the performance of our method we have manually drawn red circles around those mosquitoes

that were not counted by our method. As can be seen in the last row of the figure when there are

very crowded areas our method tends to misdetect some mosquitoes. More specifically after the

initial detection of mosquitoes using the softmax classifier is established, the NMS technique is

used to have single detection of each mosquito. In case of having mosquitoes crowded together, the
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Figure 4.9: Average number of mosquitoes present in consecutive frames for 5 seconds in 13 frames
for 4 different videos. In all subimages blue bars represent manual counts used by biologists and
red bars represent the average counts generated by our automated method.

NMS may merge detections of several very close mosquitoes into one (Figure 4.10 last row). In our

analysis of the results, this is the main source of error from the ground truth. However, this occurs

rarely and has little effect on the overall statistical performance.

4.5 Conclusion

Mosquitoes and other blood-feeding insects are considered one of the most dangerous

creatures on the planet because of their ability to spread deadly diseases. Quantitative analysis

of a mosquito’s attraction to different odors is very important. It can lead to discoveries about

mosquitoes that could have a big impact on human health. In this work we present an automated

60



object counting method for counting mosquitoes captured in video, whereas previously the counting

was done manually, which is not sufficient for quantitative analysis. We demonstrate our method on

multiple videos collected by entomologists. Provided results show that our method can accurately

count mosquitoes present in the video. Fast and accurate method for estimating mosquito counts

would be of considerable importance in entomology.
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Figure 4.10: Examples showing good, average and bad performances of our method. Our method
was able to correctly count the number of mosquitoes present in the first row. In the second row, the
red circles show there were one or two miscounts, and the third row demonstrates frames for which
our method found 4 or 5 mosquitoes less then the actual counts.
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Chapter 5

Conclusion and Future Work

5.1 Thesis Summary

In this thesis, we have proposed methods on how to do image analysis in different bio-

logical applications, including gathering of cell growth and division statistics in images taken by

Confocal Laser Scanning Microscopy and quantitative analysis of a mosquito’s attraction to differ-

ent experimental conditions from videos captured under spatial environment. The contribution of

our work can be broken down in the following manner.

In Chapter 2, we proposed a single framework that entails segmentation and tracking of

plant cell images. It is able to segment and find the correspondence of cells in spatio-temporal image

stacks obtained using CLSM. We demonstrated a procedure to optimally choose the parameters in

the watershed algorithm for high quality segmentation results. After the segmentation, we use local

graph matching, which uses geometric structure and topology of the relative positions of the cells, to

track cells and identify cell divisions. We tested this framework on multiple datasets and it provided

significantly longer cell lineages and more comprehensive identification of cell divisions.
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In Chapter 3, to further improve the cell growth and division statistics we presented a fully

automated registration method of live imaging stacks that takes care of both temporal and spatial

misalignments in 4D image stacks. We presented a novel landmark selection methodology. The

best image slice correspondences are formed from consecutive image stacks. Then it uses local

graph-based approach to automatically find corresponding landmark pairs, and finally the registra-

tion parameters are used to register the entire image stack. The proposed registration algorithm

combined with an existing tracking method is tested on multiple image stacks. The results show

that it significantly improves the accuracy of cell lineages and division statistics.

Finally, in Chapter 4, we proposed a method to automatically count number of mosquitoes

in videos captured in special arm-in-cage environment. It uses the softmax classifier with a sliding

window technique to detect the mosquitoes and eliminates the over-detections resulting from the

sliding window technique by non-maximum suppression method. The proposed automated method

has been applied on different datasets and showed very good and consistent counts of mosquitoes.

5.2 Future Work

Methods have shown that an adaptive framework, where the output of one module acts

as an indicator of the quality for another and can be improved to obtain better results. They have

shown that adaptive approach significantly improves both tracking and segmentation when com-

pared to an open loop framework in which segmentation and tracking modules operate separately.

Since in image analysis pipeline, all three modules, segmentation, registration and tracking, have

very important role and depend on one another, we would like to explore generating an adaptive

segmentation, registration and tracking approach to further improve cell growth and division statis-
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tics. Also, our proposed methods on cell segmentation and image registration have been applied

on tightly clustered cells of Arabidopsis plant’s shoot apical meristem. We would like to explore

the applications of these approaches to other densely clustered plant and animal tissues, to generate

different cell division and growth statistics.

The proposed mosquito counting framework provides very accurate results. In future, we

would like extend our work further and look into mosquito tracking problem, which will lead us

to gather more statistical information about the mosquito’s behavior under different experimental

conditions. The results of this study would be of considerable biological importance.
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