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ABSTRACT OF THE DISSERTATION

Investigating the Role of Saliency for Face Recognition

by

Ramya Malur Srinivasan

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, March 2015

Professor Amit K Roy-Chowdhury, Chairperson

There has been enormous interest in developing automatic face recognition techniques. Be it

for government use such as law enforcement, surveillance and immigration, or for commercial

use such as gaming industry, e-commerce, healthcare and banking, a large number of real

world applications utilize face recognition. A variety of challenges are associated with

a face recognition system. While modeling variations in facial expressions, age, pose and

illumination is necessary in many applications, certain specific applications may also involve

comparing face images taken over different media such as a facial sketch to a photo.

Selecting visually salient, i.e., highly informative and discriminative features, is

critical to every face recognition task. Often, such features are selected based on expert

knowledge and/or learned from training data. The choice of these features is largely gov-

erned by the application. While there has been extensive work on saliency-based feature

selection strategies for object/activity recognition in general, the role of saliency in the

context of face recognition is relatively unexplored. The primary focus of this work is to

investigate the role of saliency for face recognition.
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We discuss three face recognition applications illustrating the role of saliency in

each of these problem domains. In the first, we propose a framework for identifying subjects

(sitters) in ancient portraits belonging to the Renaissance era. Apart from the typical face

recognition challenges, recognition in art works come with the additional challenges of hav-

ing to deal with limited training data and the need to model variability in artistic renditions.

In this direction, we propose a framework that is capable of learning salient characteristics

of individual artists and subsequently perform identification based on statistical hypothesis

testing.

We next discuss a related face recognition application of comparing an artistic

sketch with a photograph. Here, we propose an unsupervised face recognition scheme based

on computing saliency maps constructed from region covariance matrices of low level visual

features. We also discuss the utility of such features for face recognition in unconstrained

environments (often referred to as ‘recognition in the wild’) and subject to artificial dis-

tortions such as Gaussian blur and white noise. We conduct experiments on the Chinese

University of Hong Kong Photo-Sketch database and the Quality Labeled Faces in the Wild

(QLFW) to demonstrate the advantages of the proposed method.

Taking cue from the scenario of face recognition in art works wherein we have

limited authenticated portraits, we next investigate the general problem of face recognition

from very limited training data. This problem is relevant to many forensic science appli-

cations. We show that by learning salient features characteristic of a style such as a facial

expression, pose, etc., one can obtain better recognition accuracies between face image pairs

than with the case where such style information is not used. In particular, we leverage upon
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statistical hypothesis testing frameworks which can learn and validate features specific to a

style. We conduct experiments on the publicly available PubFig dataset wherein the anno-

tated attributes such as smiling, frowning, etc. are used as style information. We show that

as the number of training instances in a style class is reduced, the model performs better

than state-of-the-art techniques.
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Chapter 1

Introduction

Face recognition is a form of biometric identification [4] involving recognition of

individuals based on the salient characteristics of their face images. A variety of challenges

are associated with a typical face recognition task. Some typical challenges include modeling

variations in facial expression, pose, illumination and age. Additionally, when dealing with

videos, there may be variations due to non-rigid motion and background clutter. Certain

specific face recognition tasks may also involve comparing images taken over different media

such as comparing a sketch to a photograph, etc.

A typical face recognition system consists of two main stages, namely, a feature

selection and extraction stage followed by a matching stage. The first stage primarily

involves extracting low or high level informative features either manually or automatically

from images or videos. The matching stage involves classification of an input image into

one of the predetermined classes. In case of one-to-one matching, if the face image pair

corresponds to the same person, then we consider them as a “match” class and if the
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images depict two different people, we refer to them as a “non-match” class. In the case

of one-to-many matching, the different classes indicate different identities registered in the

system. The classifiers used in this stage are learned offline using training data, e.g, in a

supervised framework [3] or may involve semi-supervised [2] or unsupervised learning [1].

The quality of features, which are extracted based on expert knowledge [9] and/or

learned from available training data [10], is of critical importance. The focus of this work is

on selecting visually salient features in order to achieve robust face recognition for different

applications. In general, the term visually salient refers to those features/regions of an

image that stand out relative to their neighbouring parts.

1.0.1 Motivation for the Use of Saliency in Face Recognition

Figure 1.1: Illustrations of the concept of saliency. From left, A represents photo and its
corresponding sketch, B shows portraits depicting different sitters by artist Holbein, and C
shows some images of smiling people.

The role of saliency in the context of face recognition can be best understood

through illustrations. Consider, for instance, Fig.1A, which depicts a photo and its corre-

sponding sketch. As can be noted from the figure, prominent facial features of the photo

such as narrow eyes and broad nose are retained and emphasized in the sketch. In general, it

is very likely that landmark features such as a facial scar, mole, and other facial assymetries

are emphasized and retained in sketches.
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Apart from the prominent features specific to the person depicted in the face, often,

in sketches or artworks in general, there is an element of visual perception by individual

artists. For example, some artists might like to employ dense brushstrokes in all their

works, some might prefer to emphasize certain local features (e.g., eye corners, nose tips,

etc.) more than other features across all the sitters depicted in their portraits, and some

might choose to emphasize salient distances across the face such as mouth width, etc. in a

characteristic manner. Due to such typical practices followed by individual artists, one can

identify salient regions specific to an artist. Fig. 1B is an illustration of portraits depicting

different sitters by Renaissance artist Holbein. A careful observer or an art connoisseur can

note signature marks of the artist in these portraits.

Another interpretation for the concept of saliency in face recognition can be per-

ceived from the nature of images under consideration. For example, consider Fig.1 C, which

shows images of people smiling. In all these images, one’s attention is immediately drawn

to the mouth and the eye regions, which are characteristic of the smile. Thus, attributes

that characterize various style factors such as a facial expression, pose, etc. can also help

determine salient regions.

The underlying concept common to all these scenarios is to identify most infor-

mative regions of the face that can aid robust recognition. Depending upon the specific

application under consideration, saliency can be perceived differently. Motivated by these

illustrations, we investigate the role of saliency for various face recognition applications

namely face recognition in art works, face recognition from very limited training data, face

photo-sketch recognition and face recognition in unconstrained environments.
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1.0.2 Challenges

Apart from the typical challenges associated with a face recognition system such

as variations in pose, illumination, facial expression, age, background clutter, etc, there are

additional constraints depending on the specific application. Below, we describe some of

these challenges.

1. Sparsity of Training Data : In applications involving law enforcement, one can

only offer a few or even a single image of the suspect due to non-availability of examples. In

general, sparsity of training data is common to other forensic science applications such as

studies of ancient art, architecture, biology or archaeology wherein experts are often required

to answer questions related to authenticity (e.g., date estimation, identity verification, etc.).

Most existing face recognition systems are designed to work under the condition that ample

training instances are available across different poses and ages for each of the subjects under

consideration. Such luxuries are not available in many forensic science applications. This

necessitates design of robust training and validation algorithms that can work with very

few training instances.

2. Modeling Artists’ Styles: Whether it is the case of face recognition in portraits

or a face photo-sketch recognition, the system has to take into account the mark of the

visual interpretation of an artist. Different artists might depict the same person in different

ways. Thus, styles of individual artists characterizing their aesthetic sensibilities (often

biased by their socio-cultural backgrounds) have to be modeled. While there have been

works related to artist identification based on statistics related to brushstrokes [11], there is

little to no elaborate work on understanding how to model artist’s style in face portraiture.
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3. Choice of Features: Depending on the problem at hand, we need to choose

features that possess high discriminative power in distinguishing the test image from the

rest. Consider, for instance the problem of face recognition of portraits. In this case, ideally,

the chosen features should not only be able to distinguish one sitter from another, but also

be able to distinguish one artist from another. In certain other applications, computational

cost is a constraint. So, design of highly efficient and possibly simple matching mechanisms

becomes essential in these scenarios. This leads to interesting questions in machine learning

on combinations of various algorithms that are pertinent to the specific application.

1.1 Related Work

We provide a review of related work on face recognition and saliency.

1.1.1 Face Recognition

A critical survey of still image and video based face recognition research is provided

in [5]. Depending on the representation of the face descriptors, face recognition approaches

can be broadly divided into two categories, namely, feature based methods [7] and holistic

methods such as [6]. Some hybrid methods [8] involve both holistic and feature based

procedures.

Feature-based approaches first process the input image to identify and extract

(and measure) distinctive facial features such as the eyes, mouth, nose, etc. Then, they

compute the geometric relationships among those facial points, thus reducing the input

facial image to a vector of geometric features. Standard statistical pattern recognition
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techniques are then employed to match faces using these measurements. Early work carried

out on automated face recognition was mostly based on these techniques.

A well known feature-based approach is the elastic bunch graph matching method

proposed by Wiskott et al.[57], wherein each fiducial point on the face is a node of a fully

connected graph, and is labeled with the Gabor filters responses applied to a window around

the fiducial point. Each arch is labeled with the distance between the correspondent fiducial

points. A representative set of such graphs is combined into a stack-like structure, called a

face bunch graph. Using this architecture, a rank-1 recognition rate of 98% fwas obtained

for a gallery of 250 individuals.

The main advantage offered by the featured-based techniques is that since the

extraction of the feature points precedes the analysis done for matching the image to that

of a known individual, such methods are relatively robust to position variations in the input

image. The major disadvantage of these approaches is the difficulty involved in automatic

fiducial point detection.

Holistic approaches attempt to identify faces using global representations, i.e.,

descriptions based on the entire image rather than on local features of the face. In the

simplest version of the holistic approaches, the image is represented as a 2D array of intensity

values and recognition is performed by direct correlation comparisons between the input face

and all the other faces in the database. Though this approach has been shown to work [6]

under limited circumstances (i.e., equal illumination, scale, pose, etc.), it is computationally

very expensive and suffers from the usual shortcomings such as sensitivity to face orientation,

variable lighting conditions, background clutter, and noise.
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More recently, region covariance matrices (RCM) were proposed a set of holistic

descriptors. Unlike many holistic descriptors, RCMs are robust to variations in pose/

illumination, and are low dimensional. RCMs have been applied to many applications

such as texture classification and object detection [88, 95], object tracking [89, 97] and

human detection [90]. These descriptors have shown best discriminative power for human

detection tasks [98] and have also been recently studied in the context of face recognition

[99].

The main advantage of holistic descriptors is that they do not require to know the

precise location of certain fiducial points on the face. As a result, they are computationally

simple. However, since most of these approaches start with the basic assumption that

all pixels in the image are equally important, they require a certain degree of correlation

between test and training images.

A vast majority of face recognition applications address surveillance and enter-

tainment needs. Recent research efforts in the area are addressing new challenges such as

heterogeous face recognition. For example, [13] focusses on cross spectral face recognition

for comparing an infrared image to a photo . In [12], partial least squares (PLS) is used

to linearly map images in different modalities to a common linear subspace where they

are highly correlated. In [14], a generic heterogenous face recognition framework is pro-

posed in which both probe and gallery images are represented in terms of non-linear kernal

similarities to a collection of prototype face images.

Some works have looked at face recognition from sparse training data [15]. This is

commonly referred to as the problem of undersampled face recognition. In [17], the authors
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leverage upon much larger mug shot gallery images or composite sketches for training. In

[71], the authors assume that the intra-class variations of one subject can be represented

as a sparse linear combination of the variations of other subjects and use an extended

sparse representation based classifier to perform recognition. In [16], the authors evaluate

the probability that two faces have the same underlying identity cause and leverage this

information for recognition.

Attribute based face verification methods have become popular over the years.

Attributes are describable aspects of information about the face such as a facial expression,

age, gender, pose or could be any other side information such as spectacles, beard, facial

scar, etc. In [19], the authors proposed attribute classifiers that are basically binary classi-

fiers trained to recognize the presence or absence of attributes. They also proposed “simile”

classifiers that removed the manual labeling required for attribute classification and instead

learned the similarity of faces, or regions of faces, to specific reference people. In [48],

the authors proposed to use information about the relative strength of attributes for face

verification. Some works such as [20], [18] model factors such as a facial pose, expression,

etc. and separate it from the identity of the person, and show promising results for face pose

estimation, among others. These are commonly referred to as the style-content separation

methods, wherein attributes such a facial expression, pose are termed as style and the

identity of the person is referred as the content.
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1.1.2 Saliency

In recent years, many works have aimed to answer questions related to attentional

mechanisms that determine the most salient regions in an image. The basis of many atten-

tion models dates back to Treisman and Gelade’s [26] Feature Integration Theory, where

they stated which visual features are important and how they are combined to direct human

attention over pop-out and conjunction search tasks. Koch and Ullman [25] then proposed a

feed-forward model to combine these features and introduced the concept of a saliency map

which is a topographic map that represents conspicuousness of scene locations. They also

introduced a winner-take-all neural network that selects the most salient location. Many

other works followed this which specifically looked at digital images [22], [23], [24]. The first

complete implementation and verification of the Koch and Ullman model was proposed by

Itti et al. [21].

