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ABSTRACT OF THE DISSERTATION

Scene Analysis, Control and Communication in Distributed Camera Networks

by

Bi Song

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2009

Professor Amit K. Roy-Chowdhury, Chairperson

As networks of video cameras are being installed in many applications, modeling and in-

ference strategies in video networks have captured more and more interest. There are

many challenge problems, such as (i) traditional computer vision challenges in tracking and

recognition, robustness to pose, illumination, occlusion, clutter; recognition of objects and

activities; (ii) aggregating local information to obtain stable, long-term tracks of objects;

(iii) cooperative camera control algorithms for multi-resolution target acquisition; (iv) dis-

tributed processing and scene analysis and (v) communication in a distributed manner.

The overall aim of this thesis is to study the core issues in network-centric processing,

control and communication in a multi-camera network, including frameworks for tracking

people in video through changes of activities, tracking in a non-overlapping camera network,

decentralized control and tracking in a camera network, and distributed video compression.

In our work, we address the problem of tracking in camera networks by dividing it

into two parts: tracking people through changes in activities and tracking multiple targets

in a network of non-overlapping cameras. We present a novel framework for tracking a long

sequence of human activities, including the time instances of change from one activity to

the next, using a non-linear switching dynamical feedback system. Also, a multi-objective

optimization framework by combining short term feature correspondences across the cam-

eras with long-term feature dependency models is proposed to take care of tracking in a

non-overlapping network.

We also deal with the problem of decentralized, cooperative control of a camera
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network and distributed multi-target tracking in a such network of self-configuring pan-

tilt-zoom cameras. This control cannot be based on separate analysis of the sensed video

in each camera. They must act collaboratively to be able to acquire multiple targets at

different resolutions. Our research focuses on developing accurate and efficient camera

control algorithms in such scenarios using game theory. For tracking the targets as they

move through the area covered by the cameras, we propose a special application of the

distributed estimation algorithm known as Kalman-Consensus filter through which each

camera comes to a consensus with its neighboring cameras about the actual state of the

target.

Finally, we present a framework for multi-terminal video compression (MTVC)

that exploits the geometric constraints between cameras with overlapping fields of view,

and then uses distributed source coding on corresponding points in two or more views.

Our proposed method is composed of two parts - a Distributed Motion Estimation (DME)

algorithm and a Distributed Source Coding (DSC) algorithm.
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Chapter 1

Introduction

Networks of video cameras are being installed in many applications, e.g., video

surveillance, national and homeland security, assisted living facilities, etc. It is essential to

develop automated tools for analyzing the data collected from these cameras and summa-

rizing them in a manner that is meaningful to the end user. One of the most basic tasks in

this regard is to be able to track people performing different activities in a single view as

well as track objects across the network. A recent review [35] suggested that tracking long

sequences of multiple activities is still a challenging problem. Also, tracking across net-

work introduces certain challenges that are unique to this particular application scenario,

in addition to existing challenges in tracking objects like pose and illumination variations,

occlusion, clutter and sensor noise. The problem is important for applications in wide area

surveillance, digital forensics and video summarization, among others.

Moreover, it is natural to expect that these camera networks would be used to

track targets at multiple resolutions, e.g., multiple people, a single person, a face. For

efficiency and maximum resource utilization, it is desirable to actively control the cameras

so as to track the targets based on the requirements of the scene being analyzed. It would be

prohibitively expensive to have a static setup that would cater to all possible situations. It

is also desirable that the tracking and control mechanism be distributed due to constraints

of bandwidth, secure transmission facilities, and difficulty in analyzing a huge amount of

data centrally. In such situations, the cameras would have to act as autonomous agents and

decisions would have to be taken in a distributed manner.

Meanwhile, transmission of video data from multiple sensors over a wireless net-
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work requires enormous amount of bandwidth, and could easily overwhelm the system.

However, by exploiting the redundancy between the video data collected by different cam-

eras, in addition to the inherent temporal and spatial redundancy within each video se-

quence, the required bandwidth can be significantly reduced. As we show in this thesis,

it is possible to integrate distributed source coding concepts with video analysis tools that

exploit the inherent geometrical constraints between two views.

1.1 Literature Review

A review of recent work in human activity analysis can be found in [35]. Based

on the conclusions of [35] and a survey of some of recent representative methods on event

analysis [6, 32, 37, 46, 67, 70, 84, 89, 95, 98, 101, 103], we find that most existing methods

handle events of short duration with moderate changes in illumination, scene clutter and

occlusion. A few techniques have studied the problem of tracking multi-activity sequences

using the idea of simultaneous tracking and recognition. In [63], the idea of integrated

tracking and recognition of human activities using particle filters was proposed. Simultane-

ous tracking of moving people and recognition of their activities has also been performed in

many applications using a Dynamic Bayesian Network (DBN) model [9, 13, 52, 91]. How-

ever, all these methods require a-priori knowledge of the transition probability matrix for

switching between different activities. Designing such a transition matrix for uncontrolled

environments like video surveillance may be difficult (since the class of possible activities

is large and can change arbitrarily from one to another) and the process has to repeat for

each application scenario.

Some of the existing methods on tracking in a camera network include [36, 39,

44]. The authors in [74] used location and velocity of objects moving across multiple non-

overlapping cameras to estimate the calibration parameters of the cameras and the target’s

trajectory. In [49], a particle filter was used to switch between track prediction between

non-overlapping cameras and tracking within a camera. In [43], the authors presented a

method for tracking in overlapping stationary and pan-tilt-zoom cameras by maximizing a

joint motion and appearance probability model. A Bayesian formulation of the problem of

reconstructing the path of objects across multiple non-overlapping cameras was presented

in [44] using color histograms for object appearance. A graph-theoretic framework for
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addressing the problem of tracking in a network of cameras was presented in [39].

A related work that deals with tracking targets in a camera network with PTZ

cameras is [73]. Here, the authors proposed a mixture between a distributed and a central-

ized scheme using both static and PTZ cameras in a virtual camera network environment. In

[18], a solution to the problem of optimal camera placement given some coverage constraints

was presented and can be used to come up with an initial camera configuration. A broad

framework for the vehicle-target assignment problem using game theory was presented in

[2].

There has recently been significant effort in application of DSC (Distributed Source

Coding) techniques to video data. A recent method [90] attempts to exploit the redundancy

between images available at different sensor nodes by independently encoding the images in

low resolution and decoding using super-resolution techniques. Another recent work [25, 26]

developed a distributed image coding technique for a multi-camera setting. A recent paper

considers inter- and intra-sensor correlation for transmission after making some simplifying

assumptions about the locations of the sensors and not making explicit use of the geometrical

transformations relating the images in various sensors [12]. The work in [96] also addresses

multiterminal video coding in its most general sense. For a setting where feedback from the

central decoder to one of the encoders is allowed, [21] provides a mechanism for efficient

exploitation of inter-sensor redundancy.

1.2 Contributions of the Thesis

In this thesis, we consider some of the core problems in network-centric processing,

control and communication in a camera network. Specifically, the thesis makes the following

original contributions.

• Tracking in Multi-Activity Sequences: Most existing methods, which study

tracking long sequences of multiple activities, require a-priori knowledge of the transition

probability matrix for switching between different activities. However, designing such a

transition matrix may be difficult. In contrast to the open-loop approach, we propose to

use change detection measures (e.g., tracking error) to detect transitions between activities,

and use them as a feedback signal in a closed-loop system. The main advantages of our

approach are: significant computational savings in tracking changes of body posture using
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the particle filtering framework; obviating the need to learn a complex transition matrix;

and higher efficiency and accuracy in applications where such a transition matrix is not

known.

• Framework for Tracking across Non-Overlapping Camera Network:

We present a robust framework for tracking multiple objects in a non-overlapping camera

network whereby feature correspondences are modeled statistically and adapted in time by

considering the long-term dependencies between them. We pose the problem of tracking

in a camera network as a multi-objective optimization problem. Adapting the feature

correspondence computations by modeling the long-term dependencies between them and

then obtaining the statistically optimal paths for each person differentiates our approach

from existing ones. It provides a solution that is robust to errors in feature extraction,

correspondence and environmental conditions.

•Game Theory based Control in Distributed PTZ Camera Network: We

deal with the problem of decentralized, cooperative control of a camera network. We focus

on applications where events unfold over a large geographic area and need to be analyzed by

multiple cameras or other kinds of imaging sensors. There is no central unit accumulating

and analyzing all the data. A camera control framework based on game theoretical ideas

allowed for viewing some targets at a high resolution while keeping the entire area under

surveillance covered at an acceptable resolution.

• Distributed Multi-Target Tracking Using Kalman-Consensus Filter:

We present a robust approach to distributed multi-target tracking in a network of self-

configuring cameras. A distributed Kalman-Consensus filtering approach was used together

with a dynamic network topology for tracking persistently multiple targets across several

camera views in an area under surveillance viewed by a dynamic camera network.

• Multi-Terminal Video Compression: we develop the framework for a novel

multi-terminal video coding (MTVC) algorithm combining distributed source coding (DSC)

and computer vision techniques that impose geometrical constraints between the observed

views of the two cameras. This lossy compression scheme takes into account the correlation

between the video sensor data, and at the same time keeps the communication between the

sensors at a minimum.
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1.3 Organizations of the Thesis

The thesis is organized along the lines of the previous section. In Chapter 2,

we present the close-loop framework for tracking multi-activity sequences with unknown

transition probabilities. A multi-objective optimization framework for tracking in a non-

overlapping camera network is described in Chapter 3. The decentralized camera network

control and tracking algorithm is presented in Chapter 4. Chapter 5 describes the multi-

terminal video compression algorithm by integrating distributed source coding with geo-

metrical constraints.
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Chapter 2

Closed-Loop Tracing and Change

Detection in Multi-Activity

Sequences

2.1 Introduction

Video sequences often have people performing multiple activities one after an-

other. For example, Fig. 2.1 shows some frames from an educational Yoga video where the

instructor transits continuously between different postures.

A recent review [35] suggested that tracking long sequences of multiple activities

is still a challenging problem. A few existing papers like [63, 9, 52] have studied this

problem. However, all these methods require a-priori knowledge of the transition probability

matrix for switching between different activities. Designing such a transition matrix for

uncontrolled environments like video surveillance may be difficult, since the class of possible

activities is large and can change arbitrarily from one to another, and the process has to

repeat for each application scenario. For a non-overlapping camera network, such a matrix

may not be very useful because we do not know what the person may have been doing

when not visible. This motivated us to design methods that can track long multi-activity

sequences without the need to learn a transition probability matrix.

In this chapter, we propose such a method for tracking of human activities con-

sisting of the following steps which take place in a loop: (i) modeling the appearance and
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motion of single activity sequences and tracking them, (ii) detecting a change from one

sequence to the next, and (iii) automatically reinitializing after the change and starting

tracking. A diagram explaining this is shown in Fig. 2.1.

Figure 2.1: Framework for closed-loop tracking and an application scenario.

Activities are represented mathematically using dynamical models defined on the

shape of the contour of the human body, motivated by the fact that the shape of the body

changes in the course of various activities. The shape representation makes the method in-

sensitive to camera scale changes and translation. Tracking is performed using an auxiliary

particle filter [71], incorporating piecewise stationary dynamical models and a nonlinear

observation equation that relates the shape, color and motion with the input image. The

reason for choosing a particle filter over an extended Kalman filter (EKF) is multimodal

observation likelihood due to either background clutter or partial occlusions. Change detec-

tion measures, like estimated tracking error (TE) [4], are used to detect when the activity

deviates from the current model. When this happens, a new dynamical model is auto-

matically chosen and used to reinitialize the tracking. We show the applicability of this

framework to track multi-activity sequences within the view of a single camera, as well as

between a collection of non-overlapping cameras.
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2.1.1 Relation to Previous Work and Contributions

A review of recent work in human activity analysis can be found in [35]. Based

on the conclusions of [35] and a survey of some of recent representative methods on event

analysis [6, 32, 37, 46, 67, 70, 84, 89, 95, 98, 101, 103], we find that most existing methods

handle events of short duration with moderate changes in illumination, scene clutter and

occlusion.

A few techniques have studied the problem of tracking multi-activity sequences

using the idea of simultaneous tracking and recognition. In [104], the authors presented

methods whereby the identity of a person, based on face recognition, is obtained while

tracking the face over the whole sequence. However, the identity of a face in a video se-

quence is a static parameter which can be estimated by integrating over the entire sequence,

whereas activities are inherently dynamic and hence the recognition needs to evolve in time.

Simultaneous tracking and recognition was also the theme in [34], but here the authors used

color and depth information to create a “plan-view” map based on which tracking is done,

and activity recognition was carried out using pose estimates; they did not consider the

dynamics inherent in any activity. An integrated approach to tracking and recognition was

adopted in [48, 91], though for different kinds of sensors. Video surveillance methods ad-

dress the problems of tracking and recognition, but usually the tracks are obtained first,

followed by recognition [51, 29, 89]. In [63], the idea of integrated tracking and recognition

of human activities using particle filters was proposed. Simultaneous tracking of moving

persons and recognition of their activities has also been performed in many applications

using a Dynamic Bayesian Network (DBN) model [9, 13, 52]. Methods for representing

complex activity patterns have been presented using hierarchical hidden Markov models

[61] . However, all these methods require a-priori knowledge of the transition probability

matrix (or a related function) for switching between different activity models. The method

in [41] provides a framework for learning such a transition matrix iteratively, as new data

is available. However, our focus is on applications where such a matrix cannot be learned

or is not very useful.

In contrast to this open-loop approach, we propose to use change detection mea-

sures (e.g., tracking error) to detect transitions between activities, and use them as a feedback

signal in a system. The main advantages of our approach are:

(i) significant computational savings in tracking changes of body posture using the particle
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filtering framework,

(ii) obviating the need to learn a complex transition matrix, and

(iii) higher efficiency and accuracy in applications where such a transition matrix is not

known.

We show later that this method is significantly more efficient than HMM based methods

with uniform transition probabilities (which is the best we can do in situations where more

precise information cannot be obtained).

For modeling activities, we use a discrete shape representation which is different

from level set representations of shapes such as those described in [38, 75]. The level set

approach is theoretically infinite (and in practice large time varying finite) dimensional,

and hence defining dynamics on and sampling from such a large dimensional space is com-

putationally expensive. This is overcome through the use of various approximate tracking

solutions, as in [38, 75]. Level sets, however, have the advantage that they can adjust to

large changes in the shape and topology, which is usually problematic for discrete represen-

tations. For large changes in shape, we show that it is possible to overcome this problem

for many activity recognition applications by using piecewise stationary dynamical models.

Moreover, a discrete representation allows adoption of the overall framework to different

descriptions of human body structure (e.g., sampled contours, joint angles, stick figure mod-

els, etc.). We describe our approach on the sampled contour (similar to [89]), which can be

easily replaced by other features on the image.

2.2 Modeling of Human Activities

We use a composite feature vector comprised of shape, motion and color for track-

ing. We model human activities by the shape of the contour of the body and its motion

(rigid and nonrigid) over time. We model the motion/deformation of a deforming shape as

scaled Euclidean motion (i.e., translation, rotation, isotropic scaling) of a “mean shape” plus

its non-rigid deformation [97]. The term “shape activity” [89] is used to denote a particular

stochastic model for shape deformation. We define a “stationary shape activity” (SSA) as

one for which the mean shape remains constant with time and the deformation model is

stationary. We use a piecewise stationary shape activity (PSSA) model [88] to represent

a shape activity with slowly varying “mean shape” (approximated as piecewise constant).
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Fig. 2.2 shows an example of an activity represented using the PSSA model. The overall

approach to model human activities is similar to Active Shape Models [10] with the shape

being defined in Kendall’s shape space. Also, other models for describing human activities,

like articulated structures [85, 94], can be easily adopted. However this is not a focus of

our work. Our main contribution is in developing a framework for tracking multi-activity

sequences without the need for knowing transition probabilities. We adopt this particular

activity representation to demonstrate the effectiveness of the method.

Figure 2.2: Piecewise-Stationary Shape Sequences on the shape manifold which is depicted
using a circle (M), instead of a complex Ck−1 sphere. Symbols are defined in the text.

2.2.1 Discrete Shape-Based Representation

We use a discrete representation of the shape, zk
t , for a group of k landmarks on

the body contour at time t. Since the shape zk
t lies on the complex spherical manifold Ck−1

[14], we denote its tangent coordinates at a mean shape µ as vt(zt, µ) = [Ik−µµT ]zt, where

Ik is identity (we drop k for notational simplicity) [14]. The tangent space is a linearized

local approximation of shape space at µ and Euclidean distance in tangent space is a good

approximation to geodesic distance on the shape manifold for points in the vicinity of µ.

Let st, θt, at, bt denote the isotropic scale, rotation, and x and y translation, respectively, in

normalizing from the collection of landmarks to the shape space. Let us now define a state

vector Xt = [vt, st, θt, at, bt]. The configuration of landmark points is related to the shape

as h(Xt) = ztste
jθt + (at + jbt)1k, where 1k is a k dimensional vector with all 1s.
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2.2.2 Dynamical Model of Human Activities

The shape dynamics consist of the deformation and global motion of the body

contour. Let the mean shape change times be tµ1 , tµ2 , tµ3 , ... (see Fig. 2.2) and the corre-

sponding means be µ1, µ2, µ3, .... Then we have the following dynamics for the deformation:

between tµj−1 ≤ t < tµj , µt = µj−1, the dynamics is modeled by a stationary Gauss-Markov

process, i.e.,

vt(zt, µj−1) = Av,j−1vt−1(zt−1, µj−1) + nt, nt ∼ N (0,Σn), (2.1)

where Av,j−1 models the dynamics of the tangent projection, v, of the shape around µj−1,

and nt is Gaussian noise with zero mean and covariance matrix Σn. At the change time

instant, t = tµj , µt = µj and so the tangent coordinate vt needs to be recalculated in the

new tangent space, as [88]

vt(zt, µj) = [Ik − µjµj
T ]zte

jθt(zt,µj). (2.2)

To represent the Euclidean motion of the mean shape, we use a Gauss-Markov

model for log-scale, log st, and a Markov uniform model for θt, as follows:

log st = αs log st−1 + (1− αs)µs + ns,t,

log s0 ∼ N (µs, σ
2
s), ns,t ∼ N (0, σ2

r )

θt = αθθt−1 + nθ,t, nθ,t ∼ Unif(−a, a) (2.3)

which is adopted directly from [89].

