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Abstract. Learning activity models continuously from streaming videos
is an immensely important problem in video surveillance, video index-
ing, etc. Most of the research on human activity recognition has mainly
focused on learning a static model considering that all the training in-
stances are labeled and present in advance, while in streaming videos
new instances continuously arrive and are not labeled. In this work, we
propose a continuous human activity learning framework from streaming
videos by intricately tying together deep networks and active learning.
This allows us to automatically select the most suitable features and to
take the advantage of incoming unlabeled instances to improve the exist-
ing model incrementally. Given the segmented activities from streaming
videos, we learn features in an unsupervised manner using deep net-
works and use active learning to reduce the amount of manual labeling
of classes. We conduct rigorous experiments on four challenging human
activity datasets to demonstrate the effectiveness of our framework for
learning human activity models continuously.

Keywords: Continuous Learning, Active Learning, Deep Learning, Ac-
tion Recognition.

1 Introduction

Recognizing human activities in videos is a widely studied problem in computer
vision due to its numerous practical applications. It is still a difficult problem due
to large intra class variance, scarcity of labeled instances, and concept drift in
dynamic environments. In the activity recognition problem dealing with surveil-
lance or streaming videos, it may be necessary to learn the activity models in-
crementally because all the training instances might not be labeled and available
in advance (Fig. 1). Current activity recognition approaches [29] do not perform
well in these scenarios because they are based on a setting which assumes that
all the training instances are labeled and available beforehand. Moreover, most
of these approaches use hand engineered features. Such manually chosen fea-
tures may not be the best for all application domains and requires to be done
separately for each application. Thus, there is a need to develop methods for
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activity classification that can work with streaming videos by taking the advan-
tage of newly arriving training instances, and where the features can be learned
automatically.

Fig. 1: A sequence of VIRAT [26]
streaming video, where new unla-
beled activities are continuously ar-
riving. These new activities can be
exploited to incrementally improve
current activity recognition model.
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Since the emergence of deep learning [11], it has received huge attention
because of its well founded theory and excellent generalized performance in many
applications of computer vision such as image denoising [40], scene understanding
[5], object detection [14], activity recognition [1,12,16,38], etc. Deep learning
based techniques such as autoencoder, stacking, and convolution have been used
for unsupervised learning of meaningful hierarchical features [16], which in many
cases outperform hand-engineered local features such as SIFT [21] and HOG [7].
In the context of above discussion, we pose an important question in this paper:
Can deep learning be leveraged upon for continuous learning of activity models
from streaming videos?

The ability of deep sparse autoencoder to learn hierarchical sparse features
from unlabeled data makes it a perfect tool for continuous learning of activ-
ity models. This is because sparse autoencoder has the ability to incrementally
update [42] and fine tune [11] its parameters upon the availability of new in-
stances. In the long run, concept drift may occur in streaming videos, which
means that the definition of a particular activity class may change over time.
Current activity recognition approaches often have problems dealing with these
situations because the models are learned a priori. We can overcome this problem
by incorporating the above properties of deep learning, whereby it is possible
to update the sparse autoencoder parameters to reflect changes to the dynamic
environments.

As new instances arrive, it would be unrealistic to have a human to manually
label all the instances. In addition to deep learning, active learning can also be
leveraged upon to learn activity models continuously from unlabeled streaming
instances and to reduce the amount of manual labeling. In active learning [35],
the learner asks queries about unlabeled instances to a teacher, who labels only
instances that are assumed to be the most informative for training and require
least possible cost. The purpose of the learner is to achieve a certain level of
accuracy with least amount of manual labeling.

1.1 Overview and Main Contributions

In this work, we propose a novel framework for continuous learning of activ-
ity models from streaming videos by intricately tying together deep learning and
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Fig. 2: This figure illustraes our proposed continuous activity modeling framework.
Inital learning phase is comprised of learning primary models for sparse autoencoder
and activity recognition with few labeled activities. This is followed by the incremental
learning phase.

active learning. The goal is threefold: a) to automatically learn the best set of
features for each activity class in an unsupervised manner, b) to reduce the
amount of manual labeling of the unlabeled incoming instances, and c) to re-
tain already learned information without storing all the previously seen data
and continuously improve the existing activity models. Detailed overview of our
proposed framework is illustrated in Fig. 2.