Based on the manner in which salient regions are determined, saliency models

can be categorized into two broad groups, namely bottom-up models and top-down mod-

els. Regions of interest that are mainly driven by involuntary stimulus (e.g., a black line

amidst many red lines) attract attention in a bottom-up manner [31]. These are typically

determined by intrinsic low-level properties of the scenes. On the other hand, regions of

interest that are propelled by a goal (e.g., searching for an object in a scene, etc.) attract

attention in a top-down manner. These are usually determined by cognitive phenomena

like rewards, expectations, etc. [32]. Some models integrate low-level bottom-up cues with

some task-specific top-down knowledge such as face and object detectors [36] to improve

their predictions.
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There are a number of computational approaches to model saliency. Most of

them consider bottom-up strategies in a supervised data-driven manner to compute the

saliency maps [33], [34], [35]. Recently, unsupervised saliency learning approaches have been

leveraged such as in [37] for person re-identification and in [38] for discovering new object

categories. In general, modeling visual saliency has provided efficient strategies for various

other computer vision applications such as image segmentation [27], object recognition [28],

visual tracking [29], etc. Despite the considerable amount of work on saliency for different

computer vision applications, there is very little work on saliency for face recognition [39],

[40].

1.2 Contributions of the Thesis

The objective of this work is to design algorithms that can identify salient regions

in order to achieve robust face recognition. The study has been carried out in three parts.

First, we explore the feasibility of face recognition technologies for analyzing works

of portraiture, and in the process provide a quantitative source of evidence to art historians

in answering many of their ambiguities concerning identity of the subject in some portraits

and in understanding artists’ styles [50], [49]. Based on an understanding of artistic conven-

tions, we show how to learn and validate features that are robust in distinguishing subjects

in portraits (sitters) and that are also capable of characterizing an individual artist’s style.

We show that this can be used to learn a feature space called Portrait Feature Space (PFS)

that is representative of quantitative measures of similarities between portrait pairs known

to represent same/different sitters. Through statistical hypothesis tests we analyze uncer-
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tain portraits against known identities and explain the significance of the results from an

art historian’s perspective. Results are shown on our data consisting of over 270 portraits

belonging largely to the Renaissance era.

Next, we propose an unsupervised face recognition framework that involves saliency

maps computed from sigma sets of region covariance matrices [51], which are in turn esti-

mated from simple image features. Encoding the features descriptors in this manner not

only ensures robustness to variations in pose, illumination, etc., but also reduces computa-

tional complexity. Further, saliency maps provide a natural way of highlighting the most

important regions and thereby improve recognition performance. We demonstrate the effec-

tiveness of the proposed method for (a) face photo-sketch recognition and (b) unconstrained

face recognition in the presence of artifacts.

Finally, given very limited training data, we propose a novel undersampled face

recognition method by means of modeling style and content, where style can be attributes

such as a facial expression, pose, etc. and content is usually the person’s identity [52]. We

show that by modeling style, face recognition accuracies can be significantly improved. In

particular, a set of weighted features characteristic of a style class are learned, wherein the

weights denote the importance of the chosen features in the class. The chosen style features

are then validated by means of the robust Siegal-Tukey statistical test that is proven to work

well for small sample sets. We analyze the PubFig and Yale dataset using the annotated

attributes as style factors to illustrate the advantages of proposed method over state-of-the-

art Bilinear models (BLM) and relative attributes method as sample size in the style class

is reduced.
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1.3 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 discuses face recognition

in portraits wherein, we propose a method that can automatically learn salient features

characteristic of individual artists style and further propose an identification framework

based on statistical hypothesis testing to identify ambiguous sitters in portraits. In Chap-

ter 3, we present an unsupervised face recognition scheme that leverages saliency maps

computed from region covariance matrices and demonstrate its advantages for face photo-

sketch recognition and for face recognition in the wild. In Chapter 4, we discuss a framework

that takes advantage of salient features specific to a style and demonstrate its advantages

for face recognition from very limited training data. We provide a summary of the thesis

and highlight directions for future work in Chapter 5.
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Chapter 2

Face Recognition in Digital Arts

In this chapter, we will first discuss as to why the problem of face recognition is

relevant to portriature and the challenges involved in it. Subsequently, we will provide a

review of literature on various image processing techniques employed for art investigations

with a particular focus on artists style modeling methods. We will then describe the overall

framework involving the following stages namely (a) modeling the style of individual artists,

(b) using the learned features for face recognition, (c) validation of recognition results

through well-known cross validation tests, and (d) using the learned method for verifying

the identity in test paradigms where the identity of the subject is unknown/controversial.

We will finally discuss the significance of the results from an art historian’s perspective.

2.1 Introduction

Renaissance portraits were depictions of some important people of those times.

These encompass a wide range of art works such as sculptures, death masks, mosaics,
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etc. Apart from being used for a variety of dynastic and commemorative purposes, they

were used to depict individuals often to convey an aura of power, beauty or other abstract

qualities [53]. A large number of these portraits, however, have lost the identities of their

subjects through the fortunes of time.

Analysis of faces in portraits can offer significant insights into the personality,

social standing, profession, etc. of the subject they represent. However, this is not a simple

task since a portrait can be “subject to social and artistic conventions that construct the

sitter as a type of their time” [53], thus resulting in large uncertainty regarding the identity

of many of these portraits. Traditionally, identification of many of these portraits has been

limited to personal opinion, which is often quite variable. The goal of this work is to

evaluate the application of face recognition technology to portrait art and in turn aid art

historians by providing a quantitative source of evidence to help answer questions regarding

subject identity and artists’ styles. This work is part of the project FACES (Faces, Art, and

Computerized Evaluation Systems) which has been funded by the US National Endowment

for the Humanities (Phase 1 and 2) under the Digital Humanities program. This project is

a collaboration with the Department of Art History, UC, Riverside. This article presents

FACES from the point of view of science. For the humanities point of view, please refer to

[65].

There have been lingering ambiguities about the identity in some portraits–henceforth

referred to as “test” images. The question has been whether they might represent a certain

known identity, which we call as “reference images”. As an instance, the test image in Fig.

2.1 is a portrait painted perhaps around 1590, and is believed by some to represent Galileo.
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Through computerized face recognition technologies, we try to provide an alternate and

quantitative source of evidence to art historians in answering such questions.

In this direction, we leverage upon a large number of portrait pairs that are known

to represent a certain person as shown in top part of Fig. 2.1. The task then is to train

the computer in identifying highly discriminative features that can not only distinguish

one sitter from another, but also learn the importance of the chosen features depending

on the amount of emphasis given to that feature by an artist. Using the learned features,

quantitative measures of similarity between portrait pairs known to represent the same

person can be computed to yield what we call “match scores”. Analogously, similarity scores

between portrait pairs not known to represent the same person yield “non-match scores”.

The resulting match (blue curve) and non-match scores (red curve) together constitute what

we refer to as the Portrait Feature Space (PFS). Subsequently, using hypothesis tests, the

similarity score between test and reference image, as shown by the brown ball in bottom part

of Fig.2.1, is analyzed with respect to the learned PFS to arrive at appropriate conclusions

of a possible match or non-match. If both match or non-match happen to be likely, then

no decision can be made.

2.1.1 Challenges

Apart from the typical challenges associated with face recognition systems such

as variations in pose, expression, illumination, etc., face recognition in portraits come with

additional challenges. Some of these are described below.

1. Modeling Artists’ Styles: Since portraits bear the mark of the visual interpretation of an
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Figure 2.1: Illustration of the training (top) and identification framework (bottom)

artist, styles of individual artists characterizing their aesthetic sensibilities (often biased by

their socio-cultural backgrounds) have to be modeled. Thus, portraits of the same sitter can

vary from artist to artist. This results in considerable variability in the renditions, which

has to be accounted for by the face recognition algorithms.

2. Lack of sufficient training data: Many existing feature selection methods rely on the

availability of a significant amount of training data. This is rarely the case in our problem

domain due to the following reasons:

(a) Lack of a significant body of images, the authenticity of which is well established.

(b) We need to logically choose a set of related images directed towards a particular demon-

strative end and adhering to a particular period style.

3. Choice of Features: Given the aforementioned constraints, we need to choose features

that best justify an artist’s rendition and possess high discriminative power in distinguishing
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the sitter from others. Although there has been some preliminary work on this [11], there

is little to no elaborate work on understanding how to model style in face portraiture. This

leads to interesting questions in machine learning on combinations of various algorithms

that are pertinent here.

2.2 Related Work

We review some image processing techniques employed for art analysis. Analysis

of paintings using sophisticated computer vision tools has gained popularity in recent years

[44]. Computer analysis has been used for identifying the artist [46] and for studying the

effect of lighting in artworks [47], among others. A recent paper has explored application

of computer-based facial image analysis [45] using 3D shape information to identify one

subject, namely Da Vinci in four artworks. The present work involves multiple sitters (both

genders) by different artists portrayed across different media such as paintings, death masks,

etc. Also, for the present analysis, shape information was found to be less discriminative

when compared to other features such as anthropometric distances (AD) and local features

(LF). This can be partly attributed to the evidence that artists often focused on LF and

took some liberties with shape [43]. This is further substantiated by the use of local features

in matching forensic sketches (an art form) to human faces in works such as [17].
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2.3 Discriminative Feature Selection

A portrait is a visualization of an artist’s aesthetic sensibilities blended with the

sitter’s personality. We therefore begin by understanding the relevant features for analysis

based on a study of artistic trends during the period under study.

2.3.1 Face as Seen by Artists

It is evident from [43] that while drawing a human body, a lot of emphasis was

laid upon maintaining the proportions of various parts. It is purported that the principles

for the canons of human body may have been defined by Egyptian artists, who divided

the entire body into different parts and provided baselines for their measurement. The

importance of anthropometric ratios/distances was preserved even during the Renaissance

era. According to Da Vinci, in a well proportioned face, the size of the mouth equals the

distance between the parting of the lips and the edge of the chin, whereas the distance from

chin to nostrils, from nostrils to eyebrows, and from eyebrows to hairline are all equal, and

the height of the ear equals the length of the nose [54].

A historical appraisal of facial anthropometry from antiquity upto Renaissance has

been provided in [55] to compare artists’ concept of human profile. Flattened nose, tilted

forehead and prominent upper lip were some of the features prevalent in Renaissance art

works. In fact, prominent facial landmarks of a person were retained in works of the sitter

by different artists as illustrated in Fig. 2.2.
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Figure 2.2: Prominent facial landmarks such as pointed nose were retained in works of the
same sitter Nicolas Rolin by different artists Jan Van Eyck and Rogier van der Weyden.

2.3.2 Choice of Features

From the illustrations described above, it is clear that ancient Renaissance artists

laid emphasis on two aspects in their renderings, namely, local features (LF) and anthro-

pometric distances (AD), which we use for our analysis.

1. Local features: We use a set of 22 fiducial points to represent each face as listed

in Table 2.1. The precise location of these points is determined by registering a generic mesh

on the face. Gabor jets corresponding to 5 frequencies and 8 orientations are evaluated at

each of these fiducial points. At a fiducial point n and for a particular scale and orientation

j, the corresponding jet coefficient Jnj is given by

Jnj = anj exp(iφnj ), (2.1)

where anj is the magnitude and φnj is the phase.

2. Anthropometric distances: All images are normalized with respect to scale and

orientation. A set of 11 salient distances is used to represent each face. These are listed in

Table 2.2.
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Number Description of the feature

1 forehead tips (left)
2 forehead tip (right)
3 forehead center
4 chin bottom
5 nose top
6 nose bottom
7, 8 points on temple (left, right)
9, 10 chin ear corners (left and right)
11, 12 points on chin (left and right)
13, 14 cheekbones (left and right)
15, 16 mouth corners (left and right)
17, 18 iris (left and right)
19, 20 left eye corners ( right and left eye)
21, 22 right eye corners ( right and left eye)

Table 2.1: List of local features

2.3.3 Feature Extraction

Different artists are likely to depict and emphasize the aforementioned features in

different ways. We wish to learn those features that are characteristic of an artist’s style. We

employ a method called the random subspace ensemble learning as it is capable of handling

deficiencies of learning in small sample sizes [56]. Small sample sizes is very relevant to the

present problem as we have very few works by an artist at our disposal (Sec 2.1.1). The

random subspace method randomly samples a subset of the aforementioned features and

performs training in this reduced feature space.