2.2.3 Training

Given a training sequence of centered (translation normalized) configurations,

{Yt}T
t=1, for a particular stationary activity sub-model , the mean shape µj−1 is estimated

by Procrustes mean [14] of Yt, tµj−1 ≤ t < tµj . The scale st is the Euclidean norm of Yt.

The rotation angle is given by θt(Yt, µj−1) = −angle((Yt/st)T µj−1). The shape, zt, which

is defined on configuration, Yt, and mean shape, µj−1, is zt(Yt, µj−1) = (Yt/st)ejθt . Then
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the tangent coordinates of the shape is [14]

vt(zt, µj−1) = [Ik − µj−1µ
T
j−1]zt. (2.4)

Assuming a time invariant Markov model on vt, we can use {vt}T
t=1 to learn its

parameters as [69]

Av = Rv(1)Σ−1
v where

Σv =
1
T

T∑
t=1

vtv
T
t and Rv(1) =

1
T − 1

T∑
t=2

vtv
T
t−1

Σn =
1
T

T∑
t=1

(vt −Avvt−1)(vt −Avvt−1)T . (2.5)

Note that this is done for each stationary activity sub-model.

2.3 Observation Model for Tracking

The observation process is defined by the likelihood distribution, p(It|Xt), where

Xt is the state vector and It is the image observation at t. Our observation models were

generated by combining a model of shape with a model of the appearance.

Our shape observation is the edge image, Gt, of It. The observation likelihood

describes the probability of a set of landmark points, Γt ⊂ Gt, given the predicted state

vector, Xt = [vt, st, θt, at, bt]. Let Ŷt = h(Xt) = stzte
−jθt be the predicted configuration of

landmarks based on the dynamical model. It is assumed that a mapping, f , is known that

associates each predicted landmark of Ŷt with a point on the edges. In practice this mapping

is set up by searching for the closest edge along the normal of the predicted configuration

and this is treated as the observed landmark, Γt. Thus the shape observation likelihood is

ps(Γt|Xt) = γs exp{−
k∑

l=1

||ql − f(ql, Gt)||2}, (2.6)

where k is the shape vector dimension, ql is the lth predicted landmark, i.e., ql = Ŷt,l,

f(ql, Gt) = Γt is the nearest edge point of ql along its norm direction (i.e. the normal at ql

to the curve connecting ql and its neighbor landmarks) and γs is a normalizing factor.
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To build a color appearance model we sample the color information from the input

image It over the region covered by the predicted configuration Ŷt and get the normalized

color image [19]. For each predicted landmark, l, of Ŷt, we sample a set of a certain number

of pixels, {on, n = 1...N}l, in an elliptical region whose major axis is aligned with the local

normal at l. The color histogram associated with each landmark of Ŷt, chl, is calculated

over {on, n = 1...N}l.The appearance observation likelihood is defined as

pa(It|Xt) = γa exp{−
k∑

l=1

||B(chl, CHl)||2}, (2.7)

where k is the shape vector dimension, B(.) is the Bhattachayya distance between two

color histograms, CHl is the color histogram associated with the lth landmark of Y0 (the

initialized configuration generated from object of interest in the first frame) and γa is a

normalizing factor.

The combined observation likelihood is the product of shape and appearance ob-

servation likelihoods as

p(It|Xt) = ps(Γt|Xt)pa(It|Xt). (2.8)

2.4 Tracking and Change Detection

subsectionTracking using Auxiliary Particle Filters We use an auxiliary particle

filter (APF) for tracking [71]. Adaptive particle filters [93, 105] may also be adopted to

improve tracking accuracy. The APF with sampling/importance resampling was intro-

duced by Pitt and Shephard [71] as a variant of the standard particle filter to improve

sample efficiency. An index K for each particle (called the branch index [30]) is intro-

duced as an auxiliary variable. The sampling is performed in two steps. First draw

branch index K according to the marginal auxiliary variable weights ŵk = Pr(K = k|I1:t).

Then draw Xt from p(Xt|X(k)
t−1), the prior density based on the branch indices k. The

joint sample set is {X(j)
t ,K(j)} and the corresponding weights are updated by w

(j)
t ∝

wK(j)

t−1
Pr(It|Xt)Pr(Xt|XK(j)

t−1 )

Pr(Xt,K(j)|It)
. These are then used to get the filtering (posterior) distribution,

Pr(Xt,K = k|I1:t).
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2.4.1 Detecting Transition Points Between Activities

The activity changes within the course of a long video sequence will cause the

PF tuned to the dynamical model of a particular activity to lose track when the activity

changes. Thus the tracking error will increase when the activity changes and this can

be used to detect the change times. The tracking error (TE) [4] or prediction error is the

distance between the current observation and its prediction based on past observations. In

our observation model, TE of tracked configuration Ỹt is calculated by

TE(Ỹt, It) = TEcolor(Ỹt, It) • TEshape(Ỹt, It), (2.9)

4
=

k∑
l=1

||B(chl, CHl)||2 ·
k∑

l=1

||ql − f(ql, Gt)||2. (2.10)

We can also use expected log likelihood (ELL) as described in [81].

2.4.2 Reinitialization to New Activity Model

Once a change has been detected, the next problem is to determine the correct

activity from the class of previously learned activity models (i.e., the activity template

and its associated dynamics). This is known as the problem of model switching, and leads

to automatic reinitializaion. Denoting the switching time instance as ts, and the tracked

configuration as Ỹts (which has lost tracking), our reinitialization process is performed

automatically as follows:

1. Choose the image at a time before ts, when TE (or ELL) is low. Let Ỹref denote

the tracked configuration of this frame. The contour obtained from this configuration Ỹref

is used as a reference template, Tempref .

2. On the image at time ts, Its , choose a local region around Ỹts . Compute the

best match of Tempref in the region, and denote it as Īts(⊂ Its).

3. Use each learned dynamical model in (2.1) and its learned parameters to track

starting from Īts until a certain period of time T is reached. This period should be long

enough to contain at least half cycle of the activity. (In our experiments, we choose it to be

10 frames.) Denote the tracking results as Ỹ m
ts:ts+T ,m = 1, ...,M , where M is the number

of all candidate models.

4. Switch to the model m if 1
T+1

∑T
i=1 TEshape(Ỹ m

ts+i, Its+i) is the minimum over
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all M activities.

This process can automatically reinitialize in a changing background, when the

change in the activity is gradual (which is the case in most videos). Note that by using

(2.1) we are incorporating the system matrix, A, in the tracking, change detection and

reinitialization phases.

2.4.3 Overall Tracking and Change Detection Algorithm

We now outline the main steps of the tracking and change detection algorithm. For sim-

plicity, let us assume that there are two activities in the sequence, A1 and A2. Note that

A1 and A2 may represent different portions of the same activity - specifically, for those

activities in which a non-stationary dynamical model is needed (see Fig. 2.2). For the

first frame in A1, the region of interest is detected based on the application requirements

and the corresponding model for the activity is determined as in Section 2.4.2. After this

initialization, the algorithm now proceeds as follows.

Track Based on the detected region and the chosen dynamical model, the particle

filter is used to track the activity. Measures for determining the accuracy of the tracking

algorithm (TE or ELL) are computed for each frame.

Change Detection When the TE or ELL exceeds a threshold for a few consec-

utive frames, a change is detected.

Model Switching The procedure in Sec. 2.4.2 is used to automatically reinitialize

and go back to track.

2.5 Experimental Results

2.5.1 Performance Analysis on Controlled Data

In order to compare with the approaches that assume a known transition prob-

ability (e.g., [63, 9, 13, 52]), we use our shape-dynamical representation, but incorporate

the transition matrix instead of the switching module in the feedback path. We discuss the

comparison on a video consisting of several Yoga postures with continuous changes from

one posture to another.
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Figure 2.3: Tracking errors of this Yoga sequence using our proposed approach and an
approach like [63] using the same number of particles, and with uniform transition proba-
bilities . It is clearly shown that the latter needs much more time to regain track, where the
same dynamical models for describing the activities were used and chosen automatically.
The actual switching time instances are shown by black dot lines, and the postures for each
time interval are shown on the top. The labels A-H show the different postures.

When the accurate transition matrix is unknown, it is reasonable to assume uni-

form transition probability between activity models. Using the particle filtering framework

with a small number of particles, our proposed approach can track through large changes

in body posture without knowing the transition probabilities, while an approach like [63]

using the same number of particles needs much more time to regain track. Fig. 2.3 shows

the tracking errors with both these approaches. In the open-loop framework, the particles

are uniformly distributed within several states. When the particle number is small, the

number of particles assigned to each state is few, and the correct state can not dominate

(we have observed this phenomena when we use less than 50 particles). However, in our

approach, all the particles are assigned to the detected state and hence tracking is regained
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137th frame 147th frame 158th frame 572nd frame 583rd frame 689th frame

(a)

(b)
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(d)

(e)

(f)

Figure 2.4: (a)-(b) An example of tracking results on a video sequence: (a) Open-loop
approach with uniform transition probability (similar to [63]), (b) proposed approach which
can track without knowing transition probabilities. Open-loop approach gets back to track
after 21 and 117 frames, while our approach is able to maintain tracking continuously.
(c)-(d) Average particle distribution on the Yoga sequence: (c) our method, (d) open-loop
approach with uniform transition probabilities . (e) Samples of detected change instants.
(f) Tracking error plots using the two approaches.
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as soon as the correct detection is made.

In order to show the statistics of detected change time instances, we repeat the

experiment 20 times for each fixed number of particles. The average detected change in-

stances are listed in Table 2.1. Fig. 2.4 (c)-(d) shows the average distribution of particles

in these different scenarios and Fig. 2.4 (e) shows some samples of the change times. The

change time instances with the closed-loop approach are close to the ground truth even

with a small number of particles. The results show that the closed-loop approach is more

accurate especially when the particle number is small. This can be seen for the plots in Fig.

2.3, the tracking results of Fig. 2.4 (a)-(b) and their corresponding TE plots in Fig. 2.4

(f). The Yoga sequence is a very clean data set; the advantages on more noisy data will be

seen even if we use a much larger number of particles.

Table 2.1: Average detected change time instances

number of particles 10 15 20 25 30 35 40 45 50 ground truth

closed-loop change 1 152.3 155.3 157.8 148.4 156.3 147.5 159.3 147.1 147.4 142

open-loop change 1 12.5 37.3 106.3 119.5 140.4 140.2 145.1 145 145.5 142

closed-loop change 2 602.6 589.6 595.7 596.4 604.4 602.7 596.9 567.5 598.8 577

open-loop change 2 438.7 492.7 546.6 542.7 578.5 610.7 607.3 595.7 610.4 577

2.5.2 Real-life experiments

We now show some results with video captured in outdoor environments under

different conditions. We have three sequences. The first consists of activities around a car

(Fig. 2.5(a)). The second is of two people who exchange a box between them in a complex

changing background (Fig. 2.5(b)). The third consists of multiple people doing different

activities simultaneously (Fig. 2.5(c)). There are a total of eight activities as described in

Fig. 2.5.

2.5.3 Discussion of the Results

The output of our closed-loop system is the tracking result, which is equivalent

to the tracking error, i.e., the difference between tracking result and observations. The

tracking error is calculated as the distance of estimated landmarks to the nearest edge

points obtained from the observations. Since the objects in any tracking problem must be
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(a) (b) (c)

Figure 2.5: Row 1-4: Tracking results with the activity models used to track shown on
the top. Row 5: Model switching results. The labels denote: 1: Standing, 2: Sitting, 3:
Walking toward camera, 4: Walking parallel to camera, 5: Walking with small package,
6: Walking with box, 7: Walking with backpack, 8: Walking with briefcase. (a):Tracking
results on an outdoor sequence. (b): Two person walking towards each other, one person
holding a box then giving it to the other person. At the first frame, the activity of person
1 is initialized as “walking with a box”, then we split box from person and track them
separately. (c): Multiple people doing different activities simultaneously. (The figure is
best viewed on a monitor.)
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within the range of the image frame (i.e., within view of the camera), the observations are

finite. The convergence constraint on the dynamical model in equation (2.1) (Av,j−1 is a

constant matrix with the magnitudes of its eigenvalues all smaller than one) gives finite

estimates of the landmarks. Therefore, the tracking error is finite. If we now make the

assumption that the observed activity belongs to one of the learned models, one particular

model will have the minimum tracking error, which will be finite, and hence, the overall

system will be stable. Moreover, we could show that under a set of reasonable assumptions,

the tracking error with a correct model is less than that with an incorrect model (see proof

in Appendix A).

2.6 Conclusions

In this chapter, we proposed a novel framework for tracking multi-activity se-

quences without knowing the transition probabilities between the activities. We demon-

strated this for applications using only one camera, as well as in a network of non-overlapping

cameras. Using a non-linear dynamical feedback system, we showed that our method is

able to continuously track sequences of different activities amidst changing background,

occlusions and clutter. Measures were designed to detect changes between activities. We

demonstrated the effectiveness of our approach by doing a detailed performance analysis

and showing experimental results on real life videos of different activities.

20



Chapter 3

Tracking in a Non-overlapping

Camera Network - A

Multi-Objective Optimization

Framework

3.1 Introduction

As large networks of video cameras are installed, it is essential to develop auto-

mated tools for analyzing the data collected from these cameras and summarize them in a

manner that is meaningful to the end user. One of the most basic tasks in this regard is

to be able to track objects across the network. This introduces certain challenges that are

unique to this particular application scenario, in addition to existing challenges in track-

ing objects like pose and illumination variations, occlusion, clutter and sensor noise. The

problem is important for applications in wide area surveillance, digital forensics and video

summarization, among others.

In this chapter, we present a robust framework for tracking multiple objects (peo-

ple) in a non-overlapping camera network whereby feature correspondences are modeled

statistically and adapted in time by considering the long-term dependencies between them.

We pose the problem of tracking in a camera network as a multi-objective optimization
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problem. The first objective is to choose the tracks such that they maximize the similarity

between the observed features in a local neighborhood. This has been at the core of the

approach taken in methods like [39]. This can be solved very efficiently in a dynamic pro-

gramming framework. However, the method relies on being able to estimate the similarities

between features observed at different cameras reliably. This is often not possible, due to

the well-known problems in video analysis related to changes in lighting and pose, scene

clutter and occlusions. To make the method robust to such errors, we introduce a second

optimization objective that minimizes the long-term variation in appearance and identity

of the tracked objects over the entire camera network. This allows us to correct for errors

in tracking based only on the first objective by considering the tracking results obtained

over time. This is similar to the reasoning process of a human observer, who on noticing

an error in the tracks, may go back, try to locate the source of the error and recompute the

tracks.

We show how to design these two objective functions precisely in a stochastic opti-

mization framework. The similarities between the features are modeled as random variables

with their probability distributions learned from training data. To model long-term varia-

tion in appearance and identity, we propose a novel criterion that is based on discriminant

analysis methods [16]. To solve the overall multi-objective optimization problem, we pro-

pose a greedy heuristic solution and show that it usually leads to the correct result. This

heuristic solution is a stochastic adaptive strategy that finds the optimal tracks by con-

sidering the short- and long-term dependencies in the data. A stochastic adaptive system,

well-known in the control literature, is a stochastic system some of whose parameters are

unknown and need to be learned during the system’s operation. We will show that our

method is able to track multiple objects over long periods of time in a video network that

is spread over a large geographic area. We conduct a detailed performance analysis with

data captured on practical multi-camera systems with multiple people observed over the

network.

We would like to clearly differentiate our work with methods that deal with track-

ing objects in a network of overlapping cameras (e.g., [31]). We concentrate on the problem

of non-overlapping cameras. If some of them were overlapping, methods that deal with this

scenario can be easily incorporated into the similarity estimation methods, thus making

them more reliable.
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Our proposed strategy can be implemented in a distributed processing framework.

Video collected at each camera will be analyzed locally and only a small amount of infor-

mation will be transmitted to a central processor, where it will be integrated to obtain the

globally optimal solution. The implementation strategy will be explained in the different

sections of the chapter as we describe the details. The amount of data that is transmit-

ted is significantly less than if all the cameras simply transmitted their data (even after

compression) to the central processor. We will provide precise numbers in Section 3.6.3.

3.1.1 Relation to Previous Work

There have been a few papers in the recent past that deal with networks of video

cameras. Particular interest has been focused on learning a network topology [55, 56, 82, 62].

Based on existing work in this area, we assume that we know a network topology, i.e.,

connections between cameras and entry/exit points in their view. We shall refer to each

entry/exit point as a node. A distribution of the travel time between two nodes is also

assumed to be known. The similarity estimation between features will involve observations

at all nodes in a local neighborhood (obtained from the topology). It will be based on

appearance features using normalized color [19] and the travel time between two nodes. In

future, we plan to incorporate identity features, e.g., face or gait biometrics.

Some of the existing methods on tracking in a camera network include [36, 39,

44]. The authors in [74] used location and velocity of objects moving across multiple non-

overlapping cameras to estimate the calibration parameters of the cameras and the target’s

trajectory. In [49], a particle filter was used to switch between track prediction between

non-overlapping cameras and tracking within a camera. In [43], the authors presented a

method for tracking in overlapping stationary and pan-tilt-zoom cameras by maximizing a

joint motion and appearance probability model. A Bayesian formulation of the problem of

reconstructing the path of objects across multiple non-overlapping cameras was presented

in [44] using color histograms for object appearance. A graph-theoretic framework for

addressing the problem of tracking in a network of cameras was presented in [39].