At first, we segment and localize the activities in streaming videos using a
motion segmentation based algorithm. We collect STIP [15] features from the
activity segments, which is a universal set of features, from where we will au-
tomatically learn the most effective features. Then, we compute a single fea-
ture vector for each activity using the STIP features by a technique based on
spatio-temporal pyramid and average pooling. Our method has two phases: ini-
tial learning phase and incremental learning phase. During the initial learning
phase, with smaller amount of labeled and unlabeled instances in hand, we learn
a sparse autoencoder. Then, we encode features for the labeled instances using
the sparse autoencoder and train a prior activity model. In this work, we propose
to use a multinomial logistic regression or softmax classifier. Note that the prior
model is not assumed to be comprehensive with regard to covering all activity
classes or in modeling the variations within the class. It is only used as a starting
point for the continuous learning of activity models.

We start incremental learning with the above mentioned prior model and
prior sparse autoencoder and update it during each run of incremental training.
When a newly segmented activity arrives, we encode features using the prior
sparse autoencoder. We compute the probability score and gradient length of
this particular instance. With this information, we employ active learning to
decide whether to label this instance manually or not. After getting the label,
we store the instances into a buffer. When the buffer is full, we incrementally
update the parameters of the sparse autoencoder and the activity recognition
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model, which in turn reflects the effects of the changing dynamic environment.
Each of these steps is described in more detail in Section 3.

2 Related Works

Existing activity recognition methods such as [4,15,23,23,24,29,44] perform well
in many challenging datasets but they suffer from the inability to model activi-
ties continuously from streaming videos. In machine learning, continuous learn-
ing from streaming data is a well defined problem and a number of different
methods can be found. Among these methods, ensemble of classifiers [10,28]
based methods are most common, where new weak classifiers are trained as new
data is available and added to the ensemble. Outputs of these weak classifiers
are combined in a weighted manner to obtain the final decision. However, these
approaches are unrealistic in many scenarios since the number of weak classifiers
increases with time.

A few methods can be found in the literature on incremental activity mod-
eling. In [31], an incremental action recognition method was proposed based on
a feature tree, which grows in size when additional training instances become
available. In [23], an incremental activity learning framework was proposed based
on human tracks. However, these methods are infeasible for continuous learning
from streaming videos because [31] requires to store all the seen training in-
stances in the form of a feature tree, while [23] requires the annotation of human
body in the initial frame of an action clip. The method proposed in [9] is based
on active learning and boosted SVM classifiers. They always train a set of new
weak classifiers for newly arrived instances with hand-engineered features, which
is inefficient for continuous learning in dynamic environments.

Active learning has been successfully used in speech recognition, information
retrieval, and document classification [35]. Some recent works used active learn-
ing in several computer vision related applications such as streaming data [22],
image segmentation [2], image and object classification [18], and video recog-
nition [39]. Even though they continuously update the classifiers, they require
the storage of all training instances. As mentioned in Section 1, deep learn-
ing based human activity recognition approaches have shown promising perfor-
mances [1,12,16,38]. In [16], independent subspace analysis was combined with
deep learning techniques such as stacking and convolution. In [1], [12], and [38]
3D convolutional network was used to automatically learn spatio-temporal fea-
tures from video. However, none of these methods have the ability to continu-
ously learn activity models from streaming videos.

3 Methodology

3.1 Initial Activity Representation

We segment activities from the streaming videos as follows. At first, we detect
motion regions using an adaptive background subtraction algorithm [45]. We de-
tect moving persons around these motion regions using [8]. We use these detected
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persons to initialize the tracking method developed in [37], which gives us local
trajectories of the moving persons. We collect STIP features [15] only for these
motion regions. We segment these motion regions into activity segments using
the method described in [3] with STIP histograms as the model observation.

As in [11], raw pixels would be an effective initial feature representation
for learning unsupervised hierarchical features if the number of pixels is small.
However, a typical activity segment has overwhelming number of pixels, which
makes it unrealistic to use directly for training a neural network. For example,
in KTH [32] a representative activity segment consists of 375− 500 frames with
a resolution of 160 × 120 pixels. Hence, the total number of pixels is around
7.2 × 106 to 9.6 × 106. These numbers are even higher for more challenging
datasets. Even though some works used 2D [14] or 3D [38] convolutional network
to find a compact representation, these networks are computationally expensive
and infeasible to use in continuous learning from streaming videos due to huge
number of tweakable hyper-parameters and trainable parameters.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

14 × 162 = 2268

T=1 T=2 T=1 T=2 T=1 T=2

T = t

Fig. 3: Initial activity representation (T = 2, L = 3). Red dots are STIPs.