More specifically, we are given Z training portrait pairs and D features. Let

L be the number of individual classifiers in the ensemble. We choose di ≤ D (without

replacement) to be the number of features used in the ith classifier. For each classifier, we

determine the match and non-match scores (as appropriate) using the di features as follows.
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Number Description of the feature

1 distance between forehead tips
2 distance between forehead center

and chin bottom
3 distance between nose top and bottom
4 distance between points on temples
5 distance between chin ear cornors
6 distance between points on chin
7 distance between iris
8 distance between cheekbones
9 distance between mouth corners
10 width of nose
11 distance between forehead

center and nose bottom

Table 2.2: List of anthropometric distances

We compute

sLF (I, I ′) =
1

di

di∑
n=1

sn(J, J
′
), (2.2)

where s(J, J
′
) is an average local feature similarity measure between n corresponding Gabor

jets computed across salient points in image pair (I, I ′). In order to compute sn(J, J
′
), we

use the normalized similarity measure mentioned in [57] given by

sn(J, J
′
) =

∑
j anja

′
nj√∑

j a
2
nj

∑
j a

′2
nj

(2.3)

Similarly, we compute anthropometric distance similarity between image pairs (I, I ′) using

the equation

sAD(I, I ′) = e−βy, (2.4)

where y is the 2D Euclidean distance between the AD vectors ~m, ~n that characterize images

I, I ′ respectively (we use only those distances as selected by the random subspace classifier)

and β is a co-efficient that is chosen suitably to obtain a discriminative range of values.
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In order to identify features that give the highest separation between match and

non-match scores, we then compute the Fisher Linear Discriminant function for each classi-

fier. We choose the union of features from those classifiers that give the top k Fisher Linear

Discriminant values as our style features.

2.3.4 Importance of the Chosen Features

Not all features identified by the above method are equally important in repre-

senting an artist’s style. In order to understand the importance of the chosen features,

we consider the non-parametric statistical permutation test [58]. Permutation test helps

in assessing what features are same across all the instances belonging to an artist. Thus,

features which are more invariant across the portraits by an artist can be perceived to be

more characteristic of that artist and hence be assigned greater importance. Permutation

tests have been used to determine invariant features in artworks [11].

Permutation test: The null hypothesis (H0) is chosen to indicate that two portrait

groups G1, G2 have the same average value in a particular feature; the alternate hypothesis

(H1) indicates that the average value of that feature is different in the two groups. Thus,

H0 : µG1 = µG2;H1 : µG1 6= µG2, (2.5)

where µ is the average value of a particular feature v under consideration in the two groups.

If the null hypothesis is true, then it should not matter when this feature v is

randomly assigned among images in the group. For instance, let us assume that there is a

certain way that the mouth corner is portrayed by Italian artist Bernini, whose works are

included in our dataset. On an average, if this appearance is the same across all images by
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Bernini, then the principle behind this test is that there will not be a significant difference if

the mouth tips are randomly assigned across images in the group, i.e., assigning the feature

of one sitter to the corresponding feature of another sitter.

Specifically, if there are Ns images by an artist Y , then we can divide these

Ns images into 2 subgroups consisting of Ns1 and Ns2 images depicting different sit-

ters. Let the feature values for the first group be [v1, v2, ..., vNs1
] and in second group be

[vNs1+1 , vNs1+2 , ..., vNs2
]. The permutation test is done by randomly shuffling [v1, ......, vNs ]

and assigning the first Ns1 values, [v(1), v(2), ..., v(Ns1 )
] to the first group and the rest Ns2

values [v(N(s1+1)
, ..., v(Ns2 )

] to the other group.

For the original two groups we compute,

δ0 =

∣∣∣∣∣∣ 1

Ns1

Ns1∑
i=1

vi −
1

Ns2

Ns2∑
i=1

vNs1+i

∣∣∣∣∣∣ (2.6)

δ0 denotes the variation in the feature v by artist Y as exhibited by various instances

I1, ..., IN in the two groups G1 and G2. Thus, δ0 = |µG1 − µG2|. For any two permuted

groups we compute

δs =

∣∣∣∣∣∣ 1

Ns1

Ns1∑
i=1

v(i) −
1

Ns2

Ns2∑
i=1

v(Ns1+i)

∣∣∣∣∣∣ (2.7)

δs denotes the variation in the feature v by artist Y after assigning v as depicted in Ii to

an image not necessarily depicting the sitter in Ii.

We repeat this random shuffling of features among the images under consideration

multiple times. The proportion of times δs > δo is the p value. This value reflects the

variation of the feature in the two groups. Smaller p denotes stronger evidence against the

null hypothesis, meaning that the feature differed considerably in the two groups and thus
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less characteristic of the artist’s style. We compute p values for each feature as described

above. The computed p values are used as scaling factors (weights) in estimating the

similarity scores (sp) in equations (2.2) and (2.4). It is to be noted that this method can be

employed when we have ≥ 12 images by an artist [59]; in cases where enough images/artist

is not available or when the artist is unknown, we use all the 22 LF and 11 AD features with

equal weight (of 1 assigned to all the features) in obtaining the LF/AD similarity scores.

2.3.5 Feature Combination

The similarity scores obtained from LF and AD features may not be equally im-

portant in determining the similarity between portrait pairs. Further since the number

of LF/AD features used are different, the scores need to be fused in a way such that the

resulting distribution of match and non match scores are as peaked and disjoint as possible.

We employ the following algorithm towards this.

1. We consider a convex combination of the scores from the two measures LF and AD, i.e.,

score = λsLF + (1− λ)sAD (2.8)

λ being varied from 0 to 1 in steps of 0.1.

2. For every λ, we evaluate the mean and standard deviation of match and non-match

scores using the RANSAC algorithm [62] to prune outliers.

3. At each λ, we evaluate J = Sb
Sw

where Sb is between class variance and Sw is within class

variance. We choose that value of λ = λopt that gives the maximum value of J . This is

essentially computing the Fisher linear discriminant [63].
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Using the procedure described above, we compute similarity scores between por-

trait pairs that are known to depict same sitters and different sitters to get match and

non-match scores respectively. The resulting set of match and non-match scores, com-

puted across various artists and sitters, are modeled as two Gaussians distributions (one

for match scores and another for non-match scores). The mean and standard deviations of

these distributions are estimated from training data. We refer to these match/non-match

score distributions as the ”Portrait Feature Space” (PFS).

2.3.6 Validation

We wish to ascertain if the learned features are good representations of the por-

traits considered. To verify this, we perform two-fold cross validation of the similarity

scores.

Validation of Artist-Specific Similarity Scores: If the chosen features are robust

representations of an artist Y , then the obtained match/non-match scores divided into two

folds (groups), say A,B, should more or less be “similar” in that they come from the same

artist. For this, we employ the Siegel-Tukey statistical test [61].

Siegel-Tukey Test: This is a non-parametric statistical method to test the null

hypothesis (H0) that two independent scores come from the same population (e.g., artist)

against the alternative hypothesis (H1) that the samples come from populations differing

in variability or spread. Thus,

H0 : σ2A = σ2B,MeA = MeB;H1 : σ2A ≥ σ2B (2.9)

where σ2 and Me are the variance and medians for the groups A and B. The test is entirely
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distribution-free. The absence of any normality assumption is an important feature of the

test, because its parametric alternative, the F test for variance differences, is quite sensitive

to departures from normality [60]. The p value obtained from this test, pst, is given by

pst = Pr [X ≤ U ] , (2.10)

where UA, UB are the U statistics for groups A,B and X ∼ Wilcoxon (r,m) [59]. This is a

measure of the confidence associated with the scores. Thus, if the learned features are good

representations of an artist’s style, they should be associated with a higher pst value than

the pst value associated with scores obtained using all features.

Validation of PFS: In order to validate the PFS computed across various artists

and sitters, we randomly divide the known instances into two groups to perform two-fold

cross validation. In fold 1, we use group one to learn the PFS and use group 2 to validate

and vice versa in fold 2. Ideally, the learned PFS from the two folds should have the same

statistics.

2.4 Identification Framework

The goal of this work is to aid art historians by providing an alternate source of

evidence in verifying uncertain portraits (test images) against a reference image by providing

a quantitative measure of similarity. We use hypothesis testing for this purpose.

2.4.1 Hypothesis Testing

This is a method for testing a claim or hypothesis about a parameter in a popu-

lation [64]. Below, we summarize it with respect to the learned PFS.
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1. Null hypothesis claims that the match distribution accounts for the test’s similarity

score with reference better than non-match distribution. The alternate hypothesis is that

non-match distribution models the score better.

2. We set level of significance α, i.e., the test’s probability of incorrectly rejecting the null

hypothesis, as 0.05, as per behavioral research standard.

3. We compute the test statistic using one independent non- directional z test [64], which

determines the number of standard deviations the similarity score deviates from the mean

similarity score of the learned match/non-match distributions.

4. We compute p values which are the probabilities of obtaining the test statistic that was

observed, assuming that the null hypothesis is true. If p < α, we reject null hypothesis.

2.4.2 Identity Verification

In order to examine the validity of the chosen approach, we consider similarity

scores of the test image with artworks known to depict persons different from the one

depicted in reference image. We call these images as distracters. In cases where enough

works of the same artist is not available, we consider similar works of other artists. If a

test image indeed represents the same sitter as in the reference image, not only should its

score with the reference image be modeled by the match distribution, but also its scores

with distracter faces should be modeled by the non-match distribution.
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2.4.3 Analysis Scenarios

Following the procedure outlined earlier, we compute similarity scores of test cases

with corresponding reference image and with distracters. Table 2.3 lists various hypothesis

test scenarios that can arise [64] and the corresponding conclusions that one can infer.

Match and non-match cases are straight forward to infer from Table 2.3. In cases where

both match and non-match distributions are likely to account for the score in the same way

as in green rows of Table 2.3, it can be said that the learned PFS cannot accurately describe

the test data. If the match distribution is more likely to account for both test as well as

distracters (magenta row in Table 2.3), it can be inferred that the chosen features do not

possess sufficient discriminating power to prune outliers. Thus in these scenarios, it is not

possible to reach any conclusion.

Reference Distracters Conclusion

Match Non-match Match Non-match

p > α p < α p < α p > α Match

p < α p > α p < α p > α No Match

p > α p > α NA NA No decision

p < α p < α NA NA No decision

p > α p < α p > α p < α No decision

Table 2.3: Various possibilities for p values of test with reference and distracters. NA stands
for Not applicable. These refer to cases where the distracters are not applicable since the
similarity score between the test and the reference image is likely to be both a match and
a non-match score.
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2.5 Dataset

2.5.1 Choice of Images

We have employed a set of images belonging to Western Europe between 15th

and early 18th century. These images have been logically chosen by art historians in order

to address different tasks such as (a) to test the relation of an unmediated image of the

subject, e.g., a death mask to a work of portrait art like a painting, (b) to analyze a number

of portraits of different sitters by the same artist to model artist’s style, (c) to verify if the

identity of the ambiguous subject in a given image is same as that of a known subject in a

reference image. The images belong to different media such as drawings, prints, paintings,

sculptures, death masks, etc. The dataset consists of works by over 35 artists such as

Bernini, Algardi, Clouet, Kneller, etc.

2.5.2 Description

The dataset consists of about 271 images where the identity of the subject is known

beyond doubt. There are about 20 test paradigms (with each having multiple image pairs

to be compared) where the identity of the subject is in question and has to be compared

against the reference image given in that paradigm. Table 2.4 provides a detailed description

of the distribution of images in terms of the specific sitter and artist. Fig. 2.3 provides an

illustration of the dataset.
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Figure 2.3: Illustration of the dataset across individual/multiple artists depicting different
sitters.

2.6 Experiments

2.6.1 Style Modeling Results

We first extracted the 22 LF and 11 AD features for all the images. For those artists

where we had enough images to model their style, we learned the features characteristic of

their style. Top part of Fig. 2.4 depicts characteristic LF with dots denoting the relative

importance of the feature as per the p value of permutation test. AD features representative

of the style was similarly determined for these artists; these being AD features 4,8,3,7,2 for

Algardi ( Please see Table 2.2 for description of numbers), 1, 10, 7, 5,8 for Bernini, AD

features 2, 1, 8, 9, 10, 5, 4 for Kneller, 5, 11, 2, 7 for Clouet, 4, 6, 11, 7, 3 for Mierevelt and

2, 8, 11, 3 for Holbein. Features are listed in decreasing order of importance for each artist.

We verified the validity of these features using the pst value computed from Siegel-Tukey
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Artist # Images Artist # Images

Algardi 14 Giotto 6
Bandini 1 Hansen 3
Bernini 33 Holbein 45
Botticelli 9 Kneller 19
Bronzino 5 Langel 1
Buggiano 2 Laurana 10
Cafa 2 Mantenga 3
Campin 4 Masaccio 4
Clouet 14 Raphael 5
da Fiesole 5 Signorelli 5
Da Vinci 7 Sittow 4
De Champaigne 7 Stringa 4
De Benintendi 3 Thronhill 3
Del Castagno 3 Torrigiano 1
Della Francesca 4 Van Mierevelt 24
Vasari 4 Van Musccher 18
Ghirlandaio 5 Verrocchio 6

Table 2.4: Illustration of image distribution : Number of images per artist.

test. As illustrated in bottom part of Fig. 2.4, for almost all cases, the confidence of the

similarity scores increased upon using only the style features, thus validating the chosen LF.

Similar results were obtained for AD features. It is to be noted that the Siegel-Tukey test

validates both style-specific match and non-match scores; wherever there are not enough

images to obtain match scores, only the available non-match scores are validated. The

receiver operating characteristic (ROC) curve shown in Fig. 2.5 compares the performance

for pair-wise sitter validation upon using (a) style features (b) all LF/AD features. The

ROC demonstrates the improvement in pairwise validation upon using style features.