Adapting the feature correspondence computations by modeling the long-term

dependencies between them and then obtaining the statistically optimal paths for each

person differentiates our approach from existing ones. It provides a solution that is robust

to errors in feature extraction, correspondence and environmental conditions.
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3.2 Problem Formulation

Our problem is to track P people observed over a network of C1, ..., CK cameras.

This is abstracted as tracking over a collection of nodes, where each node is an entry or exit

zone [55, 62] (a small image region; see markers in Fig. 3.13 for examples). We assume that

we know which camera each node can be viewed from (also referred to as a node belonging

to a camera). Mathematically, each node is represented as nc
i , where the subscript is a node

index (node index is unique regardless of the camera it belongs to) and the superscript

represents the camera it belongs to. When we mention local processing at each node, we

mean local computations at the camera to which that node belongs. For the purposes of

this chapter, we assume that we can track people within the view of each camera. The

cameras are synchronized and thus, each observation can be given a unique time stamp and

location information in terms of the node it is observed from.

Figure 3.1: An example of a camera network, node ni is linked to nodes (nj , nk, nl, nm) and
a distribution of the travel time between them is known.

A network architecture [55, 62] linking the nodes is known. By this we mean that

given any pair of nodes (nc
i , n

d
j ), i 6= j, we have a link variable lij = {0, 1}, where 0 indicates

that the two nodes are not linked, i.e., it is not possible to travel between those two nodes

without traversing some other node, and 1 indicates that it is possible to travel between

these two nodes directly. However, lij = 1 on a link does not rule out the possibility that a

person could have travelled from ni to nj through some other node nk, k 6= i, j. Besides this

link variable, we also know a distribution of the travel time between two nodes belonging
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to different cameras, i.e., Pτ (nc
i , n

d
j ), i 6= j, c 6= d, where P : <+ → [0, 1]. One of these

nodes must be an entry node and the other an exit node. Travel time distribution between

nodes belonging to the same camera are not needed, as they can be viewed completely and

transition between them tracked in the image plane.

Observations at each node are represented as feature vectors Fn,t, where n indicates

the node it is observed at and t the time of observation. The feature vector of choice in

this chapter is explained in Section 3.3.1. Each node (i.e., the camera the node belongs

to) receives information about the feature vectors from all other nodes that it is linked to.

Feature vectors within a time window are stored at that node. Making this precise through

an example as shown in Fig. 3.1, let node ni be linked to nodes (nj , nk, nl, nm) (we drop the

superscription since the camera identity is not needed). At time t, ni has feature vectors

Fi,t = {Fn,tj , n = (j, k, l,m), t − tW < tj ≤ t}, where tW is the width of the time window.

Note that these observations from neighboring nodes are available only at discrete instants

of time, i.e., tj is a discrete variable. In practice, whenever a person exits a camera view

that information is sent by the camera to all the other cameras linked to it based on the

network architecture. Thus, (nj , nk, nl, nm) are all exit nodes and ni is an entry node.

3.2.1 Overview of Solution Strategy

When a node ni encounters a new observation at time t, it transforms it into a

feature vector Fn,t. Then, it estimates the similarity of this feature vector with its stored

feature vectors, Fi,t, obtained from neighboring nodes. The exact procedure for similarity

estimation is explained in Section 3.3.1. This is then transformed into a distribution on the

similarity between two features. The distribution captures the uncertainty in estimating

the similarity between two features and is learned during a training phase. For example,

if two nodes have very different lighting conditions, the uncertainty in the similarity scores

between the features observed at those nodes will be higher. This is explained in Section

3.3.2. This similarity estimation is asynchronous between the different nodes, i.e., each node

does it whenever it encounters a new observation.

Using the feature vectors and similarity scores, we create a feature graph G =

(V = {vi}, E = {eij}, S̃ = [s̃(eij)]), of |V | = V vertices and |E| = E edges (see Fig. 3.2

for an example). The vertices are feature vectors Fn,t and the weights on the edges, s̃(eij),

are real-valued random variables with known distribution ps̃(s), as shown in Fig. 3.2. This
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Figure 3.2: Illustration of feature graph construction. Note the subscripts of F indicating
the time and entry/exit node where it is observed.

distribution can be learned as explained in Section 3.3.2. The tracks of each person can be

found by estimating the optimal paths in this graph. We show how this can be done using

stochastic weights in Section 3.3.3.

This optimal path estimation is based on the principles of dynamic programming

and gives the maximum a posteriori (MAP) estimate of the track for each person. However,

this is true if the similarity estimations in the feature graph are correct. This can be a

big assumption due to the well-known problems of video-based feature correspondence. By

considering the distribution of the features over space and time in each hypothesized path,

we can infer about the correctness of that path. Thus, the optimal path estimation requires

the simultaneous optimization of the local similarities between features along the track for

each person and the long-term distribution of the features along that path. This is a multi-

objective optimization problem. Some trade-off between the criteria is needed to ensure a

satisfactory solution. To keep the computational requirements within realistic limits, we

propose an adaptive strategy to find a solution of this multi-objective optimization problem.

The design of the objective functions and optimization strategy are explained in the Section

3.3 - 3.5.
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Our overall framework for tracking across the camera network consists of the fol-

lowing steps which take place in a loop: (i) finding optimal paths in the stochastically

weighted feature graph based on the distribution of edge similarity scores, (ii) calculating

a function to measure the spatio-temporal distribution of the features along a path (later

referred to as a path smoothness function (PSF)), and (iii) adapting the distribution of the

edge weights according to the values of the PSF. We will explain each step in detail below.

3.3 Computing Optimality in Stochastic Feature Graphs -

Objective 1

Consider the above-mentioned feature graph G described in Fig. 3.2 of Section 3.2.

The problem of tracking people across cameras is equivalent to finding the most preferred

links between vertices in this graph. We will use the term node to refer to an entry/exit

point and vertex to refer to an observed feature vector in the graph G.

3.3.1 Feature Similarity Scores

The feature vector Fn,t can be represented as

Fn,t =
(
FA

)
n,t

(3.1)

where FA is the appearance feature (normalized color [19] in our case). Besides these, we

know the travel time between two nodes. Since every feature is observed at a node, this

can be easily transformed into the travel time between two feature vectors, i.e., two vertices

of the feature graph. Let us denote this travel time between Fni,t1 and Fnj ,t2 as τ t1,t2
ni,nj .

From Pτ (nc
i , n

d
j ), we can estimate the feature similarity between Fni,t1 and Fnj ,t2 in terms

of the travel time as Sτ (τ
t1,t2
ni,nj ). It is reasonable to assume that FA and τ are independent

random variables. For notational simplicity, we will drop the explicit dependence on n, t

and represent the features as vertices on the graph, i.e., use Fi, FA,i and τi,j .

The weight s(eij) is the similarity score between Fi and Fj , and is estimated as

the product of the similarity in appearance features and the travel time based similarity

value, i.e.,

s(eij) = SA(FA,i, FA,j)Sτ (τi,j). (3.2)
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The similarities can be obtained by computing the distance between the feature vectors in

appropriate feature spaces as described in [19]. Known geometric and photometric trans-

formations between two corresponding features can be taken into account while computing

this distance. Examples include affine warping and brightness transfer functions [40, 42].

These can be learned during the training phase for the network topology. We did not need

to use any of the transformation in our experiments. We will provide specific examples of

the features and similarity estimation in Section 3.6.

3.3.2 Assigning Uncertainty to Similarity Scores

In our formulation, the similarity score s is a realization of a random variable s̃.

We now need to estimate the distribution of this random variable. If s′ij is the similarity

score between two vertices (i, j) in the feature graph obtained as described above, the

distribution of s̃ on the edge eij is modeled as a normal distribution N (s′ij , σ
2
ij). Thus the

distribution on each edge is normal with a mean at the similarity score value obtained from

the observations and a variance that will be learned from training data.

Unsupervised Learning of Variance of Similarity Distribution

The confidence that we can assign to an observed similarity score will depend upon

a number of factors and is too difficult to be modeled analytically. These include the actual

value of the similarity score, the environmental conditions like time of day, the geometric

and photometric transformation between the cameras, and so on. Thus we seek to learn

a model of the variance of the similarity score during a training phase. This training can

continue parallely with the network topology learning phase. Due to the sheer volume of

data in a camera network, we seek to develop an unsupervised learning mechanism for this

purpose.

During this learning phase, a large number of similarity scores between two vertices

will be collected. These will be clustered and the variance of each cluster estimated. During

the system operation, the variance σ2
ij is determined based on which cluster s′ij belongs to.

In the experiments, we collected training data separate from the testing. In the learning

phase, the correspondence of people in different cameras were assumed to be known and this

information was used to estimate the transition time distributions. For experiment setup

1, more than 1000 similarity scores between two vertices were collected. For experiment

setup 2, the collected similarity scores were more than 2000. As an example, we show the
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Figure 3.3: Histogram of similarity scores between vi and vj learned during the training
phase for two node pairs in the real-life networks described in Section 3.6. The left figure
is for Data Set 1, while the right is for Data Set 2.

learned histogram of the similarity scores between two vertices in Fig. 3.3. We see that

the data can be partitioned into three clusters and we can learn the variance of each cluster.

This can be done using K-means algorithm, including automatic estimation of the number

of clusters [16].

3.3.3 Optimal Path in Stochastic Feature Graphs

Solving the optimal path problem in graphs with weights as random variables has

been studied in communication networks and decision theory [54]. The most widely used

method for this problem was originally proposed by von Neumann and Morgenstern [20],

which proposed an utility function and then estimated the optimal expected utility. A

necessary condition for a valid utility function (hence our weighting function) is that it has

to be monotonic, affine linear or exponential (see [54] for a rigorous proof).

Inspired by this method, we define a weighting function on the edge similarity

scores. We identify the most preferred set of paths by maximizing the Expected Weighted

Similarity (EWS). Thus the weighting function for similarity, s, is defined as

w(s)
4
= exp(s)− 1. (3.3)

The weighting function is designed to give higher weights to correspondences with high

similarity scores. Its effect becomes most prominent when the random variable, s̃, has a

high variance. Thus, in estimating the EWS (expected utility), both the observed similarity
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and its uncertainty are taken into account through the weighting function (utility function)
1 .

By introducing the weighting function, the solution to the problem of determining

the best set of paths in the feature graph (hence the camera network) is

{λ̃q}
4
= arg max

λq

∑
λq

{
∑

eij∈λq

Es[w(s(eij))]}. (3.4)

This problem can be formulated as the maximum matching problem in a weighted bipartite

graph, where the weights of the edges are the EWS scores, Es[w(s(eij))]. As in [39], the

bipartite graph is obtained by splitting each vertex v into v− and v+, where the edge

connected to v− represents the path coming into v while the edge connected to v+ represents

the path going out of v.

3.4 Computing Long-term Feature Dependence in A Camera

Network - Objective 2

If the similarity scores (edge weights) of the feature graph G were known exactly

and assumed to be independent, the tracking problem could be solved optimally in polyno-

mial time by the method described above. This was shown in [39] with the exception that

they did not model the uncertainty in the similarity scores. However, it is not uncommon

for some of the similarities to be estimated wrongly due to poor lighting conditions or am-

biguity of the transition patterns. Even the learned uncertainty model may not be enough

to capture the variation. As we show in Fig. 3.4, if the similarity estimation is incorrect

for one pair of nodes, the overall inferred path may be wrong even if all the other nodes are

connected correctly. The exact conditions where such mistakes happen will depend upon

the distribution of the similarity scores in the feature graph.

This concern can be addressed if we relax the independence assumption on the

correspondences, i.e., we consider the interdependence of the features and similarity scores
1To show that the EWS finds the optimal path by considering not only the similarity scores but also

their variance, consider two links with similarity scores of s1 and s2, where s1 > s2. Now, if p(s) ∼ N (s′, σ),

then Es[w(s)] = exp(s′ + σ2

2
) − 1, where s′ is the observed similarity score. Thus the optimal path under

the EWS criterion will not necessarily be s1 (which would be the optimal path in the deterministic case),
but will depend upon the similarity scores as well as the variances in these two links.
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over space and time. This is a major assumption in the method of [39]. Intuitively, what

we aim to do by this process is to infer incorrect path segments in the tracks obtained from

the graph theoretic approach of Sec. 3.3.3 by considering the variation of the features of

the person along these tracks. Based on this inference process we will adapt the similarity

scores and recompute the optimal path. This naturally leads to the development of the

multi-objective optimization based tracking framework, where the second objective function

is to measure the similarity of observed features along a path.

3.4.1 Design of Path Smoothness Function

To model the spatio-temporal variation of the observed features along a path, we

define a Path Smoothness Function (PSF). Given an estimated path for the qth person,

λq, PSF is defined on each edge eij ∈ λq. The feature vertices before (in time) eij on λq

and those after eij are treated as two clusters. Let {X} be the set of all N feature vertices

(i.e., appearance and identity vectors) along the path and let them be clustered into {X(1)}
and {X(2)} with respect to each edge eij ∈ λq. Let the mean m of the features in {X} be

m = 1
N

∑
x∈{X} x. Let mi be the mean of Ni data points of class {X(i)}, i = 1, 2, such that

mi =
1
Ni

∑
x∈{X(i)}

x. (3.5)

Let ST be the variance of the all observed feature x along the path, i.e.,

ST =
∑

x∈{X}

|x−m|2 (3.6)

and SW be the sum of the variances along each sub-path, {X(1)} and {X(2)}, i.e.,

SW =
2∑

i=1

Si =
2∑

i=1

∑
x∈{X(i)}

|x−mi|2. (3.7)

The PSF for eij is defined as

PSF (eij) =
|ST − SW |
|SW |

=
|SB|
|SW |

. (3.8)
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(a)

(b) (c)

(d) (e)

Figure 3.4: (a): Paths of two people (in blue and red) obtained from the camera network
in Data Set 1 of Section 3.6.1: solid lines are the ground truth and dotted lines are the
tracking results using EWS scores only (no adaptation). (b)-(c): PSF values along the
incorrect (estimated) and correct (ground truth) path of person 1 respectively. (d)-(e):
PSF values along the incorrect and correct path of person 2 respectively. It is clear that
PSF has a peak at the wrong link; thus the variance of PSF along the wrong path is higher
than the variance along correct path.

To make the PSF more accurate, we may consider normalizing all the elements

of {X} with respect to the geometric and photometric effects between the feature vertices.

For example, if Bi,j is the Brightness Transfer Function [40] between vi and vj and Gi,j

is an affine warp (these can be learned during the training phase), we should consider

(Gi,j ◦ Bi,j)(Fi) and Fj for this pair of nodes 2.

Thus the PSF is defined from Fisher’s linear discriminant function [16] and mea-

sures the ratio of the distance between different clusters, SB, over the distances between

the members within each cluster SW . If all the feature nodes along a path belong to the

same person, the value of PSF at each edge eij ∈ λq should be low, and thus the variance of

PSF over all the edges along the path should also be low. If the feature nodes belonging to

different people are connected wrongly, we will get a higher value of PSF at the wrong link,

and the variance of PSF along the path will be higher. Thus, the distribution of PSF along

a path can be used to detect if there is a wrong connection along that path. An example is

shown in Fig. 3.4, where the PSF is plotted for all edges along one correct and one incorrect
2The Brightness Transfer Function and an affine warp are possible extensions that may be used in some

application scenarios to improve accuracy, but is not used in our experiments.
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path obtained from our camera network.

We can now precisely describe the second objective function by analyzing features

along a path. In practice, we specify the function in terms of the Path Smoothness Function

(PSF). Thus, the second objective function is to minimize

H2(λq) =
∑
λq

V ar(PSF (eij ∈ λ(n)
q )). (3.9)

3.5 Multi-Objective Optimization for Tracking In a Camera

Network

By creating a feature graph, the tracks each person can be found by estimating

the optimal paths, λq, in this graph. Thus, our first objective function is to maximize

H1({λq}) =
∑
λq

{
∑

eij∈λq

Es[w(s(eij))]}. (3.10)

The second objective function, just described above, is to minimize

H2(λq) =
∑
λq

V ar(PSF (eij ∈ λ(n)
q )). (3.11)

Our goal is to find a optimal point λ∗q of this multi-objective optimization problem

such that we maximize H1(λq) and minimize H2(λq).

3.5.1 Multi-objective Optimization Framework

Many realistic optimization problems require the simultaneous optimization of

more than one objective functions, i.e., there is a vector of objectives

H(x) = [H1(x),H2(x), ...,Hm(x)]T ,m ≥ 2 that must be traded off in some way [17]. Note

that, because H(x) is a vector, if any of the components of H(x) are competing, there is

no unique solution to this problem. Instead, the concept of noninferiority [100], also called

Pateto optimality [8, 11] must be used to characterize the objectives. Essentially, a vector

x∗ ∈ C is said to be Pareto optimal for minimizing H(x) if all other vectors x ∈ C have a

higher value for at least one of the objective functions Hi(.), or else have the same value for

all objectives.
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Figure 3.5: Solution space of multi-objective optimization problem.

A conceptual illustration of the multi-objective problem solution space is shown

in Fig. 3.5. By maximizing H1({λq}), we get to the point A. This is determined based

on finding the paths in the feature graph which maximize the objective H1. Under the

assumption that the feature similarities are estimated correctly for the most part, A should

be close to the correct tracks of each person. By minimizing H2({λq}), we adapt the

similarity scores allowing for errors in their estimation in H1. This is continued until

we reach a local minimum of H2({λq}), say B. Such a minimum, H2min exists and is

greater than zero based on the similarity measure we defined in Section 3.4, which relies on

estimating the variance of the features along each path in a suitable feature space.

3.5.2 A Heuristic Optimization Scheme

Based on the observation that most of the similarity scores are estimated correctly,

we propose a heuristic optimization scheme that is computationally efficient and dose not

require searching over all possible paths in the feature graph. We initialize the multi-

objective optimization with the following set of paths λ̃q as in (3.4),

{λ̃q}
4
= arg max

λq

∑
λq

{
∑

eij∈λq

Es[w(s(eij))]}.

Since it is often reasonable to assume that most of the weights of the feature graph are

calculated correctly, the initial point is close to our final desired solution. We now perform

an edge weight adaptation scheme, for minimizing H2 until we reach a local minimum.