In order to find a compact and efficient representation of the activity seg-
ments, we use spatio-temporal pyramid and average pooling based technique on
the extracted STIP features similar to [43] (see Fig. 3). Let, G = {g1, . . . , gn} be
the set of extracted STIP features, T and L be the number of temporal and spa-
tial levels respectively, and Gt,lc be the set of STIP features belonging to cube c
at T = t and L = l. Hence, average pooling gives us the feature f t,lc = Avg

(
Gt,lc

)
,

which is a vector of size 162 (HoG+HoF). Subsequently, we get the initial fea-
ture representation x by concatenating these pooled features from lower level to
higher level as, x = {f t,lc , t = 1, . . . . T, l = 1, . . . . L, c = 1, . . . , L2}.

Preprocessing: We preprocess this initial feature set before applying it to
the next levels such as training or feature encoding by the sparse autoencoder.
The main goal is two fold: to make the features less correlated and to make them
have similar variance. We use the method known as ZCA whitening described in
[6]. Let X = {x1, . . . . , xm} be the set of feature vectors and Σ be the feature co-
variance. Σ can be written as Σ = E[XXT ] = V DV T . Hence, ZCA whitening
uses the transform P = V D−1/2V T to compute the whitened feature vector
X = PX.
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3.2 Sparse Autoencoder

In order to learn features automatically from unsupervised data, we use a single
layer sparse autoencoder (AW ), which is essentially a neural network with one
input, one hidden, and one output layer. It has been used in many areas to learn
features automatically from unsupervised data [11]. A simple sparse autoencoder
is shown in Fig. 4(b), where the input feature vector size is n and the number
of neurons in the hidden layer is k. In response to a feature vector xi ∈ Rn,
the activation of the hidden layer and the output of the network are h(xi) =
f(W 1xi + b1) and x̂i = f(W 2h(xi) + b2) respectively, where h(xi) ∈ Rk, f(z) =
1/(1 + exp(−z)) is the sigmoid function, W 1 ∈ k×n and W 2 ∈ n× k are weight
matrices, b1 ∈ Rk and b2 ∈ Rn are bias vectors, and x̂i ∈ Rn. Given a set of
training instances X = {x1, . . . . , xm}, the goal is to find the optimal values of
W = [W 1,W 2, b1, b2] so that the reconstruction error is minimized, which turns
into the following optimization problem:

arg min
W

Ja(W ) =
1

2m

m∑
i=1

‖xi − x̂i‖2 + λ
(
‖[W 1,W 2]‖2

)
+ β

k∑
j=1

Ψ(ρ||ρ̂j), (1)

where,
∑m
i=1 ‖xi − x̂i‖2 is the reconstruction error and λ

(
‖W 1‖2 + ‖W 2‖2

)
is

the regularization term. In order to obtain sparse feature representation, we
would like to constrain the neurons in the hidden layer to be inactive most
of the time. It can be achieved by adding a sparsity penalty term, Ψ(ρ||ρ̂j) =
ρ log ρ

ρ̂j
+ (1 − ρ) log 1−ρ

1−ρ̂j , where ρ̂j = 1
m

∑m
i=1 hj(x

i) is the average activation

of hidden unit j, ρ is a sparsity parameter, which specifies the desired level of
sparsity, and β is the weight of the sparsity penalty term [17]. If the number of
hidden units k is less than the number of input units n, then the network is forced
to learn a compressed and sparse representation of the input. This network can
be trained using gradient descent and backpropagation algorithm as described
in Fig. 4(a). Gradients of the Equation 1 can be found in [25]. After training,
encoded features (x̃i) are obtained by taking the output from the hidden layer.

Fine Tuning the Sparse Autoencoder: Fine tuning is a common strategy
in deep learning. The goal is to fine tune the parameters of the sparse autoen-
coder upon the availability of labeled instances, which improves performance
significantly. Even though, above two networks- sparse autoencoder and soft-
max classifier- are trained independently, during fine tuning they are considered
as a single network as shown in Fig. 4(c). The weights are updated using back-
propagation algorithm as shown in Fig. 4(a). The only exception is that weights
are initialized with the previously trained weights.