Significance of Style Modeling: These results could possibly aid art historians in

attributing works to an artist that was not attributed to him/her before. Further, it could

also help in identifying unrecognized portraits by these artists more confidently. It might
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Figure 2.4: Top: Importance of chosen features with bigger dots indicating more important
features; Bottom: Validation of style through Siegel-Tukey test

also be possible to understand the adherence to artistic canon and individual variations in

art practices.

2.6.2 Validation with Known Sitters

From the set of known identities, we obtained match and non-match scores. It is

to be noted that wherever an artist’s style could be modeled, we used only those (weighted)

features in obtaining the LF/AD similarity scores and otherwise used all the LF/AD features
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Figure 2.5: Pairwise sitter validation upon using style features.

followed by the feature combination strategy to fuse the similarity scores. The weight for LF

feature was found to be 0.55 and that for AD features were 0.45. Experiments showed that

there was improvement in the performance upon fusing scores from LF and AD as against

using any one of them. The values of mean of PFS were 0.7246 (match) and 0.5926 (non-

match) with standard deviations 0.043 and 0.052 respectively (See Fig. 2.6). As described

earlier, the improvement in using style features as against all LF/AD features is evident

from Fig. 2.5. Some notable tests that were correctly validated include comparison between

a pair of busts by Bernini depicting Urban VIII, comparison of busts of Alexander VII by

artists Bernini and Cafa, and comparison between a pair of self portraits by Bernini.
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Figure 2.6: PFS showing the distribution of match and non-match scores along with their
standard deviations.

2.6.3 Identity Verification

We want to provide quantitative measures of similarity to uncertain test paradigms

provided to us by art historians. In this, we do not claim to provide the incontestable identity

of the sitter in question, but to only provide a complementary viewpoint, which could serve

the art history community.

Significance of Results from Art Perspective: In these identification tests, support

was given to previous scholarly opinion on a number of important cases. Among these were

the posthumous bust of Battista Sforza by Laurana in the Bargello and a death mask cast

also by Laurana in the Louvre shown in col.1 of Fig.2.7. A match suggests that, as was

thought, the mask was that of Battista. It also supports the idea that the cast was quite

closely followed by Laurana as a model–rather than, say, Piero della Francesca’s profile
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Figure 2.7: Illustrations of identification tests with conclusion in center. Bottom row shows
images whose identity is uncertain; numbers refer to corresponding images in Appendix B.

portrait of Battista. A match was also indicated for Botticelli’s Portrait of a Lady at the

Window (c. 1475; widely thought to be a rendering of Smeralda Brandini) and Verrocchio’s

Lady with Flowers (c. 1475), the two portraits also sometimes being suggested by some to

represent the same sitter, thus lending objective support to this position despite the two

distinctly different personas conveyed in the images.

Tests strongly support the traditional supposition that Nicholas Hilliard’s Young

Man Among Roses, said to be ”perhaps the most famous miniature ever painted,” repre-

sents Robert Devereux, second earl of Essex. The results of test scores between a portrait

of a woman at the National Portrait Gallery in London thought by some to represent Mary

Queen of Scots and eight other portraits known to be of Mary were almost startling in

their support for the identification of the unknown portrait as Mary. Results also lend new

support to previous opinion that the portrait at the National Portrait Gallery thought by

some to depict James Scott, Duke of Monmouth, first Duke of Buccleuch, does portray

Monmouth lying in bed after his beheading for treason.
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The portrait shown in bottom row of Col. 6 in Fig. 2.7 was sent to us by the Italian

astronomer Paolo Molaro, of what he believes may be the earliest known likeness of Galileo

Galilei, painted perhaps around 1590. When tested against a chronological spectrum of

eight other known portraits of Galileo, the results gave decreasing similarity scores within

the match range for the chronologically three closest likenesses (1601-1612). Thus, the test

gives support to the identification of a previously unrecognized portrait as Galileo–possibly

the earliest known portrait of Galileo. While age remains a challenge for FACES and

requires more research, age differences of around ten years or so have not been too much of

an obstacle.

A comparison between an unknown painting attributed to de Neve against a known

portrait of George de Villiers, 1st Duke of Buckingham (col. 7, Fig. 2.7) and a comparison

between an unknown portrait against a known portrait of Lady Arabella Stuart (col.5, Fig.

2.7) gave non-match scores. A list of identification paradigms with results is provided in the

supplementary material. For a detailed description of these results from the art perspective,

please refer to [65].

The results of FACES are only as dependable as the images tested. Areas that

would benefit from further research include modeling wide age differences, strong angle

views (including profile images) and even the use of different media (e.g., terracotta as

opposed to marble, chalk in contrast to oil, etc.).
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2.7 Conclusions

We presented a work that explores the feasibility of computer based face analysis

for portraiture. After a careful understanding of artistic conventions, we arrived at relevant

features for analysis. Subsequently, using machine learning tools, we learned a feature

space describing the distribution of similarity scores for cases known to match/not match

and also validated the same. We proposed a novel method to model artists’ styles and

to analyze uncertain portrait pairs. We believe that these results can serve as a source

of complementary evidence to the art historians in addressing questions such as verifying

authenticity, recognition of uncertain subjects, etc. As future work, we would like to explore

modeling age variations in portraits and building family trees of artists/sitters.
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Chapter 3

Robust Face Recognition Using

Saliency Maps of Covariance

Descriptors

In this chapter, we propose a robust unsupervised method for face recognition

wherein saliency maps of second order statistics are employed as image descriptors. In par-

ticular, we leverage upon region covariance matrices (RCM) and their enhancement based

on sigma sets for constructing saliency maps of face images. Sigma sets are of low dimen-

sion, robust to rotation and illumination changes and are efficient in distance evaluation.

Further, they provide a natural way to combine multiple features and hence facilitate a

simple mechanism for building otherwise tedious saliency maps. Using saliency maps thus

constructed as the face descriptors brings in an additional advantage of emphasizing the

most discriminative regions of a face and thereby improve recognition performance. We
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demonstrate the effectiveness of the proposed method for two face recognition applications

(a) face photo-sketch recognition, wherein we achieve performance comparable to state-of-

the-art without having to do sketch synthesis, and (b) face recognition in unconstrained

environments subject to additional artificial distortions.

3.1 Introduction

Face recognition is a form of biometric identification [4] involving recognition of

individuals based on the salient characteristics of their face images. A large number of real

world applications such as law enforcement, surveillance, gaming industry, healthcare, and

banking utilize face recognition. As a result, there has been enormous interest in this area

of research. A variety of challenges are associated with a typical face recognition task. It

has been observed that the performance of several state-of-the-art face recognition methods

degrades to a large extent in unconstrained and heterogenous environments.

One effective approach to alleviate these limitations is by designing highly dis-

criminative, robust and yet computationally simple image features that can be efficiently

matched. Typically, features are extracted based on expert knowledge [9] and/or learned

from available training data [10]. Low level features such as color, gradient and filter

responses are the simplest choices [84, 85] but they are not robust in the presence of illumi-

nation changes and non-rigid motion. Although statistical descriptors such as histograms of

oriented gradients show robustness to rotation and translation, their dimensionality grows

exponentially with feature dimensions.
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Region covariance matrices, which are the second order statistics of a region, were

first proposed in [89] as an image descriptor wherein its efficiency was demonstrated for

texture classification. RCMs are shown to be robust to rotation/illumination changes and

are also low dimensional compared to histograms. Furthermore, they provide a natural way

of fusing multiple features. However, distance computation between RCMs is cumbersome

as they do not lie on an Euclidean manifold. While there are Riemannian manifold based

alternate distance computation strategies such as [83], they are usually time consuming.

In order to overcome the aforementioned limitation of RCMs, a novel feature descriptor

that possesses the effectiveness of second order statistics but which has an efficient distance

computation scheme, was proposed in [75]. Sigma sets, as these descriptors are called, are

obtained by performing a Cholesky decomposition of the RCMs and are thus equivalent to

RCMs. They are low dimensional and robust. Since these descriptors are in the form of

a set of points, distance evaluation is computationally simple unlike RCMs. In [51], the

effectiveness of sigma setswas demonstrated for face recognition wherein we learnt scales

specific to a region by means of block-wise scale selection. In this work, we explore if

constructing saliency maps of sigma sets can achieve better performance and overcome the

need to learn to region-specific features.

3.1.1 Motivation for the Use of Saliency Maps of Sigma Sets

Often in applications such as face recognition, it helps to emphasize the most

discriminative regions in order to achieve superior recognition performance. Consider, for

example, comparing a face photo to a sketch. It is very likely that the sketch artist would
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Figure 3.1: Top row: Saliency maps help in emphasizing the most informative regions
across the photo and its sketch and hence can be leveraged for face photo-sketch recognition.
Bottom row: Saliency maps of a face image and its corrupted version. Despite the distortion,
saliency map effectively captures the most discriminative regions in the face.

have emphasized the most prominent features of the face such as a pointed nose or long

ears. Thus, prominent features can be understood to be those features which attract a

viewer’s attention almost instantly. Formally speaking, this refers to the concept of visual

saliency. Visual saliency, or more generally known as visual attention, refers to a process

which detects scene regions that stand out relative to their neighbouring parts. It mainly

revolves around the principles of selection mechanisms and relevance to help determine the

most characteristic regions of an image [30].

As an illustration, consider top row of Fig. 3.1, which shows a face photo, its

corresponding sketch and their respective saliency maps computed from sigma sets of filter

responses. The photo and sketch are part of the Chinese University of Hongkong (CUHK)

dataset [41]. As can be noticed from the figure, the most discriminative regions, namely the
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eyes and nose, are captured in the saliency maps of both the sketch and the photo. Bottom

row of Fig. 3.1 illustrates the effectiveness of saliency maps in capturing most informative

and discriminative regions even as the face images are subjected to artificial distortions.

The images are part of the Quality Labeled Faces in the Wild (QLFW) dataset wherein

face images are subjected to artificial distortions such as Gaussian blur and white noise

[42]. These illustrations motivate us to employ saliency maps of sigma sets as the image

descriptors.

Building saliency maps from sigma sets also provides an additional advantage of

a simple mechanism for feature integration. Typically, in computing saliency maps, some

basic visual features are extracted to form feature maps for each dimension, after which these

individual maps are integrated to build a master saliency map. Different feature integration

strategies (both linear and non-linear) have been proposed based on how individual feature

dimensions contribute to the overall saliency. One of the main advantages of employing

sigma sets constructed from RCM as feature descriptors is that they provide a natural way

to integrate different feature maps by modeling their correlations.

3.1.2 Contributions

Thus main contributions of the paper can be summarized as follows. We propose

a robust unsupervised face recognition scheme by employing saliency maps of sigma sets.

The proposed descriptors can overcome variations in pose and illumination, are of low

dimension and provide a natural way of integrating different features. The saliency maps

emphasize the most discriminative regions and facilitate improved recognition performance.
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The advantages of the proposed method is demonstrated for two different face recognition

applications namely, (a) face photo- sketch recognition, without having to perform sketch

synthesis and (b) face recognition in the presence of artificial distortions.

3.1.3 Related Work

Over the last few years, RCMs have become popular as a new set of holistic image

descriptors. RCMs have been applied to many applications such as texture classification

and object detection [95] andobject tracking [97].These descriptors have shown best dis-

criminative power for human detection tasks [98] and have also been recently studied in the

context of face recognition [99].

Based on the manner in which salient regions are determined, saliency models

can be categorized into two broad groups, namely bottom-up models and top-down mod-

els. Regions of interest that are mainly driven by involuntary stimulus (e.g., a black line

amidst many red lines) attract attention in a bottom-up manner [31]. These are typically

determined by intrinsic low-level properties of the scenes. On the other hand, regions of

interest that are propelled by a goal (e.g., searching for an object in a scene, etc.) attract

attention in a top-down manner. These are usually determined by cognitive phenomena

like rewards, expectations, etc. [32]. Some models integrate low-level bottom-up cues with

some task-specific top-down knowledge such as face and object detectors [36] to improve

their predictions.

There are a number of computational approaches to model saliency. Most of

them consider bottom-up strategies in a supervised data-driven manner to compute the
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saliency maps [33], [34], [35]. Recently, unsupervised saliency learning approaches have been

leveraged such as in [37] for person re-identification and in [38] for discovering new object

categories. In general, modeling visual saliency has provided efficient strategies for various

other computer vision applications such as image segmentation [27], object recognition [28],

visual tracking [29], etc. Despite the considerable amount of work on saliency for different

computer vision applications, there is very little work on saliency for face recognition [39],

[40].

3.2 Proposed Method

From the face image, simple low level features such as filter response is extracted.

Region covariance matrices are built from these features by considering the correlations

between different features within specific regions. A Cholesky decomposition of the RCMs

yields sigma sets. Saliency maps are then constructed from sigma sets. We begin by

explaining the Region Covariance Matrices (RCM) and the sigma sets followed by the

saliency estimation procedure. Fig. 3.2 illustrates these steps.