The adaptation scheme is described below. Note that even if only a few of the weights are
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calculated incorrectly, many estimated paths can be incorrect since the effect of a few wrong

links will affect many paths.

Whenever there is a peak 3 in the PSF function for some edge along a path, the

validity of the connections between the features along that path is under doubt. We will

temporarily set the weight on this link where the peak occurs to be zero, then recalculate

the maximum matching paths, λ′q, of the new feature graph. If H2({λ′q}) < H2({λ̃q}), then

we accept the new graph, otherwise we decline the changes. We repeat this iteration till a

local minimum of H2({λq}) in (3.9) is reached. This is formally described below.

1. Construct a stochastic weighted graph G = (V,E, S), where the vertices are the

feature vectors and distribution of edge weights are set as described in Section 3.3.

2. Estimate the optimal paths, λ̃q as mentioned in Section 3.3.3.

3. Compute the PSF for each eij ∈ λ̃q.

4. Set the weight on the link where the PSF peak occurs to be zero.

5. Recalculate the maximum matching paths, λ′q, of the new feature graph. If H2({λ′q}) <

H2({λ̃q}), then we accept the new graph and set λ̃q = λ′q, otherwise we decline the

changes.

6. Repeat Steps 4 and 5 until a local minimum of
∑

λq
V ar(PSF (eij ∈ λ̃q)) is reached.

The final set of optimal paths is given by
(
s∗(eij), λ∗q

)
as

s∗(eij) = arg min
s

∑
λq

V ar(PSF (eij ∈ λq(s))), (3.12)

λ∗q = arg max
λq

∑
λq

{
∑

eij∈λq

Es[w(s∗(eij))]}. (3.13)

This strategy generates the correct solution of the multi-objective problem if it can

be obtained as the local minimum of a convex function starting with the initial condition

in Step 2. In cases when this is not true (a high value of H2 at the local minimum can be

an indication of it), we can initialize with a few of the top values of H1 and choose the path
3The peak is detected if it is above a threshold, which is defined as E{PSF (eij ∈ λq)}+V ar(PSF (eij ∈

λq)).
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that minimizes H2. A more exhaustive search of the solution space may be needed if the

initial starting position is very far from the optimal, which should be a very rare occurrence.

3.6 Experimental Results

To evaluate the performance of our system, we will show results on two sets of

data collected over large camera networks. This was done using the VideoWeb Lab at

UCR which, on completion, will consist of about 80 cameras in indoor and outdoor settings

and over wired/wireless channels. The first dataset contains more cameras, but the data

is relatively clean. The second set contains slightly fewer cameras, but in an uncontrolled

setting.

For people detection and segmentation, we use the methods similar to our previous

work for a single camera [80]. Motion in an image is detected and the region is segmented

to obtain the features of the person. Currently, in our experiments, we only consider fixed

cameras - thus people can be easily extracted by background subtraction. Normalized

color histogram [19] of segmented region is calculated as the appearance feature. Similarity

scores of each pair of observations are estimated based on appearance and transition time

as described in Section 3.3.1. A feature graph is constructed based on similarity scores (see

Section 3.2.1) and optimal paths are estimated in this graph (Objective 1, see Section 3.3).

Then PSF is computed on each estimated path (Objective 2, see Section 3.4). The feature

graph is adapted based on PSF values to get a solution for this multi-objective optimization

problem (Section 3.5).

3.6.1 Experiments on Data Set 1

The network consists of 20 cameras and 50 entry/exist nodes. We consider 10

people moving across the network over a period of about 20 minutes. The total video was

almost 2GB. Examples of some of the images of the people are shown in Fig. 3.6. The

reader should compare this plot with the abstract representation of the feature graph in

Fig. 3.2. Some of the features used in the similarity estimation are shown in Fig. 3.7.

The feature is the normalized color [19] histogram and the similarity is estimated using the

method described in [39].

Fig. 3.8 shows the tracking result using optimal path searching using Objective 1
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Figure 3.6: Example of some of the images of the people in the network. The horizontal
axis is the time when these features were observed, while the vertical axis is the index of
the entry/exit node where the features were observed. The gaps in the plot are because the
features are observed asynchronously.

Figure 3.7: Example the features used in the similarity estimation. Images are shown on
the top, and the normalized color histograms are shown on the bottom.

only (i.e., there is no adaptation). This is similar to the method in [39]. The vertices in this

graph are the feature vectors observed at different time instances. The paths of different

people are shown using different colors, solid lines representing the ground truth and dotted

lines showing tracking results. Thus, for correct results the colors should match across all
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Figure 3.10: The portions inside the two circles in Fig. 3.8 are zoomed-in. The incorrect
edges are marked.

Figure 3.11: A plot of the solution space with some possible values of H1 and H2 obtained
through a random simulation. The path taken by the optimization strategy is shown in
bold, with the final solution marked with a filled circle, which overlaps with the ground
truth.

the paths. There are three wrong links (circled in Fig. 3.8 – two in the bigger circle, and

one in the smaller circle) due to mistakes in feature similarity estimation. The paths that

are estimated wrongly due to these wrong links are highlighted. In Fig. 3.9, we show the

correct result by adapting the graph edge weights using the proposed stochastic adaptive

strategy. Details of the adaptation of the weights in the wrong link shown in the bigger

circle are given in Fig. 3.4. By comparing the colors along the paths highlighted in Fig.
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3.8, we can see that these mistakes have been corrected. Both these figures are best viewed

on a computer monitor.

We show the zoomed-in portions of the tracks inside the two circles of Fig. 3.8 in

Fig. 3.10. In the bigger circle, the two tracks are cross-connected. In the smaller circle, the

track of Person 3 is connected to that of Person 9. We plot different points in the solution

space of H1 and H2 for this dataset and mark the path taken by the local optimization

of Section 3.5 in Fig. 3.11. This figure should be compared with the conceptual plot of

the multi-objective optimization space in Fig. 3.5. The points in the solution space were

obtained through a random simulation.

3.6.2 Experiments on Data Set 2

The network consists of 7 cameras and 26 entry/exist nodes. The cameras are

installed in both indoor and outdoor environments which consist of large illumination and

appearance changes. We consider 9 people moving across the network for about 7 minutes.

The total video was about 200 MB. Examples of some of the images of the people and

entry/exit nodes are shown in Fig. 3.13. Note the significant changes of appearance. Some

of the appearance features are shown in Fig. 3.12.

Figure 3.12: Example the features used in the similarity estimation. Images are shown on
the top, and the normalized color histograms are shown on the bottom.

Fig. 3.14 shows the tracking result using optimal path searching using Objective 1

only (no adaptation), similar to the method in [39]. The vertices in this graph are the feature

vectors observed at different time instances. The paths of different people are shown using

different colors, solid lines representing the ground truth and dotted line showing tracking
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Figure 3.13: Example of some of the images of the people in the network. The horizontal
axis is the time when these images were observed, while the vertical axis is the index of the
cameras. Some of the entry/exit nodes are marked on the images.
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(a)

(b) (c)

(d) (e)

Figure 3.16: (a): Paths of two people (in blue and red) obtained from the camera network:
solid lines are the ground truth and dotted lines are the tracking results using Objective
1 only (no adaptation). (b)-(c): PSF values along the incorrect (estimated) and correct
(ground truth) path of person 1 respectively. (d)-(e): PSF values along the incorrect and
correct path of person 2 respectively. It is clear that PSF has a peak at the wrong link; thus
the variance of PSF along the wrong path is higher than the variance along correct path.

Figure 3.17: A plot of the solution space with some possible values of H1 and H2 obtained
through a random simulation. The path taken by the optimization strategy is shown in
bold, with the final solution marked with a filled circle.

results. Thus, for correct results the colors should match across all the paths. There are six

wrong links in this experiment due to mistakes in feature similarity estimation. Details of

one of the wrong links shown in the circle are given in Fig. 3.16, along with the adaptation
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of the PSF values. The paths that are estimated wrongly due to these wrong links are

highlighted. Compared with previous example, there are more wrong links, which is to be

expected because of the poorer quality of the data. In Fig. 3.15, we show our result by

adapting the graph edge weights using the proposed multi-objective optimization strategy.

By comparing the colors along the paths highlighted in Fig. 3.14, we can see that these

mistakes have been corrected. Both these figures are best viewed on a computer monitor.

Details of the solution space and the path followed by the local optimization of

Section 3.5 are shown in Fig. 3.17. We show possible values of the cost functions H1 and

H2 through a random simulation. The blue solid line shows our iteration steps for finding

the final solution. In this case, we can see that the we choose the optimal path (marked

by a star) as the one which maximizes H1, while simultaneously minimizing H2. Examples

of the images for the track of Person 6, which is initially wrongly estimated, are shown in

Fig. 3.18. We start with multiple wrong correspondences (Iteration 1), to the track being

broken into two (Iterations 3/4), to the correct track in Iteration 6.

We also show some results of tracking multi-activities with video captured by two

non-overlapping cameras by combining the framework described in Chapter 2. The setup of

the cameras is shown in Fig. 3.19. The sequences consist the activities of three people. The

tracking results are shown in the left of Fig. 3.20. In the right half of Fig. 3.20, the model

switching result between two cameras is clearly shown. By analyzing the results, we see that

we can maintain correspondences between the two cameras. Also, we can recognize that

Person 2, who was walking with a briefcase in Camera 1, is without it when she reappears in

Camera 2. Similarly, Person 3 picks up a briefcase in transiting from Camera 2 to Camera

1. However, Person 1 continues walking with the backpack.

Figure 3.19: The setup of the two cameras.
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camera 2 camera 1

Figure 3.20: Tracking and change detection results for two non-overlapping cameras. Person
1 walked from the view of camera 1 to camera 2 with a backpack. Person 2 walked with
a briefcase in the view of camera 1 first and gave the briefcase to Person 3 in the non-
overlapping region, then walked into the view of camera 2. Person 3 walked from camera
2 to camera 1. Left: Tracking results with the activity models used to track shown on the
top. Right: Model switching results. The labels denote: 1: Standing, 2: Sitting, 3: Walking
toward camera, 4: Walking parallel to camera, 5: Walking with small package, 6: Walking
with box, 7: Walking with backpack, 8: Walking with briefcase. (The figure is best viewed
on a monitor.)
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3.6.3 Discussion of Experimental Results

• Distributed Processing : In this framework, the tracking at each camera can be done

locally and only the integration over space and time needs to be done centrally. Thus,

we need to transmit only the tracked feature vectors to a central processor. The worst

case scenario is when we need to transmit the feature vectors for every frame, i.e., a new

person appears/disappears in every frame (a highly unrealistic situation). We take the

video captured by one of the cameras in Data set 2 as an example to show the savings in

data transmission. The video is about 6.5 minutes. If we need to transmit features for

every frame, the amount of data is 9.2MB, compared with 17.2MB for MPEG2 compressed

video if the entire video was transmitted without any local processing. However, since we

need to transmit feature vectors only when there are objects appearing/disappearing, the

actual data amount we transmitted in this case is 132KB. This provides a saving of 99%

over transmitting MPEG compressed video.

• Computational time: The computational time depends on the size of the feature graph

(number of feature nodes, see Fig. 3.2) and the iteration steps needed to reach a local

minimum. Our Matlab code runs on a computer with 1.8GHz CPU. The computational

time for data set 1 is about 550 seconds for analyzing 20 minutes of data and that for data

set 2 is about 350 seconds for analyzing about 7 minutes of video.

• Advantage of Heuristic Optimization Scheme: The plots in Fig. 3.11 and 3.17 show

the solution space obtained by randomly choosing different paths in the feature graph. A

direct optimization of the multi-objective function would have required searching over such

different paths to obtain the final solution. Our strategy constrains the optimization space

close to the correct solution and allows us to search over a small set of points in this solution

space.

3.7 Conclusions

In this chapter, we proposed a novel multi-objective optimization framework for

tracking multiple people in a large network of non-overlapping video cameras. We considered

the uncertainty of feature similarity estimation and treated them as random variables. We

considered the long-term interdependence of the features over space and time. We derived a

path smoothness function using discriminant analysis to correct for wrong correspondences.
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We showed that the above two conditions can be addressed by treating the issue of tracking

in a camera network as a multi-objective optimization problem which could be solved using

a stochastic adaptive strategy. We demonstrated the effectiveness of our system by showing

results on a real life camera networks.
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Chapter 4

Distributed Control and Tracking

In A Camera Network

4.1 Introduction

Networks of video cameras are being installed in many applications, e.g., video

surveillance, national and homeland security, assisted living facilities, etc. It is natural to

expect that these camera networks would be used to track targets at multiple resolutions,

e.g., multiple people, a single person, a face. For efficiency and maximum resource utiliza-

tion, it is desirable to actively control the cameras so as to track the targets based on the

requirements of the scene being analyzed. It would be prohibitively expensive to have a

static setup that would cater to all possible situations. Currently, similar applications try

to cover the entire area or the most important parts of it with a set of passive cameras but

have difficulty in acquiring high resolution shots selectively.

It is also desirable that the tracking and control mechanism be distributed due to

constraints of bandwidth, secure transmission facilities, and difficulty in analyzing a huge

amount of data centrally. In such situations, the cameras would have to act as autonomous

agents and decisions would have to be taken in a distributed manner. However, to be able

to track all the targets in an area under surveillance accurately, the cameras should be

working cooperatively with each other. This is because each camera’s parameter settings

entail certain constraints on other cameras. Also, if a target is observed by multiple cameras,

there should be a consensus on the state (e.g., position) of the target even if each camera
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is an autonomous agent.

The cooperative and decentralized nature of this problem leads us to explore a

game theoretic solution. Specifically, we employ a framework in which the optimization of

local sensor utility functions leads to an optimal value for a global utility. This achieves the

goal of keeping track of all targets at an acceptable resolution and some at high resolution.

The optimal camera parameters in the sensor network are determined dynamically accord-

ing to these utility functions and negotiation mechanisms based on the estimation of the

states, i.e. position and velocity, of the targets. To employ suitable negotiation mechanisms

between the different sensors is of great importance since the cameras have to take strategic

decisions according to the perceived or anticipated actions of the other cameras. This entire

framework leads to a completely decentralized approach.

4.2 Technical Rationale

4.2.1 Problem Statement

The overall goal of our work in this chapter is to develop a distributed multi-

target tracking and camera network control framework to observe and keep track of all

targets at the desired resolutions in an active camera network. We consider a network of

synchronized calibrated cameras with pan, tilt, and zoom capabilities. Each camera has an

embedded processing unit for local processing of the sensed video data. Since the cameras

are calibrated, they can determine through their homographies the position of a target on

a ground plane.

Some of the cameras in the network may have overlapping fields of view and a

target may therefore be viewed by several cameras simultaneously. Due to inaccuracies

in calibration and single-view target tracking methods, the different cameras viewing the

same target will not have exactly the same measurement of the target’s state on the ground

plane. Consequently, it is necessary for the cameras to collaborate to reach a consensus

on the actual state of the target. In our framework, this consensus must be reached only

through point-to-point communications between neighboring cameras without the use of

any central processing unit.

As the targets move from one camera’s FOV into another, and as the cameras

change their parameters, the distributed tracking system must also be able to keep track
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of the targets in a seamless way. Also, a camera may have to change its parameters in

coordination with other cameras so as to keep the targets imaged at the given desired

resolutions. All this requires the tracking algorithm to be robust to dynamically changing

camera network topologies.

4.2.2 Necessity of collaboration in a camera network

We start by motivating the necessity of an intelligent camera network and a coop-

erative strategy. For purposes of explanation, we will refer to this problem as Cooperative

Target Acquisition (CTA). Two questions we need to address are the following - (i) why

do we need active cameras (as opposed to having a network of cameras with a fixed set of

parameters) and (ii) why does the control strategy need to be cooperative?

The main reason for having a dynamically configurable network is that it would be

prohibitively expensive to have a static setup that would cater to all possible situations. For

example, suppose we needed to focus on one person (possibly non-cooperative) or specific

features (e.g., face) of the person as he walks around an airport terminal and obtain a high

resolution image of him while keeping track of other activities also going on in the terminal.

To achieve this, we will either need to dynamically change the parameters of the cameras

where this person is visible or have a setup whereby it would be possible to capture high

resolution imagery irrespective of where the person is in the terminal. The second option

would be very expensive and a huge waste of resources, both technical and economical.

Therefore we need a way to control the cameras based on the sensed data. Currently,

similar applications try to cover the entire area or the most important parts of it with a set

of passive cameras, and have difficulty in acquiring high resolution shots selectively.

The control strategy must necessarily be cooperative because each camera’s pa-

rameter settings entail certain constraints on other cameras. For example, if a camera zooms

in to focus on the face of one particular person, thus narrowing its field of view (FOV),

it risks losing much of the person and the surroundings. Another camera can compensate

for this by adjusting its parameters to track the person with a lower zoom setting. This

requires analysis of the video data in a network-centric manner, leading to a cost-effective

method to obtain high resolution images for features at dynamically changing locations.

Figure 4.1 shows a simple example to illustrate these points. While Camera 1

keeps the entire scene in focus, it cannot get high resolution features on any of the people.
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This is done by Cameras 2, 3 and 4, but they have narrow FOVs. In fact, we can see that

Camera 2 can no longer keep track of the person in the white shirt with its current settings,

but can keep track of the other person. Camera 3, therefore, takes responsibility for tracking

the person in the white shirt. With the information already available, Camera 4 is able to

obtain a high resolution facial image. Since events will unfold dynamically over a large area,

these assignments must be made dynamically. For example, if the person in the green shirt

does not need to be tracked, Camera 2 can be released for some other task. However, this

requires controlling the cameras such that they work in a collaborative manner. It would

be very difficult, if not impossible, for a human operator to analyze multiple video streams

and change the camera parameters simultaneously. Hence, the necessity for automated

solutions.

4.2.3 Necessity of a decentralized strategy

As the problem complexity increases, it may be difficult to analyze all the data

in a centralized manner and come up with an effective CTA strategy. There may not be

enough bandwidth and transmission power available to send all the data to a central station.