3.3 Activity Model

We use multinomial logistic regression as the activity classification model Hθ,
which is known as the softmax regression in neural network literature. In a
multinomial logistic regression model, the probability that xi belongs to class j
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Fig. 4: (a) Training sparse autoencoder using backpropagation algorithm. (b) A single
layer sparse autoencoder with one hidden layer. (c) Fine tuning is performed by stacking
softmax at the end of sparse autoencoder.

is written as Hθ(xi) = p(yi = j|xi; θ) =
exp(θTj x

i)∑c
l=1 exp(θTl x

i)
, where, for j ∈ {1, . . . , c}

is the set of class labels, θTj is the weight vector corresponding to class j, and the
superscript T denotes transpose operation. The output of the model or prediction
is taken as, ypred = arg maxj P (yi = j|xi, θ). Given a set of labeled training
instances X = {(x1, y1), . . . . , (xm, ym)}, the weight matrix θ ∈ c× k is obtained
by solving the convex optimization problem as shown in Equation 2. It is solved
using gradient descent method, which provides a globally optimal solution.

arg min
θ

Js(θ) = − 1

m

m∑
i=1

c∑
j=1

1{yi = j} log p
(
yi = j|xi; θ

)
. (2)

3.4 Active Learning

As discussed in Section 1, active learning can be used to reduce the amount
of manual labeling during learning from streaming data. Based on the type of
teacher available, the active learning systems are classified into two categories:
strong teacher and weak teacher. Strong teachers are mainly humans, who gen-
erally provides correct and unambiguous class labels. But they are assumed to
have a significant cost. On the other hand, weak teachers generally provide more
tentative labels. They are assumed to be classification algorithms, which make
errors but perform above the accuracy of random guess. Our proposed frame-
work provides the opportunity to take advantages of both kind of teachers. Given
a pool of unlabeled instances U = {x1, . . . , xp}, an activity model Hθ, and the
corresponding cost function Js(θ), we select a teacher as follows.

Teacher Selection: When the pool of unlabeled activities U are presented
to the system, current activity model Hθ is applied on them, which generates a
set of tentative decisions Y = {y1, . . . , yp} with probabilities P = {p(y1|x1, θ),
. . . , (yp|xp, θ)}. Now, we invoke the weak teacher when the tentative decision yi

has higher probability. That means, if p(yi = j|x, θ) is greater than a threshold
δ, the unlabeled activity is labeled using the label yi from the current activity
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model. Now, for the rest of the unlabeled activities in the pool, we compute
expected gradient length [36] for each activity. We select those with the highest
expected gradient length to be labeled by a strong teacher.

Expected Gradient Length: The main idea here is that we select an unla-
beled instance as a training sample if it brings the greatest change in the current
model. Since, we train our classification model with gradient descent, we add
the unlabeled instance to the training set if it creates the greatest change in the
gradient of the objective function,∇θjJs(θ) = −xi

[
1{yi = j} − p

(
yi = j|xi; θ

)]
.

However, gradient change computation requires the knowledge of the label, which
we don’t have. So, we compute expected gradient length of xi as shown in Equa-
tion 3. Given the pool of unlabeled activities U , we add a fraction (α) of U to
the set of training activities as shown in Equation 4.

Φ(xi) =

c∑
j=1

p(yi = j|xi)‖∇θjJs(θ)‖ (3)

U∗ = arg max
X⊆U∩(|X|/|U |)=α

∑
x∈X

Φ(x) (4)

3.5 Incremental Learning

We train the sparse autoencoder and softmax classifier using gradient descent
method, which can be done using two modes: batch mode and online mode. In
batch mode, weight changes are computed over all the accumulated instances
and then, they are updated. On the contrary, in online mode, weight changes are
computed for each training instances one at a time and then, they are updated
one by one [42]. The second mode is more appropriate for incrementally learning
the weights as new training instances arrive from the streaming videos. However,
the approach we use for incrementally learning the weights is known as mini-
batch training in literature [33]. Here, weight changes are accumulated over
some number, u, of instances before actually updating the weights, in which
1 < u < N . N is the total number of training instances. Mini-batch incremental
training is shown in Fig. 5(a).