3.2.1 Region Covariance Matrices

The region covariance matrix (RCM) of a local region in an image with respect to

a set of low level features is essentially the local second order statistic of the given features.

A major advantage of the covariance matrices is that they have much lower dimensionality

when compared to the exact distributions of low level image features. RCMs are robust to

small pose variations and provide a natural way for fusing multiple features which might
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Figure 3.2: Steps involved in obtaining the proposed image descriptors: Top row depicts a
block representation and bottom row provides a pictoral illustration.

be correlated.

Let I denote a face image. For a given rectangular region R ∈ I with N pixels,

let ~fi be a y dimensional feature vector (consisting of Gabor responses) extracted from the

ith pixel in R , and ~u be the mean vector of the set of feature vectors ~fi in R. The y × y

covariance matrix C(R) of R can be calculated as

C(R) = FRF
T
R (3.1)

where FR = [f̂1, ...f̂N ] denotes the matrix of centered vectors f̂i = 1√
(N)

(~fi − ~u).

However RCMs do not lie in a Euclidean space, which makes distance computation

between them hard. Different measures based on Riemannian geometry such as [83] were

proposed to compute distance between RCMs. However, they are computationally inefficient

as they involve computing matrix exponential and logarithm operations. The sigma set

descriptors were proposed to overcome this drawback.

3.2.2 Sigma Sets

Sigma sets represent the covariance matrix as a small set of points S, that have

same covariance values as the given matrix [75]. In other words, the set of points S is
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equivalent to R in terms of second order statistics. Mathematically, it follows that for any

matrix L that satisfies C(R) = LLT , the set of columns of L has the same second order

statistic as R. One way to obtain such a decomposition of the covariance matrix is using

Cholesky decomposition. A Cholesky decomposition is used to represent any symmetric

positive-definite matrix, such as a covariance matrix, as a product of a lower triangular

matrix and its transpose. The fact that the component matrix of a Cholesky decomposition

is lower triangular, it imposes an order on the set of points it represents and this is very

helpful in devising a simple distance metric between two sigma sets.

The sigma set computation can be summarized algorithmically as follows:

Given: A face region R consisting of N, y × 1 feature vectors.

Output: Sigma set S = [L1, ..., Ly] satisfying C(S) = C(R).

Algorithm:

1. Calculate the y × y covariance matrix C = C(R) of the face region R.

2. Perform Cholesky decomposition of C, C = LLT , where L is a lower triangular

matrix.

3. Multiply L by the scalar
√
y , i.e., L =

√
y × L.

4. S = [L1, ..., Ly] where Li is the ith column of L.
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Distance measure

The distance between sigma sets can be evaluated as summation of point to point

distance and is equivalent to modified Hausdroff distance (MHD) [96], a widely used distance

metric over closed and bounded sets. Given two sigma sets SA and SB, the modified

Hausdroff distance is defined as

H(SA, SB) = max {h(SA, SB), h(SB, SA)} , (3.2)

where h(SA, SB) = 1
2y

∑
a∈SA

minb∈SB
(dE(a, b)). and dE(.) is some distance metric. Further,

due to symmetric property of covariance matrices and their Cholesky decomposition,

h(SA, SB) =
1

y

y∑
i=1

y

min
j=1

(dE(LAi , L
B
j )), (3.3)

where LAi and LBj ,i = 1, ...y denote the ith and jth points in SA and SB respectively.

Since the structure of the sigma set enforces the first i elements of ith sigma point

to be zero, the difference between two sigma sets can be obtained by the accumulation of

differences between the corresponding non-zero elements in the columns of L. Thus, we can

assume that

dE(LAi , L
B
j ) =∞, i 6= j. (3.4)

Thus, given two sigma sets SA and SB, the distance between them becomes

h(SA, SB) =
1

y

y∑
i=1

dE(LAi , L
B
i ), (3.5)

and the modified Hausdroff distance becomes

H(SA, SB) = max

{
1

y

y∑
i=1

dE(LAi , L
B
i ),

1

y

y∑
i=1

dE(LBi , L
A
i )

}
, (3.6)
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Enriching Sigma Sets Feature Descriptors

Once sigma sets are computed, first order statistics such as the mean (µ) can be

easily appended to the sigma sets, thus resulting in an enriched representation. Although

sigma sets can effectively encode local structure information by using the second-order

statistical relations among features, first-order statistics (mean) can be also valuable in

capturing saliency of an image region with respect to its surroundings. This is particularly

evident while dealing with contrast images. Since the means are different for low and high

contrast regions, an analysis based on first-order statistics would make this region pop out

from its surroundings[87]. The enriched feature descriptor is denoted as

ψ(R) = [S , µ]T , (3.7)

where S is the sigma set of the region under consideration.

Computational Complexity of Sigma Sets

The amount of computations required for Cholesky decomposition (CD) of a y×y

matrix is O(y3) which is relatively small given that most of the elements are zero.

3.2.3 Saliency Estimation

Similar to the definition in [87], we measure the saliency of a pixel by how much the

pixel differs from its surroundings. In order to estimate this, we compared each rectangular

image region (local neighborhood of a pixel) against its immediate context described by

the nearby regions. The image regions are described by their RCMs, which provide a

48



natural way for non-linear integration of features using second-order statistics. We begin

by explaning the covariance descriptors.

Given an input image I, we consider non-overlapping regions of square blocks,

which are of size k × k pixels. The saliency of a block is estimated by comparing it with its

immediate neighbouring blocks. If it locally displays distinct characteristics, it is regarded

as salient. Specifically, saliency of a region Ri is determined as follows.

T (Ri) =
1

m

m∑
j=1

d′(Ri, Rj) (3.8)

wherein m denotes the number of immediate neighbors of a block and

d′(Ri, Rj) =
||ψ(Ri)− ψ(Rj)||

1 + ||xi − xj ||
(3.9)

Here, ψ(R) denotes the enriched feature descriptor after incorporating mean with sigma

sets, and xi, xi are the pixel centers for regions i, j respectively.

The saliency maps computed thus constitute the feature descriptor for each face.

Constructing feature descriptors in the aforementioned manner provides a natural way of

emphasizing prominent regions of a face. Thus, computing distance (e.g., 2D euclidean

distance) between two such saliency based face descriptors is an efficient way of comparison.

We employ 2D euclidean distance to compare two saliency based face descriptors.

3.3 Experiments

We demonstrate the utility of the proposed feature descriptor for two different face

recognition applications. In the first, we study face photo-sketch recogniton wherein unlike

existing methods, we do not need to perform an otherwise tedious sketch synthesis process.
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Next, we discuss the benefits of saliency maps of sigma sets for face recognition in presence

of distortions. We begin by providing a brief description of the datasets employed.

3.3.1 Datasets

For the purpose of demonstrating the advantages of using the saliency maps as fea-

ture descriptor in face photo-sketch recognition, we used the Chinese University of Hongkong

(CUHK) Face photo-sketch dataset [41]. It includes 188 faces where for each face, there is a

sketch drawn by an artist and a photo taken in frontal pose under normal lighting condition

and neutral expression.

For the purpose of showing the effectiveness of saliency maps for face recognition

under unconstrained environments, we employed the Quality Labeled Faces in the Wild

(QLFW) dataset [42], which has over 13000 images. The QLFW database is derived from

the LFW database. In the QLFW database, the LFW images are subjected to different types

and levels of distortions, simulating distortions that can occur under real-world conditions,

including impairments due to Gaussian blur and white noise. For each visual impairment

type, the level of impairments were chosen such that the whole range of visual quality is

represented from Poor (strong perceived impairment as compared to original source) to

Excellent (no perceived impairment, original source).

3.3.2 Implementation Details

All the face images were cropped to size of 200 × 200 and subsequently divided

into 8 × 8 blocks. We did not employ any pose correction on the images. We used Gabor
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filters that essentially aggregate directional gradients and are able to effectively capture

facial features. We used Gabor wavelets across 8 orientations and 2 scales to get a 16× 16

dimensional RCM for each block in the image. From these, we constructed the sigma set

descriptors by performing a Cholesky decomposition and subsequently appended the mean

value of the region under consideration to obtain the enriched feature descriptor as described

in eq. (3.7). We then computed the saliency maps by measuring the amount by which each

region is different from its neighbors using eq. (3.8), the neighbors being the immediate

adjacent blocks of the block under consideration. Thus, there can be a maximum of 8

neighbors and a minimum of 3 neighbors for any block.

3.3.3 Face Photo-Sketch Recognition Results

Many face photo-sketch recognition methods such as [41] first perform a sketch

synthesis. Typically, from a training data which contains photo-sketch pairs, the joint

photo-sketch model is learned at multiple scales. Subsequently, photo-sketch transofrmation

is carried out after which recognition approaches can be applied in a straightforward way.

Unlike such works, we do away with the sketch synthesis altogether. Since the saliency maps

naturally highlight the most discriminative regions which are likely to be the same in both

photo as well as the sketch, these maps can be directly employed to perform recognition. We

compute 2D Euclidean distance between saliency descriptors of faces to obtain similarity

scores. Subsequently, we use a nearest neighbor classifier for recognition.

Table 3.1 lists the rank-1 to rank-10 accuracy on the CUHK dataset and compares

the performance with that of [41]. It can be noted that the proposed method provides
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Table 3.1: Comparison of the proposed method with state-of-the-art in face photo-sketch
recognition shown in terms of rank 1 to rank 10 percentage accuracies.

1 2 3 4 5 6 7 8 9 10

[41] 96.3 97.7 98 98.3 98.7 98.7 99.3 99.3 99.7 99.7

Proposed 96 98 98.3 98.3 99.3 99.3 99.7 99.7 99.7 99.7

nearly similar performance to that of [41] without having to do any sketch synthesis. While

the first match accuracy is better for [41], it is to be noted that the proposed method is only

slightly less despite the fact that it does not require sketch synthesis. It is to be noted that

rank-2 through rank-10 accuracies of the proposed method is either greater or on par with

[41]. Given that the proposed method is unsupervised, the advantages are considerable not

only in terms of recognition accuracy, but also in terms of computation.

Figure 3.3: Illustration of the saliency map for photo and sketches across genders.

Some illustrations of the saliency maps of photos and sketches across genders can

be seen in Fig. 3.3. While training to select salient regions particular to a gender can

certainly improve performance, nevertheless the proposed unsupervised method is quite
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effective in capturing some important regions across both the instances. Certain noticeable

differences can be attributed to the fact that sketches are not identical to the photo.

3.3.4 Face Recognition in Presence of Distortions Results

We performed experiments on the QLFW dataset with Gaussian blur and white

noise added on a scale of 1 to 4. Fig. 3.4 provides an illustration of images of the same person

which have been corrupted with varying level of distortions. 1 denotes least distortion and

4 indicates highest amount of distortion. Gaussian blur and white noise are the two types

of distortions shown. The corresponding saliency maps can be seen next to each image. As

can be observed, despite the severe distortion induced in the images, the saliency maps are

indeed very effective in consistently capturing the most informative regions across all levels

of distortions.

Table 3.2 lists the pairwise recognition performance for varying levels of distor-

tions. As the level of distortion increases, the recognition accuracy reduces for both types

of distortions. The performance decreases drastically for white noise when compared to

Gaussian blur. This can be attributed to the nature of images obtained after adding these

distortions. There are no results reported yet on the QLFW for a direct comparison. Since

we are working in the image restricted scenario with no outside training data for align-

ment, the closest setting for comparison happens to be the performance of sigma sets on

the image restricted scenario of the LFW dataset. We noticed that there was almost 1.5%

improvement upon using saliency maps of sigma sets than using just the sigma sets [51].

This clearly demonstrates the need to incorporate saliency maps of sigma sets.
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Table 3.2: Pairwise recognition accuracies ( in %) of the proposed method for varying levels
of different distortions.

Distortion Type Level 1 Level 2 Level 3 Level 4

Gaussian blur 84.12 71.38 60.22 52.84

White noise 83.62 70.12 59.23 41.71

Figure 3.4: Saliency maps across various levels of different distortions. Even as the distortion
level increases, the saliency maps of sigma sets are more or less similar suggesting that these
descriptors are very robust for recognition in presence of distortions .

3.4 Conclusions

We analyzed the feasibility of a new set of face descriptors based on the saliency

maps of sigma sets which are in turn constructed from simple filter responses. While

sigma sets are low dimensional and robust to variations in pose and illumination, saliency

maps effectively emphasize the most discriminative regions of the face, thus ensuring better

recognition accuracies. Experiments showed promising performance for face photo sketch

recognition without the need for sketch synthesis. We also demonstrated the effectiveness

of these descriptors for face recognition in presence of distortions on the QLFW dataset

wherein various types of distortions are added.
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Chapter 4

Undersampled Face Recognition

via Style-Content Modeling

In this chapter, we address the problem of undersampled face recognition by means

of modeling style and content from very limited training data. Modeling style and content

is a core vision problem that has been explored through bilinear models (BLM) where style

can be attributes like facial expression, gait, etc. and content is usually the person’s identity.