It is also not information rate efficient to transmit an entirely unprocessed video stream.

Furthermore, security of the transmission and interception by a hostile opponent may be a

factor in some applications. Finally, even if it is possible to securely transmit all the data

to a central unit, it may not be the best strategy as it is often intractable to come up with a

centralized optimal policy given the complex nature of these systems and the environments

where they are deployed. In this framework, each camera must take its own decisions based

on analysis of its own sensed data and negotiation mechanisms with other sensors.

4.2.4 Overview of solution strategy

We propose a special application of the Kalman-Consensus Filter presented in

[66] to solve the problem of finding a consensus on the state (position and velocity) of

multiple targets in a dynamic camera network with possibly overlapping fields of view.

In our proposed distributed tracking algorithm, the cameras will only communicate with

their neighbors and their specific communication links will vary in time as the targets move

through the area under surveillance. Details of the tracking approach are provided in Section
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Figure 4.1: An example of a camera network where different cameras work collaboratively
to fulfill different tasks. While Camera 1 keeps the entire scene in focus, it cannot get high
resolution features on any of the people. This is done by Cameras 2, 3 and 4, but they
have narrow FOVs. In fact, we can see that Camera 2 can no longer keep track of the
person in the white shirt with its current settings, but can keep track of the other person.
Camera 3, therefore, takes responsibility for tracking the person in the white shirt. With
the information already available, Camera 4 is able to obtain a high resolution facial image.

4.5.

The cooperative and distributed nature of this problem also leads us to explore a

game theoretic solution for the camera control problem as detailed in Section 4.4. This is

achieved by the optimization of local sensor utility functions leading to an optimal value

for a global utility, i.e. keep view all targets at an acceptable resolution and some at high

resolution.

Figure 4.2 shows an overview of our distributed multi-resolution tracking system in

a network of self-configuring cameras. Each of the three neighboring smart cameras in this

figure has its own embedded tracking module, control module and Kalman-Consensus filter.

The tracking module receives the video data from the camera and performs the tracking of

the targets in its FOV. Since the camera is calibrated, the tracking module can determine
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Figure 4.2: A diagrammatic representation of the proposed distributed tracking and control
system with three neighboring smart cameras.

the (noisy) position of each target on the ground plane. The Kalman-Consensus filter then

uses this target position information together with position and velocity information from

other neighboring cameras to come to a consensus with these cameras about the actual

state of the target.

The control module on the other hand, changes the parameters of the camera

as necessary to track the different targets at the desired resolutions while also keeping

the entire area in view. The parameter change is decided based on the parameters of

neighboring cameras following the game-theoretic framework presented in Section 4.4. The

parameters of the neighboring cameras are obtained through a negotiation process. The

Kalman-Consensus filter and control module run independently and asynchronously in each

smart camera.

As can be noticed, each camera exchanges only information regarding its own PTZ

parameters and states of targets that are in its FOV. There is no video information being

sent to any other camera or to a central processing station. It should also be pointed

out that although the control module communicates with all of its neighbors, the Kalman-

Consensus filter in our framework communicates only with a subset of the neighboring

cameras. This is advantageous because the state information exchange for the consensus

tracking requires a higher data rate than the control negotiation information. By reducing

the number of neighboring cameras that need to communicate with each other during the
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consensus tracking, we reduce the overall communication bandwidth required for the system.

As can be seen clearly, this entire framework leads to a completely distributed approach for

multi-target tracking and camera self-configuration.

4.2.5 Relation to previous work

Some recent work has dealt with networks of vision sensors, namely computing the

statistical dependence between cameras, computing the camera network topology, tracking

over the network, and camera handoff [45, 50, 57, ?, 83]. There has also been recent work on

tracking people in a multi-camera setup with overlapping fields of view [15, 47]. However,

these methods are not totally distributed and do not deal with the the problem of tracking

and control in an active camera network.

In [59], a distributed target tracking approach using a cluster-based Kalman filter

was proposed. Here, a camera is selected as a cluster head which aggregates all the mea-

surements of a target to estimate its position using a Kalman filter and sends that estimate

to a central base station. Our proposed tracking system differs from this method in that

each camera in a neighborhood has a consensus-based estimate of the target’s state and thus

there is no need for additional computation and communication to select a cluster head.

Furthermore, we consider a dynamic camera network in which, as the cameras change their

parameters, the targets are being kept track of seamlessly. As will be described in Sec-

tion 4.5, we apply in a special way the distributed Kalman-Consensus filter [66] which has

been shown to be more effective than other distributed Kalman filter schemes. Consensus

schemes have been gaining popularity in computer vision applications involving multiple

cameras [86].

A related work that deals with tracking targets in a camera network with PTZ

cameras is [73]. Here, the authors proposed a mixture between a distributed and a central-

ized scheme using both static and PTZ cameras in a virtual camera network environment.

Our approach to camera control and tracking, however, is completely distributed using

consensus algorithms and a game-theoretic framework [2]. Preliminary work on this game

theoretic approach for camera control was presented in [79]. However, our goal in that

paper was merely to cover an entire area, and there was no attempt to address the tracking

problem, which is critical for a distributed approach to work.
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A broad framework for the vehicle-target assignment problem using game theory

was presented in [2]; however, it does not include a risk vs. reward trade-off (as the dynamics

of the targets is not considered) and does not consider the constraints imposed by video

cameras. Unlike the above methods, we develop target acquisition strategies in a camera

network that rely on cooperative decision making in dynamic environments.

4.3 A Review of Distributed Estimation and Cooperative

Control in A Sensor Network

We briefly review some basic concepts related to distributed consensus and coop-

erative control in a sensor network that are directly relevant to our work.

4.3.1 Distributed control through cooperation

The theme of cooperative control has received significant attention in recent years,

especially the design of autonomous vehicles with intelligent and coordinated action capa-

bilities to achieve an overall objective. In [2], an autonomous vehicle-target assignment

problem in which a group of vehicles are expected to assign themselves to a set of targets

to optimize a global utility function is considered. However, rather than optimizing the

global utility function directly, the emphasis was on designing vehicles that are individu-

ally capable of making coordinated decisions to optimize their own local utilities, which

then indirectly translated into the optimization of a global utility function. This approach

enabled the vehicles to operate in environments with limited information, communication,

and computation, and still be able to optimize a global utility autonomously.

This problem was formulated as a multi-player game where each vehicle was in-

terested in optimizing its own utility. The notion of pure Nash equilibrium can be used to

represent the target assignments that are agreeable to the rational vehicles, i.e. the assign-

ments at which there is no incentive for any vehicle to unilaterally deviate. As has been

shown in [99], the combination of using the Wonderful Life Utility (WLU) as the vehicle

utility and Spatial Adaptive Play (SAP) as the negotiation mechanism leads to an optimal

assignment of targets within the set of pure Nash equilibria. The precise definitions of the

utility functions and negotiation mechanisms for our application will be provided in Section
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4.4.

4.3.2 Distributed state estimation

In the multi-agent systems literature, consensus means to reach an agreement

regarding a certain quantity of interest that depends on the state of all sensors in a network.

There is no central unit that has access to all the data from the sensors. Consequently, a

consensus algorithm is an interaction rule that specifies information exchange between a

sensor and its neighbors so that all the nodes reach a consensus. The interaction topology

of a network of sensors is represented using a graph G = (V,E) with the set of nodes

V = {1, 2, ..., n} and edges E ⊆ V × V . Each sensor node i = 1, ..., n is associated with a

state xi ∈ R. Reaching a consensus means asymptotically converging to a one-dimensional

agreement space characterized by the equation x1 = x2 = ... = xN .

There have been recent attempts to achieve dynamic state estimation in a consensus-

like manner. In contrast to a central Kalman filter where state information coming from

several sensors is fused in a central station, Distributed Kalman Filters (DKF) compute a

consensus-based estimate on the state of interest with only point-to-point communication

between the sensors [66]. A distributed Kalman filtering (DKF) strategy that obtains con-

sensus on state estimates was presented in [66].The overall performance of this so-called

Kalman-Consensus filter has been shown to be superior to other distributed approaches. It

is on this DKF strategy that we base our distributed tracking algorithm on. The mathe-

matical details are presented in Section 4.5.2. A thorough review of consensus in networked

multi-agent systems can be found in [65].

4.4 Cooperative Control Using Game Theory

Our goal is to develop a decentralized strategy for coordinated control that relies

on local decision-making at the camera nodes, while being aligned with the suitable global

criterion of tracking multiple targets at multiple resolutions. For this purpose, we propose

to use novel game theoretic ideas that rely on multi-player learning and negotiation mecha-

nisms [22]. The result is a decision making process that aims to optimize a certain global

criterion based on individual decisions by each component (sensor) and the decisions of other
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interconnected components. In the next section, we provide an intuitive reasoning to justify

the presented solution strategy. Then we describe the criteria that each camera should use

to evaluate its own sensed data and the design of the negotiation mechanisms. Finally, we

describe the game-theoretic approach for distributed control of the sensor network.

4.4.1 Motivation for game theoretic formulation

We aim to design a decentralized CTA strategy for a network of imaging sensors

whereby the sensors will optimally assign themselves to a set of targets. This is done using

a game theoretic formulation whereby each sensor is a rational decision maker, optimizing

its own utility function which indirectly translates to the optimization of a global utility

function.

In the context of the motivating example we presented in Section 4.2.2, we provide

an intuitive rationale why game theory is a feasible solution strategy. The targets {T } are

the opponents. A target loses and is eliminated from the game if it is captured in an image of

the desired resolution (specified by application requirements). Our team of cameras scores

each time it obtains a desired resolution image of a target; however, there is risk associated

with each high resolution image attempt, as explained in detail in Section 4.2.2 (acquisition

of each target at high resolution risks losing the global picture of the relative positions of

all the targets and subsequent loss of track of a target if it leaves the field of view (FOV)

of its imaging device.)

When the number of targets is larger than the number of cameras, the necessity

of cooperation between the cameras is obvious. Even when the number of cameras is larger

than the number of targets, the benefit of cooperation and information sharing is clear. A

camera tracking Ti at relatively low zoom allows other cameras to track other targets at

higher zoom levels, provided the state of the camera tracking Ti could be communicated

to them. In addition, cameras at intermediate zoom levels can allow tracking of multiple

targets at a sufficient level of accuracy to enable other cameras to attempt higher risk, but

higher reward, images at high zoom levels. This shows that a decentralized strategy for

camera control is feasible through local decision making and negotiations with neighboring

cameras.

The objective of the team is to optimize the global utility function by having each
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camera optimize its own local utility function, again subject to risk, but now also subject to

predictions of the actions of the other cameras. The first step is to find suitable local utility

functions such that the objectives of each camera are localized to that camera, yet aligned

with a global utility function. The second step is to propose an appropriate negotiation

mechanism between cameras to ensure convergence of the distributed solution toward the

global solution. The actual computation of these functions depends upon the analysis of

the sensed video.

4.4.2 Precise problem statement and notation

The overall goal of the imaging network is to track all the objects of interest in the

area where they are deployed and acquire high resolution imagery of some of these objects

(specified by a user or another application). The global utility function should provide a

measure of this objective.

Let us consider Nt targets in the entire area of deployment and Nc sensors that

need to be assigned to these targets. In the camera network setup, each target will be

represented by a location vector and a resolution parameter, e.g., in Figure 4.1, one target

could be the face of the person in the white shirt with a high resolution setting, while

other targets could be all moving objects in the entire observed area with a low resolution

parameter setting. Let the cameras be denoted as C = {C1, ..., CNc} and the targets as

T = {T1, ..., TNt}. Camera Ci ∈ C will select its own set of targets ai(= {Ti}) ∈ Ai, where

Ai is the set of targets that can be assigned to Ci, by optimizing its own utility function

UCi(ai). This is known as target assignment in the game theory literature. Our problem

is to design these utility functions and appropriate negotiation procedures that lead to a

mutually agreeable assignment of targets resulting in meeting the global criterion.

4.4.3 Game theory fundamentals

A well-known concept in game theory is the notion of Nash equilibrium. In the con-

text of our image network problem, it will be defined as a choice of targets a∗ = (a∗1, ..., a
∗
Nc

)

such that no sensor could improve its utility further by deviating from a∗. Obviously, this

is a function of time since the targets are dynamic and the sensors could also be mobile

or capable of panning, tilting and zooming. For our problem, a Nash equilibrium will be

61



reached at a particular instant of time when all the cameras are tracking all the targets in

the deployment region at an acceptable resolution and there is no advantage for a particular

camera to choose some other target to track.

Mathematically, if a−i denotes the collection of targets for all cameras except cam-

era Ci, then a∗ is a pure Nash equilibrium if

UCi(a
∗
i , a

∗
−i) = max

ai∈Ai

UCi(ai, a
∗
−i),∀Ci ∈ C. (4.1)

4.4.4 Choice of utility functions

Target Utility.

If the number of cameras viewing Ti at an acceptable resolution r0 is nr0
i , then the

utility of covering Ti using a particular assignment profile a is

UTi(a) =
{ 1 if nr0

i > 0

0 if nr0
i = 0

(4.2)

Global Utility.

From the target utility function, we can now define the global utility function as

the sum of the utilities generated by tracking all the targets, i.e.,

Ug(a) =
∑
Ti

UTi(a). (4.3)

Camera Utility.

We now come to the all important question of defining camera utility in a suitable

manner so that it is aligned to the global utility function. A target utility, UTi , represents

the overall value of tracking a target Ti at an acceptable resolution. The camera utility, UCi ,

represents a particular sensor’s share of this value. We will say that the camera utility is

aligned with the global utility when the sensor can take an action improving its own utility if

and only if it also improves the global utility [92]. This will require prediction of the actions

of team-mates, which will be achieved through the negotiation mechanisms described in
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the next section. Under this definition, we can use a number of utility functions that have

been proposed in the game theory literature [60, 92]. In our application, we propose to use

what is known as Wonderful Life Utility (WLU). In WLU, the utility of a sensor tracking a

particular target is the marginal contribution to the global utility as a result of this action,

i.e., the sensor utility is the change in the global utility as a result of that sensor tracking

that particular target as opposed to not tracking it. The exact expression is

UCi(ai, a−i) = Ug(ai, a−i)− Ug(a−i). (4.4)

This definition of camera utility works well if the teammate predictions are accu-

rate and stable. As shown in [60], this sensor utility leads to a potential game with the

global utility function as the potential function, and hence they are aligned with the global

utility. This ensures that the resulting set of targets that are chosen will be included within

the set of pure Nash equilibria. In particular, the Wonderful Life Utility has been widely

used in economics [58].

4.4.5 Negotiation mechanisms

Tracking objects of interest in a dynamic setting requires negotiation mechanisms

between the different sensors, allowing them to come up with the strategic decisions de-

scribed above. Each sensor negotiates with other sensors to (i) accurately estimate the

state of the targets, (ii) accurately predict their team-mates’ parameters, and (iii) decide

its own action. Note that this entails each camera to consider risk, along with the re-

wards measured by the utility functions described above. This makes each sensor truly

autonomous thus providing robustness in uncertain and adversarial environments, where

there could be a lack of adequate communication resources, and incomplete knowledge of

the sensed data and environmental conditions of the other sensors. Hence the cooperation

between the sensors is limited to exchanging information about the states of other sensors

and targets, not the actual video data.

The overall idea is to use learning algorithms for multi-player games [60]. A par-

ticularly appealing strategy for this problem is Spatial Adaptive Play (SAP) [99]. This

is because it can be implemented with a low computational burden on each camera and

leads to an optimal assignment of targets with arbitrarily high probabilities for the WLU
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described above. In a particular step of the SAP negotiation strategy, a camera is chosen

randomly according to a uniform distribution. This camera can update the targets it is

tracking so as to maximize its own utility by taking into account the proposed targets of

all the other cameras in the previous step.

Let us consider a concrete example to illustrate this. Suppose that the chosen

camera, say Ci with zoom zi, detects a new object within its FOV that it may need to track

at a high resolution (specified by a user, for example.) Now, Ci can choose to track this

object or, if the object is being tracked by some other camera, it can leave it to that camera.

This is where the negotiation mechanism comes in. If Ci has access to the assignment of

the other cameras at a previous step, it can determine whether that camera will be able

to maintain tracking at the desired resolution or the object will be out of that camera’s

FOV. Thus, Ci can reach an informed decision based on its own utility function and the

negotiation mechanism that allows it to access the previous decisions of the other cameras.

It also requires predicting the position of the target at a future time instant. By proposing

this action, it can monitor the responses of the other cameras and assess the risk/reward

tradeoff.

Application of SAP negotiation mechanism

In our method for camera control in a sensor network, we adopt the Spatial Adap-

tive Play (SAP) strategy. Let us consider a camera Ci which is viewing the area under

surveillance at an acceptable resolution. At any step of SAP negotiations, Ci is randomly

chosen from the pool of cameras in the network according to a uniform distribution 1, and

only this camera is given the chance to update its proposed parameter settings. At any

negotiation step, Ci proposes a parameter setting to maximize its own utility based on other

cameras’ parameters at the previous step. After Ci updates its settings, it broadcasts its

parameters (i.e. pan, tilt and zoom) to the entire network. Based on calibration data, the

other cameras can then calculate the area covered by Ci and use that information to update

its parameters after being chosen at any negotiation step. After the negotiation converges,

the entire area of interest is viewed at an acceptable resolution. An implicit assumption is

that the amount of time it takes for the assignments to be finalized is less that the time
1The issue of choosing which camera to update in a decentralized manner will be dealt with in future

work. Some suggestions for implementing this can be found in [2].

64



for the targets to move from one camera to another. This will be true if each camera has

sufficient processing power and if cameras are assigned to targets only when the targets will

be in a cameras’ FOV for a reasonable amount of time.