However, performance of the above mentioned method deteriorates if the
newly arrived training instances contain noise. To deal with this situation, we
propose two more incremental learning scenarios based on the availability of
memory: Infinite Buffer and Fixed Buffer. In infinite buffer approach, all the
training instances that arrived so far are stored in the memory and all of them
are used to incrementally train the network. On the other hand, in fixed buffer
approach, there are limited memory to store training instances. So, we select a
number of diverse training instances from the set to be stored in the memory.
Suppose, we want to select Kc most diverse instances from available Nc instances
of class c. If Nc is greater than Kc, we divide the Nc instances into Kc clusters
and select one instance randomly from each cluster. The algorithm for selecting
most diverse instances are shown in Fig. 5(b).

The overall algorithm for continuous learning of activity models with deep
nets is presented in Algorithm 1.
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Initialize the weights.

Repeat the following steps:

If u training instances available:

Process u training instances.

Compute gradients.

Update the weights.

Else

Wait for stream data to arrive

Repeat for each class c.

Available instances: Nc.

Available memory spaces: Kc
If Kc < Nc:

Use kmean clustering algo. to

compute Kc clusters from Nc.

Assign Nc inst. to Kc clusters.

Store one instance per cluster.

Else

Store all of the Nc instances.

(a) (b)
Fig. 5: (a) Mini-batch training algorithm. (b) Most diverse instances selection algo-
rithm.

Algorithm 1 Continuous Learning of Activity Models
Data: V: Continuous Streaming Video.

Result: Activity Recognition Model Hθ, Sparse Autoencoder Model

AW, Labeled Activities [(xt0+i, yt0+i)|i = 1, . . .].

Parameters: Feature design parameters: T, L, and k, Training

parameters: β, ρ, and λ, and Experiment design parameters: Kc, and α.
Step 0: Learn the prior sparse autoencoder AW and the prior

activity model Hθ using fewer training data available. (Fig. 4(a))

Step 1: Segment the video V at timestamp (t0 + i) to get an

unlabeled activity segment, xi (Sec. 3.1).

Step 2: Apply the current model Hθ on xi. Based on the condition

met, get a label yi for xi and put (xi, yi) in the buffer U (Sec.

3.4)

Step 3: If U is full, goto step 4 for incremental learning,

otherwise goto step 1.

Step 4: Update the model parameters W and θ (Fig. 5(a)).

Step 5: goto step 1 for next batch of training instances.

4 Experiments

We conduct rigorous experiments on four different datasets to verify the effec-
tiveness of our framework. First two datasets are KTH [34] and UCF11 [19].
Here, we assume that activity segmentation is already given and we send the
activity segments as the unlabeled instances to our continuous activity learn-
ing framework sequentially. We perform the other two experiments on VIRAT
ground human activity dataset [26] and TRECVID [27], where we have to seg-
ment the activities from the streaming videos.

Objective: The main objective of the experiments is to analyze the perfor-
mance of our proposed framework in learning activity models continuously from
streaming videos. In ideal case, we would like to see that the performance is in-
creasing smoothly as new instances are presented to the system and ultimately, it
converges to the performance of one time exhaustive learning approaches which
assumes that all the examples are labeled and presented beforehand. Based on
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the use of active learning and the size of buffer, we conduct our experiments in
the following four different scenarios.

1. Active learning and fixed buffer (A1F1): This is the most realistic
case, where we use active learning to reduce the amount of manual labeling of the
incoming instances. We also assume that we have limited memory to store labeled
training instances. So we have to select most diverse instances as discussed in
the algorithm presented in Fig 5(b). We only use the training instances stored in
this fixed buffer to incrementally update the parameters of sparse autoencoder
AW and activity model Hθ.

2. Active learning and infinite buffer (A1F0): Here, we use active
learning to reduce the amount of manual labeling but we assume that we have
infinite memory. We store all the labeled training instances and use all of them
to incrementally update the parameters of sparse autoencoder AW and activity
model Hθ.

3. No active learning and fixed buffer (A0F1): Here, we do not use
active learning and we assume that all the incoming instances are manually la-
beled. We have limited memory and we select the most diverse instances to store.
We only use the training instances stored in this fixed buffer to incrementally
update the parameters of sparse autoencoder AW and activity model Hθ.