Since most existing techniques require significant training data containing multiple instances

of object/person’s appearance, they are not robust when there are very limited training

samples in a style class (e.g., < 10). We propose a novel algorithm for automatically inferring

style and content from very limited training samples and demonstrate the advantage of

knowing such information in pairwise face recognition. Further, unlike many state-of-the-art

undersampled face recognition methods which leverage outside training data, the proposed

method does not need outside training data and works with very limited training instances.
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A set of weighted features characteristic of a style class are learned, wherein the weights

denote the importance of the chosen features in the class. The chosen style features are

then validated by means of the robust Siegel-Tukey statistical test that is proven to work

well for small sample sets. We analyze the PubFig and Yale dataset using the annotated

attributes as style factors to illustrate the advantages of proposed method over BLM and

relative attributes method as sample size in the style class is reduced.

4.1 Introduction

Many applications involving law enforcement such as finger print analysis, hand-

writing analysis, face recognition, forgery detection, etc. can only offer a few or even a single

image of the suspect due to non-availability of examples. In addition, sparsity of training

data is common to many other forensic science applications such as studies of ancient art,

architecture, biology or archaeology wherein experts are often required to answer questions

related to authenticity such as for date estimation, identity verification, etc. In fact, prac-

tical illustrations of such scenarios can be found in [49, 11, 71] wherein the authors explain

the difficulty in acquisition of images owing to their cost, availability and authenticity.

There have been works that have explored the problem of face recognition from

limited training data, often referred to as undersampled face recognition. A number of these

works leverage upon a larger set of images outside the gallery such as composite sketches

[80], mugshot gallery images [82], or assume that the intra-class variations of one subject

can be approximated by a sparse linear combination of those of other subjects and represent

the variation between the training and testing images using additional images [71].
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We propose a different approach to the aforementioned problem wherein we do not

make use of any images from outside the gallery. The motivation for our approach comes

from the fact that several vision problems are often characterized by two or more indepen-

dent factors which interact to produce an observation. For example, in face recognition, a

facial expression and the identity of the person interact or combine to yield the rendered

face image. We may perceive one factor (facial expression) as the style and the other (iden-

tity of the person) as the content. In general, style can be various other attributes such as

pose [66], gait [68], etc. The question we ask is can we do style and content modeling from

very limited training data and then use this information for face recognition? Existing style-

content analysis methods such as the bilinear/multilinear models [66, 67, 68, 69] are not

applicable since these approaches rely upon obtaining multiple instances of object/person’s

appearance under various conditions (pose, expression, etc.), which are hard to procure in

aforementioned scenarios.

Given limited training data (≤ 10 per style class), our approach leverages upon

statistical hypothesis testing to learn and validate style information. The choice of statistical

hypothesis testing is motivated by the fact that certain non-parametric tests such the Siegel-

Tukey test [61] do not assume any underlying distribution for the data while testing a claim.

A claim can be any proposition about the images under consideration. For example, one

such claim could be that two face images belong to a common style and represent the

same person. Furthermore, the non-parametric permutation test [58] can help assess which

features are more important to a style. As an instance, permutation test can help identity

features such as the eye corners and mouth tips as being more important than features such
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as forehead tips for images belonging to the style class “smile”. The absence of normality

is a particularly important feature of such tests given that we do not have enough training

data to assume an underlying distribution. In fact, principles behind these methods have

been used to address several problems in biology such as for investigating protective effect

of treatment against infections in sparse samples [59].

In order to ensure robust hypothesis testing for learning the importance of different

style features and for validating them, care has to be taken in initially selecting highly

discriminative features characteristic of individual styles. In this direction, we make use of

the random subspace ensemble learning techniques [56]. Specifically, the random subspace

method is capable of handling deficiencies of learning in small sample sizes and has superior

performance than a single classifier since an aggregation of the output of individual classifiers

leads to reduction of variance in error. Further, diversity among weak classifiers contributes

to robustness.

Contributions: In this paper, we address the problem of undersampled face recog-

nition via style-content modeling. In particular, we propose a novel framework that leverages

robust non-parametric statistical hypothesis testing strategies such as permutation tests [58]

and Siegel-Tukey test [61] in conjunction with ensemble learning techniques such as ran-

dom subspace [56] to learn and validate style-content from very limited training data. We

demonstrate the advantage of knowing the style information in pairwise content recognition

[ i.e., in determining if 2 persons are same (match) or not (non-match)]. It is to be noted

that the two face images in question could belong to a common style or depict different

styles. We illustrate the proposed algorithm by considering the application of undersam-
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pled face recognition in the wild and illustrate the results on two datasets [73], [72]. We

compare the performance of the proposed algorithm against two baselines. The first is the

standard bilinear models [66]. Since style could often be attributes such as an expression,

we also compare our method against relative attributes [48], a very popular attribute based

classification method.

Images 
of a 
style 
class 

Example 
Image 

IMAGE  
DESCRIPTOR 

RANDOM 
SUBSPACE 

Style features Features 

PERMUTATION  
TEST 

Importance of style 
features 

Img1 
Img 2 

SIMILARITY 
COMPUTATION 
b/w 2 IMAGES 

SIEGEL-TUKEY 
STATISTICAL TEST 

Match/non-match 
scores 

Cross validation 

 
PAIRWISE 

VALIDATION 
 

TRAINING-Learning and Validation of Style Features 

 
 
 
 
 
 
 
 
 
 
 

 
Test Pair (T1,T2) 

 

 
Probability of test 

images belonging to 
different styles 

 

SIMILARITY 
COMPUTATION 

(Using the learned 
style features 

scaled by 
probability priors) 

Arg max across all 
style 

combinations  for 
(T1,T2)  

 
Style Classes 

T1= Smile 
T2= Frown 

 

Z STATISTICAL 
TEST 

 
Content Class 

 Match 
 

TESTING-Style and Content Determination of test pair 

 
 
 
 
 
 
 
 
 
 
 
 

Match/non-match 
distributions across all styles 

Figure 4.1: Overview of the proposed method for infering style and content from sparse
image samples.
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4.1.1 Overview

From a very limited set of images known to belong to a style, region covariance

matrices (computed from the second order statistics of a set of low level descriptors) [89]

represented in the form of sigma sets [75] are extracted and averaged across all images

belonging to that style to yield characteristic descriptor of the style. These low level de-

scriptors could be filter responses, intensity, color, etc.

Next, we consider a set of salient points on the image and extract the low level

descriptors around these points. The descriptors around a salient point constitute a fea-

ture. We automatically learn a subset of weighted features that are characteristic of a style

wherein the weights denote the relative importance of the chosen features in the style. To-

wards this, we first employ the random subspace method to arrive at a subset of features

that are characteristic of a style. Since not all the chosen features will be equally important

for a style, we then employ the statistical permutation tests to learn the relative importance

(weights) of the chosen features. The chosen features are then used to obtain a similarity

score between pairs of instances in each style to yield match (if the image pairs denote the

same person) or non-match scores (if the image pairs denote different people) as appropri-

ate. The chosen features are validated by showing that there is significant improvement in

the confidence of the style-specific similarity scores over style independent similarity scores

(obtained using all features) by means of the Siegel-Tukey test [61]. Siegel-Tukey test does

not assume any underlying distribution for the similarity scores and hence applicable for

this scenario wherein we have very few scores.
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Given test image pairs (whose style and content is unknown), probabilities of the

images to belong to each of the styles is estimated by considering their sigma set descriptors

with respect to the learned sigma sets in a mixture model framework. Subsequently, these

probabilities are used as scaling factors in computing the similarity scores between the

image pairs. The styles of the images is then determined by the maximum similarity score

across all combinations of styles. The content (match/non-match) is then determined by

computing the p value of the test pair with respect to the entire set of match and non-match

scores. Fig 4.1 illustrates the approach.

4.2 Related Work

We review related work on style-content modeling, attribute based methods and

methods which deal with learning when the training data is very limited.

4.2.1 Style-Content Modeling Methods:

A model for separating content from style was introduced in [66], wherein promis-

ing results were shown for face pose estimation, among others. In [68], separating content

from styles on non-linear manifolds was addressed. In [69], face transfer based on multilinear

models was considered. However, all of these require significant training data. The authors

in [81] propose to learn complex manifolds of object appearance from a small set of training

data and show that their method overcomes the limitations of bilinear/multilinear models.

However, the method requires the 3D shape of the object. In contrast, our approach can

perform well with few training instances and does not need 3D shape information.
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4.2.2 Learning in Sparse Samples:

In [76], the authors exploited qualitative influences as constraints on probability

distributions in Bayesian learning to learn from few samples. In [77], a novel graphical

model based framework was proposed for consumer produced sparse multimedia. To deal

with sparse data, training images were shared among semantically similar classes in [78],[79].

Often, in forensics, from a small sample signature set (e.g. a few latent fingerprints), one

has to determine the identity of the person with whom the signatures are associated. To

a large extent, such problems leverage upon a much larger set of composite sketches [80]

and mugshot gallery images [82] to perform recognition. However, none of these methods

address style-content modeling, which we demonstrate to be very useful for recognition from

limited trainind data.

4.3 Learning Style Features

From very limited training data, we learn features that are typical of the style

and use that information for face recognition. In this direction, we first learn characteristic

image descriptors of a style from training data.

4.3.1 Image Descriptors

We learn two types of descriptors. The first type is computed across the entire

image and the second is computed around landmark points of the image. While the former

provides a holistic description of the image and is used to estimate the probability of a test

image to belong to a style (weak classifier), the latter provides a detailed description of
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discriminative regions characteristic of a style (strong classifier). We describe these steps

in detail in the following paragraph.

We employ region covariance matrices (RCM) [89] represented in the form of sigma

sets [75] that essentially capture the local 2nd order statistic with respect to a set of low

level characteristics as our image descriptors. The low level characteristics could be fil-

ter responses, color, etc. RCMs have much lower dimensionality when compared to the

exact distributions of low level image characteristics, can be computed efficiently using in-

tegral images and are robust to small pose variations. These descriptors have shown best

discriminative power for human detection tasks, texture recognition, etc. [86].

We divide the image I into 8× 8 blocks. For a given region R ∈ I with N pixels,

let ~fi be a y dimensional vector (consisting of low level characteristics) extracted from the

ith pixel in R , and ~u be their mean vector. The y× y covariance matrix C(R) of R can be

calculated as

C(R) = FRF
T
R (4.1)

where FR = [f̂1, ...f̂N ] denotes the matrix of centered vectors f̂i = 1√
(N)

(~fi − ~u).

Since RCMs do not lie on a Euclidean space, distance between RCMs is computed

using Riemmannian geometry that is usually time consuming. In order to overome this, a

small set of vectors that can be uniquely determined through Choloesky decomposition on

the RCM and that possess the effectiveness of RCMs called the sigma sets (SS) is computed

[75]. Thus,

SS = [L1, ..., Ly] (4.2)

where Li is the ith column of L in the Cholesky decomposition of C(R) = LLT . Distance
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between two sigma sets can be efficiently computed using an approximation of Hausdorff

distance metric [75]. The SS descriptors averaged across all images belonging to a style class

j represents the characteristic descriptor of that style SSj . We will use these descriptors in

estimating the probability of test image to belong to a style.

We also compute the low level descriptors (filter responses, color, etc.) around

salient points in the image. Depending upon the image, salient points can vary. For instance,

it could be corner of eyes, nose, etc. for a face image. In this paper, the term “feature” is

used to refer to these extracted low level image descriptors around a salient point. Thus, we

have D features characterizing each image if there are D salient points considered for each

image in the style class. These features are the inputs to the random subspace ensemble

classifier described next.

4.3.2 Random Subspace Ensemble Method for Learning Style Features

From very limited training data, we learn a subset of the D features characterizing

the style of the category under consideration. The random subspace method randomly

samples a subset of these features and performs training in this reduced feature space.

Multiple sets (or bags) of randomly sampled features are generated, and for each bag the

parameters are learned. An aggregation of the output of individual classifiers leads to

reduction of variance in the error; further diversity among the weak classifiers contributes

to the robustness [56].

More specifically, we are given Z training image pairs and D features. Let L be the

number of individual classifiers in the ensemble. We choose di ≤ D (without replacement)
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to be the number of features to be used in ith classifier. For each classifier, we determine the

match and non-match scores [similarity scores between image pairs of a style class depicting

the same person (match score) and different people (non-match score)] using the di features

as follows . We compute

s(I, I ′) =
1

di

di∑
n=1

Sn(I, I
′
), (4.3)

where s(I, I
′
) is an average similarity measure between n corresponding salient points in

image pair (I, I ′). We can use any normalized similarity measure (such as that mentioned

in [57] for face verification). In order to identify features that give the highest separation

between match and non-match scores, we then compute the Fisher Linear Discriminant

function (ratio of variance between match/non-match score set to that within each of these

sets) for each classifier. We choose the union of features from those classifiers that give the

top k Fisher Linear Discriminant values as our style features; k chosen experimentally. The

Fisher measure does not require the data to be normally distributed and thus applicable

for sparse data.