Algorithm 1 Maximize utility and negotiate
Input: Camera Ci, Video from Ci

Ci calculates parameters needed to maximize its utility at r0 based on area covered by other cameras
obtained from negotiation mechanism
if Ci needs to change its parameters to maximize its utility then

Ci changes its parameters
Ci broadcasts its parameters (pan/tilt/zoom) to all the cameras in the network

end if

Algorithm 2 Initialize cameras to cover entire area at acceptable resolution
Initial State: Cameras are not covering entire area at r0

while entire area is not being covered at r0 do
Choose a camera Ci randomly according to a uniform distribution
Call Algorithm1(Ci)

end while

End State: Cameras are covering entire area at r0. Each target is represented by (Tk, r0).

Algorithm 3 Track all targets at an acceptable resolution
Initial State: Cameras are covering entire area at r0

for t = t0, t1, t2, ... do
All Cis track all (Tk, r0)s in their FOVs
All Cis predict p̂k(t + ∆) for all (Tk, r0)s in their FOVs
if a Ci determines that a (Tkout , r0) will move out of its FOV then

Ci broadcasts t̂kout and p̂kout to all the cameras in the network
end if
if a Ci determines that it can track (Tkout , r0) based on t̂kout and p̂kout then

Ci takes over tracking of (Tkout , r0)
end if

end for

End State: All cameras are tracking all targets at an acceptable resolution

Let us now consider the case where a specific application requires the tracking of a

target at a high resolution. Initially, if a camera Cj determines that it can view the target

at the highest resolution based on the parameters of the other cameras in the network,

it starts tracking the target. Once Cj takes on the task of tracking the target at a high

resolution, it will predict the state (i.e. position and velocity) of the target at each time

step t + ∆, where ∆ is the prediction time. If Cj predicts that it will not be able to view

the target after a time tout, it will asynchronously broadcast tout and the target’s predicted

position at tout to the entire network indicating that it needs to handoff the tracking to
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Table 4.1: Variables used in algorithms
t discrete time step
{Cl}Nc

l=1 Set of all cameras
{Tk}Nt

k=1 Set of all targets
(Tk, r0) Target being tracked at acceptable resolution r0

(Tk, rh) Target being tracked at specified high resolution rh

Ci Camera tracking (Tk, r0)
Ch Camera tracking (Tk, rh)
∆ Prediction time step
p̂k(t + ∆) Predicted position of Tk at time t + ∆
t̂kout Predicted time in which Tk is expected to leave Cl’s FOV
p̂kout Predicted position of Tk at t̂kout

Tkout Target about to leave Cl’s FOV

Algorithm 4 Track some targets at high resolution, others at acceptable resolution
Initial State: All cameras are tracking all targets at r0

handoffHighResTargetF lag = 0
for t = t0, t1, t2, ... do

if a (Tk, rh) has been selected (manually or automatically) then
newHighResTargetF lag = 1

end if
Choose a camera Ci randomly according to a uniform distribution
if newHighResTargetF lag == 1 AND Ci can track (Tk, rh) based on the range of its FOV then

Ci starts tracking (Tk, rh) and becomes Ch

newHighResTargetF lag == 0
else if handoffHighResTargetF lag == 1 AND Ci can track (Tkout , rh) based on t̂kout , p̂kout being
within the range of its FOV then

Ci takes over tracking of (Tkout , rh) and becomes Ch

Previous Ch becomes Ci

handoffHighResTargetF lag == 0
else

Call Algorithm1(Ci)
end if
Ch predicts p̂k(t + ∆) for (Tk, rh)
if Ch determines that (Tk, rh) will move out of its FOV thus becoming (Tkout , rh) then

Broadcast handoffHighResTargetF lag = 1, t̂kout and p̂kout of (Tk, rh) to all the cameras in the
network

end if

end for

another camera. When a camera Ci (i 6= j) is now chosen to update its parameters at any

negotiation step, it will first determine if it can adjust its parameter to view the target at

the desired high resolution based on the predicted target parameters broadcast by Cj . If

it can do so, it will set its parameters accordingly and take over the tracking of the target.

However, if Ci determines it is not able to view the target at a high resolution, it will simply
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continue with the negotiation cycle maximizing its own utility as presented above. Once Cj

is not able any more to track the target, it returns to the negotiation cycle to maximize its

own utility.

This entire negotiation approach based on game theory can be seen in more de-

tail in Algorithms 1-4 (variables are described in Table 4.1). In these algorithms, t =

{t0, t1, t2, ...} need not be contiguous time instants and will depend upon the time it takes

for each target assignment to be complete. We will assume that the computation time to

come up with a set of camera parameters, given a target configuration, is much smaller

than the time it takes for the target configuration to change. Since all possible targets will

always be tracked at a low resolution, this implies that we are concerned only with the

time interval for which a high resolution target is chosen. Hence, it is a very reasonable

assumption.

4.4.6 Theoretical Analysis of Proposed Framework

It has been shown that for the decentralized control strategy it is possible to

achieve convergence to a Nash equilibrium when the targets are static []. However, for the

case of dynamic targets and utility functions that depend upon video analysis algorithms,

we are not aware of any results that prove convergence. In this regard, not only will the

proposed algorithms be unique, but we expect to make fundamental theoretical results in

this area. Below we outline some preliminary steps in this regard that build directly upon

existing results in game theory. The dynamics of the targets and the specific choice of utility

functions, tied to the video analysis algorithms, is not considered. However, it provides a

preliminary framework to enable the development more sophisticated results this project

will lead to.

Existence of Pure Nash Equilibrium

Definition 1. A game is called a potential game if the incentive of all players to change

the strategy can be expressed in a global potential function. These games are studied in

[60]. The concept of potentiality helps us to specify an important set of games because of

their desirable convergence properties.

Definition 2. A game is an exact potential game if there exists potential function φ:
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A → R such that for every camera, Ci ∈ C, for every ai ∈ A−i and for every a′i ∈ A−i,

UCi(ai, a−i)− UCi(a
′
i, a−i) = φ(ai, a−i)− φ(a′i, a−i)

Definition 3. A game is an ordinal potential game if there exists potential function φ:

A → R such that for every camera, Ci ∈ C, for every ai ∈ A−i and for every a′i ∈ A−i,

UCi(ai, a−i)− UCi(a
′
i, a−i) > 0 ⇔ φ(ai, a−i)− φ(a′i, a−i) > 0

Theorem 4.4.1. If game Γ(A, Uc) has a continuous ordinal potential function, φ, with a

compact strategy space A,

(i) the equilibrium set of Γ(A, Uc) coincides with the equilibrium set of Γ(A, φ),

(ii) Γ has at least one Nash Equilibrium in pure strategies.

Proof. (i) follows directly from the definition of an ordinal potential.

(ii) â is a Nash Equilibrium for game Γ(A, φ) if â = arg maxa∈A φ(a), and it follows from

(i) that â is a Nash Equilibrium for game Γ(A, Uc).

Application to camera networks

As we mentioned earlier, camera utility should be defined in a suitable manner so

that it is aligned to the global utility function. For every camera, Ci ∈ C, when we change

its set of targets from ai to a′i, if

UCi(ai, a−i)− UCi(a
′
i, a−i) > 0 ⇔ Ug(ai, a−i)− Ug(a′i, a−i) > 0

the camera utility UCi is said to be aligned with the global utility Ug. By comparing with

the notion of ordinal potential game in Definition 2, it is obvious that the camera utilities,

UCi(a), i = 1, ..., nc, are specified to make them “aligned” with the global utility, Ug(a), and

the game Γ(A, Uc) is an ordinal potential game with ordinal potential function Ug.

Let aopt denote an optimal set profile, i.e.,

aopt ∈ arg max
a∈A

Ug(a).

Then, according to the proof of Theorem 4.4.1, aopt is a (possibly nonunique) pure Nash
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equilibrium of the game.

Convergence of the camera network to Nash Equilibrium

It has been proved in [2] that the profiles generated by SAP converge to the set of

Nash equilibria in potential game with arbitrarily high probability. Based on this, we can

now say the following.

Theorem 4.4.2. An ordinal potential game consists of camera utilities UCi(a), Ci ∈ C with

the global utility Ug(a) being a potential function. Then the target profiles a(k) generated

by SAP satisfy

lim
τ�0

lim
k→∞

Prob{a(k)is an optimal profile} = 1. (4.5)

4.5 Distributed Multi-Target Tracking Through Consensus

4.5.1 Dynamic Network Topology

As mentioned earlier, we propose a special application of the Kalman-Consensus

Filter presented in [66] to solve the problem of finding a consensus on the state of multiple

targets in a dynamic camera network with possibly overlapping fields of view. However,

unlike the sensor nodes in [66], the nodes in our camera network are directional sensors

and a new method for establishing the network topology between the camera nodes must

therefore be developed. Furthermore, since the camera network is composed of cameras that

change their parameters and therefore their fields of view as needed, the network topology

will be dynamically changing also.

Let C be the set of all cameras in the network. We can then define the subset of

all cameras viewing target Tl as Cv
l ⊂ C and the rest of the cameras as Cp

l ⊂ C. Each camera

Ci will also have its set of neighboring cameras Cn
i ⊂ C. Since all the cameras can change

their PTZ parameters and have therefore several possible fields of view, we define the set

Cn
i as all the cameras with which Ci can potentially have an overlapping field of view. By

definition, it becomes clear then that for each Ci ∈ Cv
l , it is true that Cv

l ⊂ {Cn
i ∪Ci}, i.e. all

of the cameras viewing a specific target are also neighbors. Note that the set of neighbors

need not be geographical neighbors.
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In our proposed distributed tracking system, only cameras that have an observation

of a target Tl will communicate with their neighbors. This feature limits the amount of data

exchanged for the consensus tracking. By reducing the number of neighboring cameras

that need to communicate with each other during the consensus tracking, we also reduce

the power requirements of each camera node and the overall communication bandwidth

required for the system.

This way of defining the network connections between the camera nodes brings

about a dynamic graph Gl(k) = (Vl(k), El(k)) representing the network topology of the

system with respect to target Tl at time instant k. When there are multiple targets in the

area under surveillance, there will be a distinct network topology for each target. Obviously,

as Tl moves through the area under surveillance, Gl(k) will also change since other cameras

will be viewing Tl and only these cameras will communicate with their neighbors thus

creating a dynamic network topology. The network topologies of all the targets will also

change when one or more cameras change their parameters. As will be explained in the

following section, this definition of network topology for distributed tracking does not affect

in any way the performance of the Kalman-Consensus filter presented next.

4.5.2 Kalman-Consensus tracking

To model the motion of a target Tl on the ground plane as observed by camera

Ci, we consider a linear dynamical system with process and sensing models

xl(k + 1) = Al(k)xl(k) + Bl(k)wl(k); xl(0) (4.6)

zl
i(k) = Hl

i(k)xl(k) + vl
i(k) (4.7)

where wl(k) and vl
i(k) are zero mean white Gaussian noise (wl(k) ∼ N (0,Ql),vi(k) ∼

N (0,Rl
i)) and xl(0) is the initial state of the target. We define the state of the target at

time step k as xl(k) = (xl(k), yl(k), ẋl(k), ẏl(k))T where (xl(k), yl(k)) and (ẋl(k), ẏl(k)) are

the position and velocity of target Tl in the x and y directions respectively. xl
i is the state

of Tl based on the observations in Ci only. The noisy measurement zl
i(k) at camera Ci is

the sensed target position (xl
i(k), yl

i(k)) on the ground plane based on the pre-computed

homography.

Our special implementation of the Kalman-Consensus distributed tracking algo-
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Algorithm 5 Distributed Kalman-Consensus tracking algorithm performed by every Ci at discrete
time step k. The state of Tl is represented by xl

i with error covariance matrix Pl
i (see Sec. 4.5.2).

Input: x̄l
i and Pl

i from time step k − 1
for each Tl that is being viewed by {Cn

i ∪ Ci} do
if Ci ∈ Cv

l (i.e. Ci is viewing Tl) then
Obtain ground plane measurement zl

i with covariance Rl
i

Compute information vector and matrix

ul
i = Hl

i

T
Rl

i

−1
zl

i

Ul
i = Hl

i

T
Rl

i

−1
Hl

i

Send message ml
i = (ul

i,U
l
i, x̄

l
i) to neighboring cameras Cn

i

end if
Receive messages mj = (ul

j ,U
l
j , x̄

l
j) from all cameras Cj ∈ Cv

l

Fuse information matrices and vectors

yl
i =
X

j∈Cv
l

ul
j , Sl

i =
X

j∈Cv
l

Ul
j

Compute the Kalman-Consensus state estimate

Ml
i = ((Pl

i)
−1 + Sl

i)
−1

x̂l
i = x̄l

i + Ml
i(y

l
i − Sl

ix̄
l
i) + γMl

i

X

j∈Cv
l

(x̄l
j − x̄l

i)

γ = 1/(||Ml
i||+ 1), ||X|| = (tr(XT X))

1
2

Update the state and error covariance matrix for time step k

Pl
i ← AlMl

iA
lT + BlQlBlT

xl
i ← Alx̂l

i

end for

rithm is presented in Algorithm 5. This algorithm is performed distributedly in each camera

node Ci. At each time step k and for each target Tl, we assume to be given the estimated

target state x̄l
i and the error covariance matrix Pl

i from time step (k − 1). Each Ci also

knows its set of neighbors Cn
i from the information used by the camera’s control module.

At time step k = 0, the Kalman-Consensus filter is initialized with Pl
i = P0 and x̄l

i = xl
i(0)

= average of zl(k)’s of neighbors viewing Tl.

The following gives a verbal description of Algorithm 5 performed at each Ci

distributedly for each Tl that is viewed by {Cn
i ∪Ci}. If Ci is viewing a target Tl, it determines

Tl’s ground plane position zl
i and computes the corresponding information vector and matrix

with the given measurement covariance matrix Rl
i and output matrix Hl

i. Ci then sends a

message ml
i to its neighbors which includes the computed information vector and matrix,
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and its estimated target state x̄l
i at previous time step (k − 1). Ci then receives similar

messages mj only from the cameras in its neighborhood that are also viewing Tl. The

information matrices and vectors received from these messages, and its own information

matrix and vector if Ci is viewing Tl, are then fused and the Kalman-Consensus state

estimate is computed in a way similar to the method proposed in [66]. Finally, the ground

plane state x̄l
i and error covariance matrix Pl

i are updated according to the assumed linear

dynamical system.

4.5.3 Handoff, Network Reconfiguration and Fault Tolerance

Through this algorithm, each Ci has a consensus-based ground plane state estimate

of each target that is being viewed by its neighboring cameras, even if Ci has never seen

some of the targets. Since we are assuming that the network of cameras as a whole is always

covering the entire area under surveillance through the game theoretic control framework

presented in Section 4.4, the target will always be seen by at least one camera. Also,

by our definition of neighboring cameras, a target Tl will always move from one camera

Ci’s FOV to the FOV of a neighboring camera Cj ∈ Cn
i . Therefore, Cj can take over the

tracking of Tl and find the target correspondence in a seamless way since it had knowledge

of Tl’s ground plane position through the consensus-tracking before it even entered its FOV.

Additional target features could be used to find the target correspondences in a cluttered

scene. Furthermore, even as a camera changes its parameters, it can also take over the

tracking of the targets in its new FOV immediately since it also knew the position of the

targets in its neighborhood beforehand through the consensus-tracking algorithm.

Another advantage of the fact that cameras have knowledge of all the targets in

their neighborhood is that in the event of a sudden failure of camera node Ci, the targets

that were viewed by Ci are not suddenly lost by the camera network. The neighboring

cameras can adjust their parameters to cover the area that was left uncovered by Ci’s

failure and continue with the consensus-tracking algorithm without any interruption.

We have also considered the fact that a camera may take a short amount of time

to change its parameters to a new position. If no camera is viewing the target for the

short amount of time it takes for the cameras to come to a new set of parameters to cover

the entire area, the target state estimate just follows the assumed linear state equations.
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This does not translate to a significant decrease in tracking performance as seen in our

experiments. In the next section, we explain how the camera parameters are changed in

order to keep the different targets imaged at the specified resolution.

4.6 Experimental Results

4.6.1 Distributed Camera Control

To evaluate the proposed game theoretic method for camera control, we tested our

approach on both simulated and real-life network of cameras.

Camera Control on Simulated Data

The area under surveillance is set up as a rectangular region of 20 by 30 meters.

Since we cannot know the time and location in which the targets will enter the area, we

treat the entire area under surveillance as targets. In our specific implementation presented

here, we divide the area into grids in a way similar to [18] to make the problem more

tractable. Therefore, we treat each grid of the area as a virtual target. In this simulation,

the grids are of size 1x1 meter. The sensor network consists of 14 PTZ cameras with a

resolution of 320x240 pixels spread out over the perimeter of the area as seen in Fig. 4.3(a).

Initially, the camera parameters (pan/tilt/zoom) are assigned arbitrarily so that the area

under surveillance is not entirely covered by the cameras’ FOVs.

The first goal is to determine an initial set of camera parameters to cover the

entire area at an acceptable resolution. To achieve this, we use the game theoretic approach

described above (Algorithm 2). Since each grid in the area is treated as a virtual target,

the cameras can update at each negotiation step which of these virtual targets they are

tracking in order to maximize their own utility according to the parameter settings of the

other cameras at the previous time step. The zoom factor to view the targets at the desired

resolution is determined by the the number of pixels a target (assumed here to have a height

of 170 cm) occupies on the image plane. At each negotiation step, after a camera updates

its pan/tilt/zoom parameters, these parameters are transmitted to the entire network. The

other cameras can therefore calculate the new area that this camera is now covering. This

process is repeated at each negotiation step in which a camera is chosen randomly to update
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its parameters. In this simulated setting, the negotiation converges to a completely covered

area at an acceptable resolution after 14 negotiation steps as seen in Fig. 4.3(a) (area in

gray is covered, area in white is not covered).

After the entire region is covered at an acceptable resolution, it follows that every

moving target in that area is also being viewed at an acceptable resolution given the con-

straint of covering the whole area. The cameras would be using Algorithm 3. However, a

human operator could chose to track a feature (e.g. face) of a specific moving target at a

higher resolution for a specific application (e.g. face recognition). This chosen target is the

marked target in Fig. 4.3(b). Then, the camera that can view the specified feature of the

target at a high resolution takes the task of tracking the target changing its parameters by

using Algorithm 4. The results of the tracking can be seen in the dark FOV in Fig. 4.3(c).