4. No active learning and infinite buffer (A0F0): This is the least
realistic case, where we assume that all the incoming instances are manually
labeled and we have infinite memory to store all of them. We use all the instances
arrived so far to incrementally update the parameters of sparse autoencoder AW
and activity model Hθ. The performance of this, when the entire video is seen,
should approach that of the batch methods in the existing literature, and can
be used to compare our results with the state-of-the-art.

We maintain following conventions during all experiments:

1. Depending upon the sequence in which the data is presented to the learn-
ing module, each run of continuous learning on same dataset shows significant
variance in accuracy. So, we take the mean of multiple runs of the results and
then, report it in this paper.

2. We perform five fold cross validation. Three folds are used as the training
set, one fold as the validation set, and one fold as the testing set. Instances in
the training set are fed to the framework sequentially.

Fig. 6(a, c, e, g) show performances over all activities on KTH, UCF11,
VIRAT, and TRECVID respectively. The x-axis shows the amount of training
instances presented so far and the y-axis shows the accuracy. We compute this
accuracy by dividing the number of correct classifications by the total number
of instances presented to the classifier. On the other hand Fig. 6(b, d, f, h) show
activity-wise performances on these datasets. Each group of stacked bar shows
performances of an activity class. Each group contains four bars corresponding to
A1F1, A1F0, A0F1, and A0F0 respectively from left to right. Each bar has four
or less stacks. Each stack represents the performance increment of the improved
activity model as a new batch of instances presented to the framework. A missing
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stack means no performance improvement occurs during that step. More results
are available in the supplementary material.

KTH Human Action Dataset: KTH [34] dataset consists of six actions
such as boxing, handclapping, handwaving, jogging, running, and walking. These
actions are performed by 25 subjects in four different scenarios such as outdoors,
scale variation, different clothes, and indoors with lighting variation. There are
totally 599 video clips with the resolution of 160×120 pixels. Detailed results of
the experiments on KTH dataset are presented in Fig. 6(a-b). Fig. 6(a) shows
the accuracies over all activities. As expected, A0F0 performs better than other
three test cases. The most constrained case A1F1 also performs well by keeping it
very close to A0F0. Performance of A0F1 is worst because it has fixed buffer size
and might has to get rid of some informative instances as it does not use active
learning. Performance of A1F0 is similar to A1F1, though it has infinite buffer.
The reason behind this is that selection of diverse instances has less impact on
results than the active learning. However, the most important point is that all
the performances are asymptotically increasing as new instances are presented
to the framework. Fig. 6(b) shows activity-wise performances. It is evident that,
as new instances are arriving, our framework improves performance of each of
the activity model. When all the instances are seen, our models A0F0 and A1F1
have achieved 96.6% and 94.1% accuracy respectively, which is very competitive
with other works such as spatio-temporal feature based methods: 92.1% (HoF)
[41] and 91.8% (HoG/HoF) [41]; active learning based method: 96.3% [20]; deep
learning based methods: 93.9% (ICA) [16], 90.2% (3DCNN) [12] and 94.39%
(3DCNN) [1]; and incremental learning based methods: 96.1% [23] and 90.3%
[31].

UCF11 Human Action Dataset: We perform the second experiment on
more challenging UCF11 dataset [19], which consists of eleven actions such as
basketball, biking, diving, golf swing, horse riding, soccer juggling, swing, ten-
nis swing, trampoline jumping, volleyball spiking, and walking. These actions are
performed by 25 subjects under different scenarios and illumination conditions.
There are totally 1600 video clips with the resolution of 320×240 pixels. Detailed
results of the experiments on UCF11 dataset are presented in Fig. 6(c-d), where
it is evident that performance is asymptotically increasing as new instances are
presented to the system. Plots show similar trends like KTH but the gaps are
widen. The reason is that UCF11 is more complex dataset than KTH and it
requires more instances for A1F1 to achieve performance closer to A0F0. When
all the instances are seen, our models A0F0 and A1F1 have achieved 59.73%
and 49.52% accuracies respectively, which is very competitive with the spatio-
temporal feature based method in [30] (59.89%).