4.3.3 Importance of the Chosen Style Features

Not all features identified by the above method are equally important in represent-

ing a style. In order to understand the importance of the chosen features, we consider the

non-parametric permutation statistical test [58]. Permutation tests helps in assessing what

features are same (in other words invariant) across all the instances belonging to a class.

Thus, features which are more invariant across the instances of the class can be perceived

to be more characteristic of the class and thus be assigned greater importance.
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Permutation test: The null hypothesis (H0) is chosen to indicate that two image

groups G1, G2 have the same average value in a particular feature; the alternate hypothesis

(H1) indicating that the average value of that feature is different in the two groups. Thus,

H0 : µG1 = µG2;H1 : µG1 6= µG2, (4.4)

where µ is the average value of a particular feature v under consideration in the two groups.

If the null hypothesis is true, then it should not matter when this feature v is

randomly assigned among images in the group. For instance, there is a certain way that

the mouth corner looks when a person smiles. On an average, if this appearance is same

across all images and groups, then the principle behind the test is that there will not be

a significant difference if the mouth tips are randomly assigned across images in the group

(i.e. assigning the feature of one person to the corresponding feature of another person).

Specifically, if there are Ns images of a style class S, then we can divide these

Ns images into 2 subgroups consisting of Ns1 and Ns2 images. Let the feature values for

the first group be [v1, v2, ..., vNs1
] and in second group be [vNs1+1 , vNs1+2 , ..., vNs1+s2

]. The

two sided permutation test is done by randomly shuffling [v1, ......, vNs ] and assigning the

first Ns1 values, say, [v(1), v(2), ..., v(Ns1 )
] to the first group and the remaining Ns2 values

[vN(s1+1)
, ..., v(Ns1+s2 )

] to the second group.

For the original two groups we compute,

δ0 =

∣∣∣∣∣∣ 1

Ns1

Ns1∑
i=1

vi −
1

Ns2

Ns2∑
i=1

vNs1+i

∣∣∣∣∣∣ (4.5)

δ0 denotes the variation in the feature v of style class S as exhibited by various instances

I1, ...IN in the two groups G1 and G2. Thus, δ0 = |µG1 − µG2|. For any two permuted
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groups we compute,

δs =

∣∣∣∣∣∣ 1

Ns1

Ns1∑
i=1

v(i) −
1

Ns2

Ns2∑
i=1

v(Ns1+i)

∣∣∣∣∣∣ (4.6)

δs denotes the variation in the feature v of style class S after assigning the feature as

depicted by Ii, i = 1, 2, ...l to an image not necessarily of Ii.

We repeat this random shuffling of features among the images under consideration

multiple times and count the number of times δs > δo. The proportion of times δs > δo is

the p value which we denote as p. This value reflects the variation of the feature in the two

groups. Smaller p denotes stronger evidence against the null hypothesis, meaning that the

feature differed considerably in the two groups. If a certain feature showed no difference in

the 2 groups, then it does not matter to which image this feature is associated since the

average value does not change; thus it can be considered as a random assignment into any

image in the pool. We compute p values for each feature as described above.

The resulting p values indicate the importance of the chosen features. Greater the

p values, the smaller is the variance of that feature in the class (hence it is more characteristic

of the class) and vice versa. We use these p values as weights in computing the similarity

scores between image pairs. Doing so ensures greater robustness in separating match and

non-match scores by assigning a higher weight to a more important feature. Thus, (4.3)

now becomes

sp(I, I
′) =

1

M

M∑
v=1

pvSv(I, I
′
) (4.7)

where M is the number of features as determined by the random subspace method, pv is

the p value for feature v, Sv(I, I
′) is the similarity between the images I and I ′ with respect

to the feature v and sp is the p-normalized similarity score.
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4.3.4 Validation of the Style Features

Our goal here is to show that there is a higher confidence associated with style-

specific scores than with the scores computed using all features. Towards this, we employ

a robust non-parametric statistical test called the Siegel-Tukey test that basically checks

the null hypothesis (H0) that two independent score sets come from the same population

(style) against the alternative hypothesis (H1) that they come from populations differing

in variability or spread. If the style features are indeed good representators of the class,

then there should be a higher level of confidence associated with the null hypothesis when

compared with style independent features. The hypotheses can be formally written as

follows,

H0 : σ2A = σ2B,MeA = MeB;H1 : σ2A ≥ σ2B (4.8)

where σ2 and Me are the variance and medians for the groups A and B, which we define

below. The test is entirely distribution-free. The absence of any normality assumption is

an important feature of the test, because its parametric alternative, the F test for variance

differences, is quite sensitive to departures from normality [60].

Application to our Problem: Let us say we have T match scores (can be non-match scores

also) of a style class. We divide these scores into two groups A and B with r style scores

for the first group and m style scores for the second. As per the procedure of this test, we

first arrange all these T style scores in ascending order. Next, we assign ranks 1 to T in an

alternate extreme manner i.e., assign rank 1 to the lowest number of the sequence, ranks 2

and 3 to the two highest members in the sequence, ranks 4 and 5 to the next two lowest, etc.

(If the total number of observations is odd, the middlemost score is dropped.) Assigning
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the ranks in this way puts the lower ranks at the extremes of the ordered sequence and the

higher ranks in the middle of the sequence. If the null hypothesis were true, the scores from

the two groups would tend to be well mixed, so that the mean rank assigned to one of the

groups would tend to equal the mean rank assigned to the other group and if the alternate

hypothesis is true, the mean rank assigned to the scores from the more variable group will

be smaller than the mean rank assigned to the scores from the less variable group. An

illustration of this ranking procedure is provided in supplementary material. Once we have

obtained the ranks, the next step in this test is to sum the ranks within each group. Let

these be denoted as WA,WB. If the null hypothesis is true, it is expected that the sum of

the ranks (taking into account the size of the two groups) will be roughly the same. If one

of the two groups is more dispersed (thus indicating that the obtained scores of the two

of groups are less characteristic of a common style), its sum will be lower; while the other

group will receive more of the high scores assigned to the center.

From the rank sums, the U statistics associated with Wilcoxon rank sum test [59]

are calculated by subtracting off the minimum possible score from the rank sums of each

group. Thus,

UA = WA −
r(r + 1)

2
;UB = WB −

m(m+ 1)

2
; (4.9)

where U = min(UA, UB). In general, the minimum possible rank sum for a group with

r elements occurs when its elements get the ranks 1, 2, ...r. Thus r(r+1)
2 is the minimum

possible rank sum score for that group.

The pst value given by

pst = Pr [X ≤ U ] , (4.10)
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where UA, UB are the U statistics for groups A,B and X ∼Wilcoxon(r,m), is a measure of

the confidence associated with the scores. Thus, if the style features are good representators

of the class, they should be associated with a higher pst value than the pst value associated

with scores obtained using all features.

4.4 Determining Style-Content of Test Images

After learning style information from very limited training data, we would like to

verify if the two test images represent the same person (match) or not by inferring their

individual styles.

4.4.1 Estimating Style Probabilities

We first estimate the probability of test images to belong to a style. Towards this,

we use average values of SS descriptors for different styles (Sec 4.3.1) in a mixture model

framework. Let SST denote the sigma set descriptor of a test image and SSj denote the

average value of SS descriptor for style j. Let b denote the w×x dimensional matrix whose

rows are the SS descriptors for a style (where there are w style classes and x is the dimension

of SS descriptor) and let ~P = [p1, p2, · · · , pw] where pi is the probability with which a test

image can belong to style ci. We then seek to express ~SST as

~SST = p1[ ~SS1] + p2[ ~SS2] + · · · pw[ ~SSw] (4.11)

The solutions of the above equation is equivalent to computing the following.

min
~P

∣∣∣∣∣∣ ~SST − ~P~b
∣∣∣∣∣∣2
2
s.t
∣∣∣∣∣∣~P ∣∣∣∣∣∣

1
= 1, pi ≥ 0 (4.12)
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The above is a constrained optimization problem which can be solved by applying Karush-

Kuhn-Tucker (KKT) conditions i.e.

D
∣∣∣∣∣∣ ~SST − ~P~b

∣∣∣∣∣∣2
2

+ λD(~P .~1− 1)− ~µ. ~P T = 0 (4.13)

where D stands for derivative, ~1 is a unit column vector with k rows, λ is the Lagrange

multiplier and ~µ = [µ1, µ2 · · ·µw] is the KKT multiplier such that µi ≥ 0 for all i and

~µT ~P = 0. Thus we get the probabilities with which each image in the test pair can belong

to different style classes. It is to be noted that these are merely weak estimates and are

used as a scaling factor in determining the final category, the details of which is described

in the following sections.

4.4.2 Computing Similarity Scores for Test Pairs

We estimate similarity scores for all w × w possible combinations of style classes

between the test image pair, wherein only the corresponding learned weighted style features

are used in computing the score. This score is further scaled by the prior probabilities of

the image pair to belong to the style combination to yield the similarity score for each

combination.

Specifically, let (T1, T2) denote the test image pair. For each of the w×w possible

style combinations which (T1, T2) can take, we compute the similarity score for the particular

style combination (i, j) as

sij(T1, T2) = exp−β[pi(T1)pj(T2)] ∗spij (T1, T2) (4.14)

where β is a scaling factor chosen experimentally, pi(T1), pj(T2) are the probabilities with
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which image (T1, T2) can belong to style classes (i, j) respectively, and spij (T1, T2) is com-

puted using (7) between style classes i and j. It is to be noted that, in general, for 2 style

classes (i, j) where i 6= j, the style features and their importance are different. Therefore

for computing spij (T1, T2) in (4.14) using (4.7), we use the union of the style features in

(i, j) with their corresponding importance determined by the average importance across i

and j. Doing this ensures all characteristic features from both styles i and j (appropriately

weighted by their importance) is considered in determining the similarity.

4.4.3 Style-Content Classification

The style classes (SC1, SC2) of the image pair (T1, T2) is determined to be the

combination that yields the maximum value for (14). Note that images T1, T2 could belong

to the same style or different styles. Thus,

SC1, SC2 = argmax
i,j

sij(T1, T2) (4.15)

In order to determine the content class (match/non-match) between the pair, we

leverage upon the match and non-match similarity scores computed across all image pairs

in the training data. We then fit Gaussian distributions to each of these scores to get

a characteristic match distribution and a non-match distribution. Please note that since

these scores are pooled across all styles in the data, their number is sufficiently large to be

modeled by a Gaussian unlike the case of style-specific scores which are sparse and hence

require non-parametric methods for modeling and validation.

Given the similarity score as determined by (4.15), we compute the test statistic

with respect to the match and non-match distribution using the non-directional Z hypothesis
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test [64]. We set the null hypothesis as that the match distribution accounts for the test pair

similarity score better than non-match distribution and the alternate hypothesis as that the

non-match distribution models the score better. We set level of significance α (probability

of incorrectly rejecting the null hypothesis) as 0.05, as per behavioral research standard.

We then compute the test statistic pZ using one independent non- directional z test which

determines the number of standard deviations the similarity score deviates from the mean

similarity score of the learned distributions.

If pZ > α with respect to match distribution and pZ < α with respect to non-match

distribution, we conclude the similarity score corresponds to a match score i.e., images T1, T2

represent the same person. If pZ < α with respect to match distribution and pZ > α with

respect to non-match distribution, we conclude the similarity score corresponds to a non-

match score i.e., images T1, T2 represent different people. However, in cases where pZ < α

(or pZ > α ) with respect to both match/non-match distribution, no conclusion can be

made regarding the content class as both match/non-match is equally likely.

4.5 Experiments

4.5.1 Datasets

We evaluated our approach on two datasets. The first dataset we considered is

a subset of the PubFig database [73] consisting of instances pertaining to style attributes

(a) smiling, (b) frowning, (c) female, (d) male, (e) youth. Most of these classes have many

images, but our goal is to show that we can infer the style and content from a small number
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of images. We chose 20 image pairs/class for training and tested on 600 images across the

entire dataset. The second dataset is the Yale dataset [72] consisting of 165 images of 11

subjects across different 4 configuration such as (a) happy, (b) sleepy, (c) surprised (d) wink

and (e) glasses wherein we used images from 5 subjects for training and rest for testing.

4.5.2 Image Descriptors

To obtain the sigma set descriptors, we considered the covariance of Gabor wavelet

responses across 8 orientations and 5 scales. We also considered these filter around 22 salient

fiducial points on the face to obtain the “features” as described earlier. An illustration of

these locations is provided in Fig. 4.2. These points are often used for face verification [57].

These image descriptors formed the inputs to the random subspace ensemble classifier. We

considered a total of L = 6 classifiers varying the number of features (di) in steps of 2 from

10 to 20 in each of the classifiers with these features being randomly chosen as per the

random subspace algorithm.

4.5.3 Experimental Scenarios

We want to demonstrate the advantages of modeling style for undersampled face

recognition. Hence we consider two settings—(1) when style is unknown for test images,

and (2) when style is known.