Since the parameter change of that chosen camera, Ch, left some parts of the area uncov-

ered, the other cameras have to change their parameters during the negotiation in order to

once again cover the whole area at an acceptable resolution. That parameter change of the

cameras is evident in Fig. 4.3(d). As presented before, Ch will now predict the position of

the target at time t. If Cj determines that it will not be able to track the high-resolution

target after a time instance tout, it will transmit tout to the camera network as well as the

predicted position of the target at tout so that it can handoff the tracking to another cam-

era. As can be seen in Fig. 4.3(d), the high-resolution target is about to exit the camera’s

field of view and the camera broadcasts the handoff parameters to the network. In Fig.

4.3(e) we see that another camera that was participating in the negotiation decided that it

could view the target at a high resolution at tout and therefore took over the tracking of the

target. Again, this camera is now in charge of tracking the high-resolution target predict-

ing its position. The other cameras, one more time, adjust their parameters to cover the

entire area at an acceptable resolution. This process is repeated until the target exits the

area of interest as seen in Fig. 4.3(f). Once the target has left the area under surveillance

completely, all the cameras continue with the negotiation maximizing their utilities to keep

the entire area covered at an acceptable resolution.
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Acceptable resolution target High resolution target

(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Simulated area under surveillance with several targets visible at an acceptable
resolution and one high-resolution target. (a) shows the area of interest being completely
covered by the cameras at an acceptable resolution r0 (gray shaded areas are covered, white
areas are not) and therefore all the targets in the area are being viewed and tracked at
r0. In (b), a target (Tk, rh) has been selected for tracking at a high resolution rh. Ch,
the camera with the dark FOV in (c), decided that it could track (Tk, rh) and adjusted its
FOV accordingly. Some of the other cameras readjusted their parameters to maximize their
utilities and the area is again entirely covered. (Tk, rh) is about to exit Ch’s FOV in (d).
Therefore, Ch broadcasts the estimated exit time and position of (Tk, rh) to all the cameras
to hand off the target. (e) shows how another camera decided that it could view (Tk, rh) at
the estimated position and time. Note how in (e) there is a small part of the area uncovered
which is quickly covered again through the cameras’ negotiation mechanisms. The entire
process above is repeated until (Tk, rh) exits the area as in (f).
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Real-life Data

We also showed experiments with a real-life network of cameras. The area under

surveillance is a outdoor region of approximately 15 by 20 meters. The sensor network

consists of 6 PTZ cameras with a resolution of 320x240 pixels. Same as experiments on

simulated data, we divide the area into grids of size 1x1 meter and treat each grid of the

area as a virtual target. Initially, the camera parameters (pan/tilt/zoom) are assigned

arbitrarily (see left panel of Figure 4.4) so that the area under surveillance is not entirely

covered by the cameras’ FOVs.

We use the game theoretic approach described in Algorithm 2 to determine an

initial set of camera parameters to cover the entire area at an acceptable resolution. Figure

4.4 shows the initialization results. The results after initialization are shown on the right.

It is clear that the entire area has been covered after initialization.

Figure 4.5 shows the results of camera control on a specific task. When one person

(bounded with red box)is selected to be viewed at a higher resolution, one camera zooms

in, and other cameras automatically adjust their settings to keep the entire area covered.

When the highlighted person moves out of the view of his binding camera, a hand off is

automatically achieved in our game theory framework.

Figure 4.4: Initialization results using proposed game theory based approach. The original
settings are shown on the left, the results after initialization are shown on the right. It is
clear that the entire area has been covered after initialization.

4.6.2 Distributed Tracking Using Kalman-Consensus Filter

We tested our approach for tracking and camera self-configuration in a real camera

network composed of 10 PTZ cameras looking over an outdoor area of approximately 10000

sq. feet. We divided the area into contiguous blocks and each of the centers of those blocks
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(a) (b)

(c) (d)

Figure 4.5: Results of camera control on a specific task. When one person (bounded with red
box)is selected to be viewed at a higher resolution, one camera zooms in, and other cameras
automatically adjust their setting to keep the entire area covered. When the highlighted
person moves out of the view of his binding camera, a hand off is automatically achieved
in our game theory framework. Notice the changes in the camera settings over time. The
video is available at http://www.ee.ucr.edu/ amitrc/CameraNetworks.htm .

is considered a virtual target of height 1.70m. Therefore, if the camera network as a whole

is covering all of the virtual targets in each block at an acceptable resolution r0 = 40 pixels

in the vertical direction, all of the actual targets in the area under surveillance are also

being viewed at an acceptable resolution.

In the area under surveillance, there were 8 targets in total that were to be tracked

using our distributed Kalman-Consensus filtering approach. Figure 4.6 shows the tracking

and control results as viewed by each camera at 4 time instants. Due to space constraints,

we show only 4 (C1, ..., C4) of the 10 cameras in the camera network. At an initial state,

all of the cameras have random PTZ parameters and are not covering the entire area under

surveillance. After the cameras start running their control modules, they converge to the

final configuration seen partly in Figure 4.6(a) covering the entire area. Once the targets

start coming into the area, the single-view tracking module in each camera determines

the ground plane position of each target in its FOV and sends that information to the
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(a) k = 64

(b) k = 74

(c) k = 93

(d) k = 151

Figure 4.6: Each column shows one of 4 of the 10 cameras at four time instants de-
noted by k. A target marked with a box is always tracked at a high resolution.
Note that the camera parameters are changing to achieve this while covering the en-
tire area at an acceptable resolution. The other targets are tracked using the Kalman-
Consensus filtering approach, but are not marked for clarity. The video is available at
http://www.ee.ucr.edu/ amitrc/CameraNetworks.htm .
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Kalman-Consensus filter which processes it together with the information received from the

Kalman-Consensus filters of neighboring cameras as described in Section 4.5. Figure 4.6(b)

shows the instant when a camera C3 zoomed into a target T h
l that was marked for being

tracked at a high resolution. Since C3 changed its parameters and left some area it was

covering uncovered, the other cameras in the network adjust their own parameters to cover

that uncovered area following the negotiation mechanisms described above. These changes

in parameters can be seen in Figure 4.6(b) and (c) for cameras C3 and C4. As shown in

Figure 4.6(d), when C3 is not able to change its parameters to keep tracking T h
l , C1 takes

over the tracking and C3 changes its parameters to cover some area that was left uncovered

by C1. It is to note that every time a target goes from one camera’s FOV into another one,

or when a camera changes its parameters, the network topologies for the targets change

also.

Figure 4.7 shows the distributed Kalman-Consensus tracking trajectories for the

8 targets. The observations of the different cameras are shown in a light gray color. As

can be seen, even though the homography-based observations are noisy and the network

topology is changing constantly, the Kalman-Consensus filter in each camera comes to a

smooth consensus about the actual state of the target.

Figure 4.8 shows the distributed tracking results in the y ground plane direction

for one of the targets. The dots correspond to the observations from the different cameras

viewing the target while the solid line is the consensus-based estimate. As can be expected,

the observations are different for each camera due to calibration and single-view tracking

inaccuracies. The vertical dashed lines indicate a change in the dynamic network topology

with respect to the target, i.e. when the target goes into or out of a camera’s FOV. As can be

seen clearly, even though different combinations of cameras view the target at different time

instants, the Kalman-Consensus filter finds an estimate of the target’s position seamlessly

at all times.

4.7 Conclusion

We presented in this chapter a robust approach to distributed multi-target tracking

in a network of self-configuring cameras. A novel camera control framework based on game

theoretical ideas allowed for viewing some targets at a high resolution while keeping the

79



Figure 4.7: Distributed Kalman-Consensus tracking trajectories for 8 targets. Observations
from all cameras are shown in a light gray color.

Figure 4.8: Tracking results in the y ground plane direction for one of the targets.
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entire area under surveillance covered at an acceptable resolution. This is achieved through

the appropriate choice of utility functions and negotiation mechanisms. Simulation and

real-life results show that this method can be effectively utilized for decentralized camera

network control. A distributed Kalman-Consensus filtering approach was used together

with a dynamic network topology for tracking persistently multiple targets across several

camera views in an area under surveillance viewed by a dynamic camera network.
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Chapter 5

Distributed Communication

5.1 Introduction

Transmission of video data from multiple sensors over a wireless network requires

enormous amount of bandwidth, and could easily overwhelm the system. However, by ex-

ploiting the redundancy between the video data collected by different cameras, in addition

to the inherent temporal and spatial redundancy within each video sequence, the required

bandwidth can be significantly reduced. Well-established video compression standards, such

as MPEG1, MPEG2, MPEG4, H261, and H263, all rely on efficient transform coding of

motion-compensated frames, exclusively using the discrete cosine transform (DCT). How-

ever, they can only be used in a protocol that encodes the data of each sensor independently.

Such methods would exploit spatial and temporal redundancy within each video sequence,

but would completely ignore the significant redundancy between the sequences.

In this chapter, we develop the framework for a novel multi-terminal video coding

(MTVC) algorithm combining distributed source coding (DSC) and computer vision tech-

niques that impose geometrical constraints between the observed views of the two cameras.

This lossy compression scheme takes into account the correlation between the video sensor

data, and at the same time keeps the communication between the sensors at a minimum. In

broad terms, our scheme relies on alignment of the 2-D video sequences using the epipolar

geometry [33] relating the cameras, which could be located arbitrarily in space, followed by

standard elimination of spatial and temporal redundancy, and finally by quantization of

the transform coefficients in a distributed fashion [87]. The epipolar geometry refers to the
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relationship between the positions of a stereo camera pair, and can be estimated from a

pair of stereo images obtained from these cameras. We propose a distributed motion esti-

mation (DME) that is able to obtain correspondences between the cameras, in addition to

computing the temporal motion vectors between the frames. The performance of our algo-

rithm depends, most crucially, on the quality of alignment and the coding efficiency of the

distributed quantization scheme. The alignment must result in correspondences between

pixels that are maximally correlated, and the distributed coding must optimally exploit this

correlation.

We begin by reviewing some of the fundamentals of DSC and describe our MTVC

algorithm. We then elaborate on the performance measures and analyze the results. We

perform a thorough experimental evaluation of MTVC and achieve the following objectives:

(i) We provide a benchmark dataset and performance measures which represent an upper

bound on the gain obtained through distributed coding of a pair of video sequences, as

opposed to coding each of them separately; (ii) We show the performance of some simple

schemes and where they stand with respect to this optimal limit; (iii) We identify the major

issues that need to be addressed in future work on MTVC in order to achieve the highest

compression rates. In particular, we show that MTVC is capable of providing significant

benefits in low bit-rate coding.

We would like to emphasize that the novelty of the proposed scheme lies in the

ability to integrate distributed source coding concepts with video analysis tools that exploit

the inherent geometrical constraints between two views. There is a significant amount

of work that is possible in both these areas. It is possible to integrate more advanced

techniques for source coding and motion estimation. While that is the focus of much of our

current work, we present a basic algorithm that lays the groundwork for integrating these

two parts together.

5.2 Previous Work

There has recently been significant effort in application of DSC techniques to video

data. However, in what is broadly known as distributed video coding (e.g., [28, 72, 77]),

DSC is utilized only for the exploitation of temporal correlation in a single video stream,

leading to a low-complexity encoder and better error resilience. A recent method [90]

83



attempts to exploit the redundancy between images available at different sensor nodes by

independently encoding the images in low resolution and decoding using super-resolution

techniques. However, this gain is orthogonal to the coding gains promised by DSC, which

could be achieved by exploiting the high correlation between the low-resolution images.

Therefore higher coding gains promised by multiterminal source coding theory [5, 68, 78] are

not reached. Another recent work [25, 26] developed a distributed image coding technique

for a multi-camera setting. Under certain assumptions on the location of the cameras (e.g.,

the cameras are located along a horizontal line, the objects are within a certain known range

from the cameras, and the image intensity field is piecewise polynomial), they derived a

lower bound on the minimum number of cameras required to perfectly reconstruct a scene.

For image-based rendering applications, [106] exhibits a successful algorithm for Wyner-Ziv

coding of the light field whereby complexity is shifted from the encoders to the decoder,

but geometrical relationships between camera positions are not taken into account. A

recent paper considers inter- and intra-sensor correlation for transmission after making some

simplifying assumptions about the locations of the sensors and not making explicit use of

the geometrical transformations relating the images in various sensors [12]. Another recent

work [96] also addresses multiterminal video coding in its most general sense. However, the

technique used for finding corresponding points in the two views is computationally involved,

and requires, for example, efficient depth estimation. For a setting where feedback from the

central decoder to one of the encoders is allowed, [21] provides a mechanism for efficient

exploitation of inter-sensor redundancy.

5.3 Transform Coding of Distributed Sources

The fundamental ingredient of DSC, both in lossless and lossy cases, is binning [5,

78], i.e., a many-to-one mapping of the actual data taken from the sources to a limited

number of values. Through binning, the correlation between the sources can be exploited

without any communication between the sensors.

For two maximally correlated pair of blocks from each view, we use the discrete

cosine transform followed by distributed scalar quantization of transform coefficient pairs.

Coefficient pairs corresponding to each fixed spatial frequency are encoded independently.

Our scalar coding method is provably competitive (in the sense of approaching the rate-
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distortion bounds) in high bit rates, which is a promising result for the intended (lower

bit-rate) applications.

Figure 5.1: Proposed coding scheme with
W = 3, NX = 2, and NY = 2. As can be
seen, 3 cells indicated in bold, suffice to
cover the support of the source, indicated
as the shaded area, everywhere.

Let the shaded region shown in Fig-

ure 5.1 indicate the support of a pair of trans-

form coefficients X̃ and Ỹ we need to quan-

tize. It will suffice to design a coding mech-

anism which encodes the scalars that are in-

side the support with a small enough distor-

tion, and simply ignore any pair of values falling

outside. The encoding must be performed sep-

arately, and therefore the cells used for the cov-

ering must consist of Cartesian products of in-

dividual intervals. The particular assignment in

Figure 5.1 indeed ensures indispensable unique

decodability, as each pair of codewords pinpoint

to a single cell that is used in the covering of the

support. The example codeword pair shown in

the figure, {0,3}, actually corresponds to 4 dif-

ferent cells, but only one of those has a high probability of occurring, and therefore is used

for the covering of the support, i.e., as the decoded output. The same statement can be

made for all codeword pairs in {0,. . . ,5}×{0,. . . ,5}.

As in [87], we consider a family of codes parameterized by three integers, W ,

NX and NY . The dynamic ranges of both X̃ and Ỹ are divided into W × NX × NY

intervals, thereby defining a grid on the two dimensional plane. The achieved fixed-length

coding rates for the X̃- and Ỹ -encoders are dlog2 WNXe and dlog2 WNY e, respectively.

For jointly Gaussian source pairs, we were able to analyze the performance of our scheme

rigorously [87], which proved its competitiveness in two aspects: (i) under the uniform

high-resolution quantization regime, by separate encoding of X̃ and Ỹ , one can achieve the

same total distortion one would achieve even if both X̃ and Ỹ were available at a single

sensor node [27, Section 8.3], and (ii) under high-resolution assumption, this simple binning

technique can attain total rates as close as 3.05 bits to the asymptotical rate-distortion

bound characterized in [68].
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5.4 An Overview of the MTVC Algorithm

Though the issues discussed in the previous sections regarding efficient transform

and coding of the data can be applied to any sensor network where nodes observe correlated

sequences and are required to transmit their findings to a central receiver, our main focus

will be on distributed video compression. Multi-terminal video compression stands to gain

significantly from DSC due to the inherently high bandwidth of video. Video compres-

sion deals with encoding a video sequence after removing the spatial redundancy in each

video frame and the temporal redundancy between the frames. Standards such as MPEG1,

MPEG2, MPEG4, H261, and H263, outline procedures for achieving this purpose. If we

have multiple video sequences from different cameras where there is a significant overlap

between the sequences, the above coding standards are inefficient since they do not consider

the redundancy in the data at the different sensors. Under this situation, it is necessary

to develop distributed video compression schemes that can take advantage of the fact that

the data from different sources are correlated. Moreover, this should be done without too

much communication between the sensors. Otherwise the savings in bandwidth obtained

by considering correlated sources would be offset by the inter-sensor communication.

The theory outlined in the previous section provides an excellent framework to

design a distributed lossy video compression scheme. The sensors may be viewing the scene

from different viewpoints, but they may have a significant portion of the scene where their

field of views (FOVs) overlap. On this overlapping portion, we intend to achieve a very

high compression rate using the distributed source coding principles discussed so far. The

portion in the frames where there is no correspondence between them will be intra-coded.

The geometry between the locations of the sensors will be exploited to understand the

correlation between the data at different sensor nodes. We provide below a detailed strategy

for developing a distributed video compression strategy for pairs of sensors. Extending it

to K sensor nodes will be an issue of future research.

Our scheme relies on obtaining correspondence between the macroblocks (MBs) of

the two sensor data at any time instant. Reliable tracking will result in maximally correlated

MBs, which, in turn, will lead us to develop an efficient distributed coding scheme. The

task of tracking the correspondence of MBs will be achieved by using the motion vectors

(MVs) together with the geometrical constraints between the sensors [33]. The MVs can be
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computed by any scheme, e.g., as in MPEG. The geometrical relationships are expressed

through the epipolar constraint. The epipolar constraint states that given a point in one

view (say the left image), its corresponding point in the other view lies on the epipolar line.

This reduces the search for correspondences to a 1D problem, provided we can compute the

epipolar line. This, in turn, requires information about the camera calibration parameters,

i.e. the intrinsic parameters of the camera (we will assume that the focal length is the only

intrinsic parameter of interest), as well as the extrinsic parameters (i.e., the position and

orientation of the camera reference frame with respect to a fixed reference frame in the

world). For this chapter, we assume stationary cameras, which means that the calibration

parameters can be estimated from the images obtained from two or more sensors. Though

the present scheme is described for a pair of cameras, it can be generalized to larger sets

using the multi-camera constraints [33] or dealing with the cameras pairwise.