VIRAT Dataset: VIRAT Ground dataset [26] is a state-of-the-art human
activity dataset with many challenging characteristics. It is consists of 11 activi-
ties such as person loading an object (PLV), person unloading an object (PUV),
person opening a vehicle trunk, (POV), person closing a vehicle trunk (PCV),
person getting into a vehicle (PGiV), person getting out of a vehicle (PGoV),
person gesturing (PG), person carrying an object (PO), person running (PR),
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Fig. 6: Experimental results on four datasets- KTH, UCF11, VIRAT, and TRECVID
(top to bottom row). Left plots show performances averaged over all activity classes,
whereas right plots show the activity-wise performances. Each group in the right plots,
contains four bars corresponding to A1F1, A1F0, A0F1, and A0F0 respectively from
left to right. Plots are best viewable in color.
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person entering a facility (PEF), and person exiting a facility (PXF). Videos
are 2 to 15 minutes long and 1920×1080 pixel resolution. Detailed results of the
experiments on this dataset are presented in Fig. 6(e-f). The performance is in-
creasing and the trend of the plots are similar to UCF11. When all the instances
are seen, our models A0F0 and A1F1 have achieved 54.20% and 53.66% accuracy
respectively, which is very competitive with other spatio-temporal feature based
method in [13] (52.3% and 55.4%).

TRECVID Dataset: The TRECVID dataset [27] consists of over 100 hrs
of videos captured at the London Gatwick Airport using 5 different cameras
with a resolution of 720 × 576 pixel at 25 fps. The videos recorded by camera
number 4 are excluded as few events occurred in this scene. Detailed results and
analysis of the experiments on TRECVID dataset are presented in Fig. 6(g-h).
We conduct experiments on recognizing three activities: CellToEar, ObjectPut,
and, Pointing. Performance is asymptotically increasing and the characteristics
of the plots are similar to KTH. When all the instances are seen, our model
A0F0 and A1F1 have achieved 63.75% and 60.56% accuracy respectively, which
is very competitive with other spatio-temporal feature based methods in [12]
(60.56% and 62.69%).

Parameter Values and Sensitivity: We have three types of parameters,
newly feature selection (T ,L, and k), model training (β, rho, and λ), and ex-
periment design parameters (Kc and α). Sensitivity analysis of most of these
parameters on KTH are presented in Fig. 7(b-h). Fig. 7(a) is illustrating the
benefit of using deep learning.

Summary of Experiment Analysis:

1. Deep learning has significant positive impact on learning activity models
continuously (Fig. 7(a)).

2. Most realistic method A1F1 which is comprised of deep learning, active
learning, and fixed buffer can achieve performance close to A0F0 which approx-
imates the batch methods in the existing literature (Fig. 6).

3. When all the instances are seen, final accuracies of our methods in A1F1
are very competitive with state-of-the-art works.

5 Conclusion

In this work, we proposed a novel framework for learning human activity models
continuously from streaming videos. Most of the research works on human activ-
ity recognition assumes that all the training instances are labeled and available
beforehand. These works don’t take the advantage of newly incoming instances.
Our proposed framework improves the current activity models by taking the
advantage of new unlabeled instances and intricately trying together deep net-
works and active learning. Rigorous experimental analysis on four challenging
datasets proved the robustness of our framework. In future, we will incorporate
context as the feature in our framework to learn more complex activity models.
We will also investigate how to learn new unseen activity classes.
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Fig. 7: Plot (a) shows the benefit of using deep learning. Performance of the activity
model that does not use deep learning is better initially, but as more instances are
presented to the framework deep learning based method outperform other method
by a margin of 1.7%. It demonstrates the ability of our framework in concept drift.
Plots (b-h) show the sensitivity analysis of different parameters on KTH. (b) k is
varied from 100 to 1500 with 100 increment. (c) β is varied from 0.5 to 5 with 0.5
increment (d) ρ is varied from 0.05 to 0.5 with 0.05 increment. In each of these cases,
we show the mean and the variance of the accuracies for each incremental training
epoch. Performance variation is significant initially but reduced later as more instances
are presented to the system. (e) and (f) show the effect of the amount of manual
labeling. Performance variation is large as expected. However, it is interesting that with
around 50%-60% manual labeling our framework can achieve performance close to 100%
manual labeling. (g) and (h) show the effect of buffer size Kc, which has significant
effect on the performance. Performance increases with buffer size as expected. Kc is
varied from 20 to 60 instances per class with 10 instances increment.
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