5.5 MTVC Algorithm

We provide below an overview of our proposed approaches for (i) tracking the

correspondence between MBs in the two sequences obtained from cameras A and B (the

Distributed Motion Estimation (DME) algorithm), and (ii) compressing the two frames in

a distributed fashion using the correspondences.

5.5.1 The Distributed Motion Estimation (DME) Algorithm

Let us label the two video cameras as A and B. We assume, for the purposes of

this explanation, that we have calibrated cameras and Camera A knows its position relative

to Camera B. We also assume that the two cameras were initially synchronized at time

t = t1 so that the corresponding MBs are known at Camera A. The synchronization needs

to be done (by Camera A using the initial frames captured by both) at the very start of

the transmission, and needs to be refreshed periodically.

• Problem Definition and Assumptions: The correspondence between the macroblocks

of IA1 and IB1 is known at Camera A (see Fig. 5.2). The problem is to compute the

correspondence between IA2 and IB2 also at Camera A. The MVs of both pairs of frames

{IA1, IA2} and {IB1, IB2} are computed separately using an MPEG encoding scheme. That

is, both frames IA2 and IB2 are divided into a uniform grid of MBs and MVs are computed
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Figure 5.2: Pictorial description of the DME. The numbers in circles indicate the steps of
the algorithm.

per macroblock. Let us denote by {MV (IA2)} the set of MVs from IA2 to IA1, and similarly

by {MV (IB2)} those from IB2 to IB1. The algorithm is repeated for each macroblock at

Camera A.

• Inter-camera Communication: Camera B transmits its MVs to Camera A, which

uses this information to track which MB in Camera B’s view corresponds to the current

MB in its own view. Although this information is primarily useful at the decoding stage,

it must necessarily be performed at the encoder at Camera A to classify MBs into two

classes: overlapping and non-overlapping. If the encoder decides that the current MB is in

the overlapping region, it uses DSC. Otherwise, it uses conventional compression.

• The Premise of the Algorithm: If a macroblock MB(IA2) in IA2 is in the overlapping

region, then it must have a matching macroblock in IB2 centered somewhere on the epipolar

line corresponding to the center of MB(IA2). In order to find exactly where, we utilize the

motion vectors {MV (IA2)} and {MV (IB2)} to map both the macroblock MB(IA2) and the

epipolar line in the previous frame, and use the correspondences already computed between

IA1 and IB1.

• The Step-by-Step Algorithm: A visual description of the steps below is provided in
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IA1 IB1

IA2 IB2

Figure 5.3: MBs on a grid in the left (Camera A) view IA1 correspond to indicated blocks
in the right (Camera B) view IB1 of the first frame. Tracking results are shown on frames
IA2 and IB2. There is about a 30% overlap between the views, which is not accounted for
in traditional single source video encoding strategies, such as MPEG. (The picture is best
viewed in color.)

Fig. 5.2.

1. For each macroblock MB(IA2), the motion vector MV (IA2) leads to four possible MBs in

IA1, denoted by {MB4(IA1)}. Camera A obtains the corresponding four MBs, {MB4(IB1)},
using the correspondence between IA1 and IB1.

2. Using the epipolar constraint, Camera A computes the epipolar line for the center pixel

in MB(IA2). Denote this line by EP (IB2).

3. Sampling the epipolar line (possibly non-uniformly), Camera A creates a sequence of

MBs, denoted by {MBC(IB2)}, the center of each being a sample point on the line. Using

{MV (IB2)} (which it has now access to), it then interpolates to obtain the MVs of this

sequence of MBs, denoted by {MVC(IB2)}.
4. Using {MVC(IB2)}, Camera A obtains the corresponding sequence of MBs in IB1,

denoted by {MBC(IB1)}.
5. Among the sequence of MBs {MBC(IB1)}, Camera A chooses the one with the highest
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amount of intersection with {MB4(IB1)}. This MB is then traced back to the frame IB2,

and the resultant MB, denoted by MB(IB2), is declared to correspond to MB(IA2). If

there is zero or very small overlap between {MBC(IB1)} and {MB4(IB1)}, it is declared

that MB(IA2) no longer has a correspondence in IB2.

6. The process is repeated for every MB in IA2. This establishes a correspondence between

macroblocks of IA2 and IB2. We can now increment the time counter and go back to the

Step 1.

Observe that to track correspondence of MBs, the DME algorithm, which runs on

Camera A, utilizes only the motion information of Camera B, i.e., it need not access the

image data of Camera B. Fig. 5.3 shows preliminary results obtained by this algorithm. The

top row shows the overlapping MBs (about 30% of the image) in IA1 and IB1, while the

bottom row shows the tracking result on these MBs using the DME algorithm. The small

amount of inter-camera communication can be completely removed if we have a 3D model

of the object which can be used to obtain the correspondences between the two views.

5.5.2 Distributed Coding of Corresponding MBs

For both frames IA2 and IB2, we will first apply motion compensation to re-

duce temporal redundancy. However, instead of standard motion compensation MC(t) =

MB(t)−MB(t−1), where MB(t) denotes a generic MB and MB(t−1) is the corresponding

MB in the previous frame, we propose to adopt a non-unity prediction coefficient 0 < p < 1

and use MC(t) = MB(t) − pMB(t − 1). This non-standard approach is advantageous in

two aspects. First, it will provide us with better error resilience, as errors caused by channel

erasures will be forgotten quickly (i.e., effectively in a few frames if p is small enough). This,

in turn, will also help defer the next I-frame. Second, the corresponding MBs in the two

views will enjoy much higher correlation. This can be proved theoretically using a model

(such as a Gauss-Markov process [87]). We have also observed this phenomenon in practice.

The residual obtained at Camera B is encoded as in any conventional video coding

scheme, e.g., MPEG or H.26x. That is, the residual MBs are transformed using the discrete

cosine transform (DCT) and encoded. The non-overlapping portion of Camera A’s residual

sequence is also encoded using this conventional approach. For the overlapping portion in

Camera A’s view, however, we propose to use a distributed scalar quantization scheme for
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the top transform coefficients, and conventional coding for the rest of the coefficients.

As in any DSC scheme, our algorithm is based on binning of quantization coef-

ficients. We propose a simple algebraic binning scheme based on modulo-W arithmetic,

where we term W the “correlation width” of the support of the joint distribution governing

the transform coefficient pair in corresponding MBs. Fig. 5.1 depicts the proposed scheme

with a simple example.

5.6 Performance Evaluation & Analysis

5.6.1 Experiments With Controlled Data

We conducted a detailed evaluation of the performance of this algorithm on a syn-

thesized video sequence with known motion estimates and inter-camera correspondences (see

Fig. 5.4) 1. This allows us to benchmark the upper bound on the savings obtained by our

MTVC algorithm under ideal conditions, thus showing clearly the achievable gains. These

are the limits practical MTVC algorithms should strive to achieve on this sequence. Then

we used simple schemes for estimating the correlation width, W of DSC for corresponding

MBs and compared the results against the maximum possible gain. Finally, we computed

the gain from DSC, as opposed to separate coding, for the face sequence in Fig. 5.3. From

these experiments, the overwhelming conclusion to be drawn is that MTVC can be very

efficient at low bit-rates, and the challenge for the future is to develop smart strategies for

motion estimation and coding. In some ways, this parallels efforts in conventional video

compression to develop efficient motion estimation and coding algorithms. We now present

the details.

Experiment 1

The goal of the experiment was to quantify the gains obtained from MTVC com-

pared to separate coding, when exact values of motion estimates, inter-camera correspon-

dence and correlation width are available. The reference image (also referred to as zero-

degree) was held fixed as Camera A while the Camera B images were obtained at various

angles. For each pair, we computed the PSNR vs. bit-rate for separate coding and dis-
1This data will be made available to the broad community.
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Figure 5.4: Frames of synthesized video sequences were generated with a separation of 5,
15, 25, 35 and 45 degrees from a reference.

tributed coding. The difference was approximately constant for each angle. This is to be

expected since for a constant joint distribution, we must increase W by the same factor

as we increase the quantization level, N , to keep the unique decodability intact. In other

words, W/N must be proportional to the thickness of the equi-probability curve. Since the

difference is constant, the gain in bit-rate (for a fixed distortion), expressed as a percentage

of the bit-rate for separate coding, is very high for low bit-rates and decreases as the bit-rate

increases. For example, in the case that the angle between Camera A and Camera B is 15

degree, the percentage of bit-rate savings decreases from about 63% to 19% as the bit-rate

increases from 90 to 620 Kbps (see Fig. 5.5 (b)). This shows the very high potential of

MTVC at low bit-rates.

Experiment 2

The goal of this experiment was to test the accuracy of simple schemes for com-

puting the correlation width, W automatically. We again chose pairs as before for separate

and distributed coding. The ground truth for motion estimates was used. The “correlation

width”, W , was chosen manually in the first frame. Thereafter, W for the nth frame was

estimated from the corresponding macroblocks in the (n− 1)th frame of the same camera.
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(a) (b)

(c) (d)

Figure 5.5: (a): Rate distortion curves at various angles with known values of W, compared
against separate coding. (b): The gain in bit-rate (for a fixed distortion), expressed as a
percentage of the bit-rate for separate coding. (c) (d): The PSNR vs. bit-rate for each
frame (shown as a bullet) for the zero-fifteen degree pair. The maximum values of the W s
in the corresponding MBs in the (n− 1)th frame (c) and a fixed W value (d) were used.
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The maximum, median and mean values of the W s in the corresponding macroblocks in the

(n− 1)th frame and a fixed value was used. The fixed W value was chosen as the median

value of the W s in the first frame. We plot the PSNR vs. bit-rate for each frame for the

zero-fifteen degree pair. The curve for separate coding is also plotted (see Fig. 5.5 (c)(d)).

Each distributed coding curve starts at the same bit-rate as the separate coding and then

adjusts depending upon the estimated values of W . We find that a number of frames stay

below the separate coding curve, but then cross over. This suggests that the main challenge

is efficient coding schemes so that more frames stay below the separate coding curve, thus

yielding a larger gain from MTVC compared to separate coding. We also need methods to

reinitialize W automatically, just as motion estimates are reinitialized using an I-frame in

conventional video coding.

5.6.2 An Experiment With Face Video Sequences

The goal of this experiment was to plot the maximum achievable gain using MTVC

on the face images of Fig. 5.3. We used the DME algorithm to obtain the correspondences.

Thereafter, we chose a constant value of W based on an analysis of the corresponding MBs.

The curve in Fig. 5.7 plots the savings in bit-rate using MTVC, compared to separate

coding of the two channels. This again shows that significant savings are obtained at lower

bit-rates. Methods to automatically estimate W should be of such an accuracy that the

savings indicated by this curve can be reached on this dataset. Some of the original and

decoded face images are shown in Fig. 5.6. These images were obtained with a bit-rate of

about 89Kbps and a PSNR of 28dB.

5.7 Conclusions

We have designed a novel distributed lossy video compression scheme that takes

into account the correlation between the video sensor data, and at the same time keeps the

communication between the sensors at a minimum. Using epipolar geometry relating the

video sensors, the correspondence between the macroblocks of multiple views can be tracked

at any time instant, with minimal communication between the sensors. After finding corre-

sponding macroblocks, a suitable transform, and a quantization of the transform coefficients

in a distributed fashion are applied to eliminate spatial and inter-sensor redundancy. Using
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Figure 5.6: Examples of original (top) and decoded (bottom) frames of the face sequence.
Frame numbers 2, 7, 12 and 17 of a sequence are shown.

Figure 5.7: The gain in bit-rate (for a fixed distortion), expressed as a percentage of the
bit-rate for separate coding for the face data.

the distributed coding we achieve a better compression rate on the overlapping portion of

multiple views.

In general, it is a subject of future work to consider how this scheme can give better

performance. First, more sophisticated algorithms can be used for DSC. The computational

simplicity of our scalar coding scheme can be traded off with more complex mechanisms

which use LDPC-based or turbo-coding-based algorithms [1, 3, 7, 23, 24, 53, 76, 102].

The accuracy of the video processing algorithms would also be studied so as to re-

duce errors due to loss of synchronization, misalignment of macroblocks and segmentaion of

the common region between two views. We will also consider extension to moving cameras,

which will require recalibration of the sensors. Extension to more than two sensors will be

another problem of the future research.
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Chapter 6

Conclusion and Future Work

In this thesis, we studied the core issues in network-centric processing, control

and communication in a multi-camera network, including tracking people in video through

changes of activities, tracking in a non-overlapping camera network, decentralized control

and tracking in a camera network, and distributed video compression.

In Chapter 2, we proposed a novel framework for tracking multi-activity sequences

without knowing the transition probabilities between the activities. We demonstrated this

for applications using only one camera, as well as in a network of non-overlapping cameras.

Using a non-linear dynamical feedback system, we showed that our method is able to con-

tinuously track sequences of different activities amidst changing background, occlusions and

clutter. Measures were designed to detect changes between activities. We demonstrated

the effectiveness of our approach by doing a detailed performance analysis and showing

experimental results on real life videos of different activities.

A novel multi-objective optimization framework for tracking multiple people in a

large network of non-overlapping video cameras was proposed in Chapter 3. We considered

the uncertainty of feature similarity estimation and treated them as random variables. We

considered the long-term interdependence of the features over space and time. We derived a

path smoothness function using discriminant analysis to correct for wrong correspondences.

We showed that the above two conditions can be addressed by treating the issue of tracking

in a camera network as a multi-objective optimization problem which could be solved using

a stochastic adaptive strategy. We demonstrated the effectiveness of our system by showing
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results on a real life camera networks.

Consider the difficulty in analyzing a huge amount of data centrally, we presented

a robust approach to distributed multi-target tracking in a network of self-configuring cam-

eras. A novel camera control framework based on game theoretical ideas allowed for viewing

some targets at a high resolution while keeping the entire area under surveillance covered

at an acceptable resolution. This is achieved through the appropriate choice of utility func-

tions and negotiation mechanisms. Simulation and real-life results show that this method

can be effectively utilized for decentralized camera network control. A distributed Kalman-

Consensus filtering approach was used together with a dynamic network topology for track-

ing persistently multiple targets across several camera views in an area under surveillance

viewed by a dynamic camera network.

We have designed a novel distributed lossy video compression scheme that takes

into account the correlation between the video sensor data, and at the same time keeps the

communication between the sensors at a minimum. Using epipolar geometry relating the

video sensors, the correspondence between the macroblocks of multiple views can be tracked

at any time instant, with minimal communication between the sensors. After finding corre-

sponding macroblocks, a suitable transform, and a quantization of the transform coefficients

in a distributed fashion are applied to eliminate spatial and inter-sensor redundancy. Using

the distributed coding we achieve a better compression rate on the overlapping portion of

multiple views.

A number of promising avenues of research are suggested by the work presented

in this thesis, and a few of them are detailed here. Consider the scenario that more than

one target is selected to be tracked at a high resolution, it would be interesting to study

the relationship between the number of high-resolution targets and the number of cameras

needed to cover an entire area under surveillance. Intuitively, as the number of high-

resolution targets increases, the number of cameras needed should also increase. But it

may not be smart to assign a camera for each individual target, especially when the targets

number is large. It would be interesting to find out the relationship.

It is also a subject of future work to consider how the distributed video compression

scheme can give better performance. First, more sophisticated algorithms can be used for

DSC. The computational simplicity of our scalar coding scheme can be traded off with more
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complex mechanisms which use LDPC-based or turbo-coding-based algorithms [1, 3, 7, 23,

24, 53, 76, 102]. The accuracy of the video processing algorithms would also be studied

so as to reduce errors due to loss of synchronization, misalignment of macroblocks and

segmentaion of the common region between two views. We will also consider extension to

moving cameras, which will require recalibration of the sensors. Extension to more than

two sensors will be another problem of the future research.
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Appendix A

Tracking Error and Bayesian

Hypothesis Testing

In this Appendix, we will show, using Bayesian Hypothesis Testing, that the track-

ing error using an incorrect model is greater than using a correct model under a set of

reasonable assumptions.

Consider that in the shape vector of Section 2.2, we treat each landmark separately.

Then for each of them we have dynamical system:

xt+1 = Axt + vt,

zt = f(xt) + nt (A.1)

Assume that:

xt ∼ N (x0, σx), nt ∼ N (0, σn)
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The output of tracking algorithm is

θ̂t = E[f(x)|zt] where f(x) = cx + d

=
∫

xt

f(x)p(xt|zt)dxt

=
1

p(zt)

∫
xt

f(x)p(zt|xt)p(xt)dxt

=
1
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∫
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2πσ2
n
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2πσ2

n

· exp
(
−1

2

(
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σ2
n

+
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σ2
x

))
dxt (A.2)

Considering the exponent only

(zt − f(xt))2

σ2
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σ2
x
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+ d̄ (A.3)

where
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σ2
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)−1 (
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σ2
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σ2
x

)
(A.4)
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(A.5)
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Then

θ̂t =
1

p(zt)
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107



Since

p(zt) =
∫

xt

p(zt|xt)p(xt)dxt

=
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Thus

θ̂t = cx̄0 + d (A.9)

Now consider 2 alternative models with the same form of the dynamical equations, but

xt ∼ N (x01, σx1) under Model 1

and xt ∼ N (x02, σx2) under Model 2

zt ∼ N (cx0 + d, c2σx + σ2
n)
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Using Bayes’ Hypothesis Theory, if M1 is the “correct” model, then

p(zt|M1) > p(zt|M2)

⇒ 1√
2π(c2
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Thus
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If c1, c2 and σ1,σ2 satisfy
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then from (A.10) we have
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Then the overall tracking error

K∑
i=1

||zi
t − θ̂i

t1||2 <

K∑
i=1

||zi
t − θ̂i

t2||2 (A.15)

Thus, we show that the tracking error using an incorrect model is greater.
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