Baseline 1 : We compared our approach with the standard bilinear model [66] as the first

baseline. From the training images with Nb style classes and Nc content classes, we learn

the style matrix and content vector using the procedure described in [66]. For test images
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Figure 4.2: Location of salient points on an example image.

with unknown style and content, we use the EM algorithm to classify. When style is known

apriori, we simply compute the similarity between the image pairs using the learned style

parameters to classify. The match/non-match scores obtained from these experiments is

used to plot the ROC.

Baseline 2: We compared our approach against an attribute based identification method

namely relative attributes [74] on the PubFig data. Since the method requires the user

to provide orderings regarding the relative strengths of attributes in the training data, the

method is not applicable when style information is not known aprioir. We provided the

attribute relationships (in terms of ordering and similarity as in [74]) for the sparse training

images. We used the code provided by the authors in order to obtain the rank scores.

From these rank scores, we computed the similarity between image pairs to get match and

non-match scores. We used these scores to generate the ROC curves.
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4.5.4 Style Modeling Results

Using the procedure described earlier, we computed match scores and non-match

scores for each style class under consideration. We considered the union of features from

the top 2 Fisher discriminant scores as style features. Table 4.1 and 4.2 list the features

characteristic of each style class for the PubFig and Yale respectively; with most important

features (as determined from the permutation test) listed first.

Table 4.1: List of style features written in the decreasing order of their importance for each
style class for PubFig dataset. Numbers denote features secribed in text and styles (a-e)
for PubFig correspond to the classes described in text.

Style Style features

(a) 16,15,20,22,14,21,11, 19

(b) 2,3,5,22,20,14,6,16, 10,8,4

(c) 7,1,12,10,20,13, 6,8

(d) 5,20,2,13,4,1,9,17, 10,16

(e) 14,12,4,6,7,10,9,19

Table 4.2: List of style features written in the decreasing order of their importance for each
style class for Yale dataset. Numbers denote features secribed in text and styles (a-e) for
Yale correspond to the classes described in text.

Style Style features

(a) 16,15,21,19,11

(b) 22,18,17,13

(c) 5,22,3,19,20,13, 6,8

(d) 19,20,17, 22

(e) 20,19,5,18,17

As can be noted from Table 4.1, for the smiling class, the most important features

are the mouth tips, followed by eye corners and cheekbones. Similarly, for frowning people,

the most important features are forehead tip, followed by center point on the forehead and

nose top. These results are reflective of the patterns generated by these expressions on the

face. Similar explanation applies to the Yale dataset (Table 4.2). While mouth tips, eye
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corners are indicative of “happy” style, predominantly the features around the eyes (corners

and iris) and also the cheek bones are represeantative of “sleepy” style. For the “surprise”

class, nose top, eye corners, mid point on the forehead are some important features.

4.5.5 Validation of the Chosen Style Features

Smiling Frowning Youth Male Female
0

0.2

0.4

0.6

0.8

1

Style classes

p 
va

lu
es

 

 

Match using all features
Match using style features
Non−match using all features
Non−match using style features

Figure 4.3: p values computed using Siegel-Tukey test for validating the match/non-match
scores of each style on PubFigdataset

We validate the chosen style features by showing advantage of style features by

demonstrating improvement in the confidence of the style scores. Using the procedure

described earlier, we calculated the p values associated with the style-specific scores and

style independent scores. Fig. 4.3 and 4.4 shows the p values (computed from Siegel-Tukey

test) across different style classes for the PubFig and Yale datasets respectively (for match

and non-match scores separately) using all features and using only the style features. As

can be noted from Fig.4.3 and Fig 4.4, the p values are higher for style-specific scores for

most cases, thus demonstrating the higher confidence associated in using style features.
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Figure 4.4: p values computed using Siegel-Tukey test for validating the match/non-match
scores of each style on Yale dataset

An illustration of correct and incorrect style identification is provided in Fig. 4.5.

We also wanted to quantitatively analyze the performance of bilinear models in recognizing

the style as the number of training instances were reduced. Using the procedure outlined

earlier, we computed the style-specific similarity scores (Sec II B-C) for the proposed method

and also computed the corresponding scores using the BLM method for different values of

training instances/style (5-9). Fig. 4.6 provides the p values obtained from the Siegel-Tukey

test for various number of training instances for the “smiling” style class. From Fig. 4.6,

it can be noted that the p value associated with the proposed method is greater than BLM

across all values of sample sizes ≤ 8. Similar results were observed for other styles as well.

This demonstrates the advantages of the proposed method for style estimation with less

data.
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SMILING 

FROWNING 

MALE 

YOUNG 

FROWNING 

SMILING 

YOUNG 

Correct Style Identification Incorrect Style Identification 

Figure 4.5: Illustration of style identification performance–Example image pairs that were
correctly/incorrectly classified by each of the three methods mentioned.

Figure 4.6: Comparison of style estimation performance between the proposed method and
BLM. Result shown with respect to style “smiling” .
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4.5.6 Recognition Performance:

We analyzed the performance of the proposed model in terms of pairwise recog-

nition accuracy a) by using only the selected style features and b) using all features (i.e.

without style modeling). We also compared the performance with bilinear models and rel-

ative attributes methods (when style is known apriori). Fig. 4.7 and 4.8 show the resulting

ROC curves obtained for the PubFig database and Yale dataset respectively. We roughly

used 8 image pairs/style for training. As can be noted, for all datasets, the performance of

the selected style features is superior compared to the other methods, thus validating the

chosen style features. It is to be noted that when style information is known, we also com-

pare with the relative attributes method. An illustration of the correctly classified images

is provided in Fig. 4.9.

4.5.7 Performance with Variation in Sample Size

In order to understand the benefits of the proposed method over bilinear models

in terms of sample size, we varied the sample size in match/non-match scores of each style

class from 4 to 10 in steps of 1 (for PubFig and Yale database). The average recognition
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Figure 4.7: Improvement in pairwise content recognition performance using the proposed
method on PubFig database when style is unknown (left) and known apriori (right)
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Figure 4.8: Improvement in pairwise content recognition performance using the proposed
method on Yale database when style is unknown (left) and known apriori (right)

Figure 4.9: Illustration of recognition performance–Greater number of image pairs were
correctly classified by proposed method.
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rates across all styles (for PubFig dataset) at a sample size of 4/style was approximately

72% (proposed method), 67% (bilinear model), 65% (relative attributes) and 71% (proposed

method), 74% (bilinear model), 67% (relative attributes) at a sample size of 10/style. Also,

at each sample size, we calculated the corresponding p value from Siegel-Tukey test to un-

derstand the confidence of the similarity scores obtained. Fig. 4.10-4.11 show the variation

in average p values computed across all style classes under the scenarios of style being known

beforehand and not known initially for both match and non-match scores. Initially, with

small sample sizes, the confidence of the proposed model is better than bilinear models.

As the number of instances per style class increases, the bilinear model starts to performs

better than the proposed model. It can also be inferred from Fig. 4.10-4.11, that the p val-

ues are slightly higher when the style information is known beforehand indicating a greater

confidence than for the case when style information is not known beforehand. However, it

is to be noted that even when style information is not known apriori, the confidence of the

similarity scores is not significantly lesser than the case when style was known beforehand.

Figure 4.10: Variation in average p value (computed across all styles in PubFig database
both when style information is known and unknown apriori) with sample size for match
scores (left) and non-match scores (right)
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Figure 4.11: Variation in average p value (computed across all styles in Yale database both
when style information is known and unknown apriori) with sample size for match scores
(left) and non-match scores (right)

4.6 Conclusion

We proposed a novel technique to automatically recognize style and content from

limited training samples and in turn demonstrated its usefulness in the context of undersam-

pled face recognition. Through random subspace ensemble learning and statistical permu-

tation test, we arrived at a set of style-specific similarity scores. We validated these scores

by showing improvement in pairwise content recognition over standard bilinear models and

relative attributes. We also showed improvement in the confidence of the style-specific sim-

ilarity scores over style independent similarity scores and analyzed the performance of the

proposed model with variation in training data sample sizes to show that for sample sizes

in the range 4-8 images/style, the proposed method outperforms bilinear models. We also

compared the performance of the method when style information is known apriori against

when style is not known apriori. This method can potentially benefit other vision problems

that involves analysis of style and content.
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Chapter 5

Conclusions and Future Work

5.1 Thesis Summary

In this thesis, we proposed novel face recognition algorithms centered around the

core idea of saliency. In particular, we investigated the role of saliency for different face

recognition applications such as recognition in portraits, photo-sketch recognition, recog-

nition in presence of distortions, and recognition from very limited training data. The

contributions can be broken down in the following manner.

In Chapter 2, we proposed a novel framework for understanding salient character-

istics of artists’ renditions, which in turn is essential for robust face recognition in portraits.

Using the ensemble learning and statistical hypothesis tests, we carried out experiments on

over 270 protraits belonging to the Renaissance era in an attempt to provide an independent

and quantitative source of evidence to art historians in answering questions related to the

identity of some ambiguous portraits.
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In Chapter 3, we proposed an unsupervised face recognition framework leveraging a

novel feature descriptor based on saliency maps of region covariance matrices. The efficiency

of the method was demonstrated for two applications, namely, photo-sketch recognition and

for face recognition in unconstrained environments in presence of distortions.

Finally, in Chapter 4, we demonstrated the use of knowing information regarding

certain salient attributes of an image (referred to as the style) in order to perform face

recognition from very limited training data. We showed that the proposed method performs

better than state-of-the-art methods as the number of training instances belonging to a style

reduces.

5.2 Future Work

There are many ways in which topics dealt herewith can be pursued further. One

possible direction is to explore if the proposed style-content modeling framework can be

leveraged to address face recognition across ages given very limited training data. In this

case, age could be the style factor and content could be the identity of subjects. An-

other possible avenue for future work could be to investigate the problem of unconstrained

face recognition given very limited training data. In particular, one could explore if learn-

ing saliency models can be beneficial for the aforementioned applications, i.e., to check if

saliency can aid unconstrained face recognition given very limited training data, and for

face recognition across ages from limited training data.
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Appendix A

Source Description for the

Portraits Illustrated in Chapter 1

Fig. 2.2 : S. West, Portraiture, Oxford University Press, 2004.

Fig. 2.3 : Algardi Images (from left to right): Montagu, Alessandro Algardi (New Haven

1985) v.2, fig. 150, Jennifer Montagu, Alessandro Algardi (New Haven 1985) fig. 176, Jen-

nifer Montagu, Alessandro Algardi (New Haven 1985) fig. 160.

Bernini Images (from left to right): ed Bacchi, et al, Bernini and the Birth of Baroque

Portrait Sculpture (Los Angeles 2008) p.77, 289, Grazia Bernardini, Gian Lorenzo Bernini

(1999) fig. 6, ed Bacchi, et al, Bernini and the Birth of Baroque Portrait Sculpture (Los

Angeles 2008) p. 38, 256, 292.

Clouet Images (from left to right) : http://en.wikipedia.org/wiki/File:Elizabeth_d_

Autriche_by_Francois_Clouet_1510_1572.jpg, http://en.wikipedia.org/wiki/File:

Catherine_de_Medicis.jpg, http://www.royalcollection.org.uk/collection/401229/
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mary-queen-of-scots-1542-87.

Holbein Images (from left to right): Holbein-Cheseman-Hague, Holbein-Erasmus-Met, Holbein-

Southwest II, Uffizi.

Kneller Images (from left to right): James Scott, Duke of Monmouth and Buccleuch; 1678

(British 17th-18th centuries)- by studio of Godfrey Kneller (National Portrait Gallery, Lon-

don; NPG 5225); Duke of Buccleuch (priv. col.) , http://en.wikipedia.org/wiki/File:

Catherine_de_Medicis.jpg , (British 17th-18th centuries); (London, National Portrait

Gallery; NPG 3794).

Mierevelt Images (L-R): portrait of Ambrogio Spinola; 1609 (Northern Baroque); Ams-

terdam, Rijksmuseum (SK-A-554) portrait of Dudley Carleton, Viscount Dorchester; 1620

(Northern Baroque); London, National Portrait Gallery, NPG 3684, portrait of Jacob Van

Dalen; 1640 (Northern Baroque); New York, Metropolitan Museum of Art, 25.110.13.

Musscher Images (L: R): Amsterdam, Rijksmusseum, SK-A-4233, Anna Verbie (unk-unk),

wife of Sybrandt Oosterling; 1694 (Northern Baroque); (private collection, Netherlands),

wife of Adriaen van Loon (1631-1722); 1681 (Northern Baroque); (Museum Van Loon, Am-

sterdam; Inv. 95).

Various Artists(L-R): Museo nazionale del Bargello, Florence, Lady with the Primroses;

c. 1475 (Italian Early Renaissance); attributed to Verrocchio (Bargello), painting; 1533-

1534 (Italian Late Renaissance); by Vasari (Uffizi), death mask casting; 1446; by Buggiano

(Andrea Cavalcanti) (Duomo, Florence) late 16th century (Italian Late Renaissance); by

Giovanni Bandini (Duomo, Florence), painting; c. 1474 (Italian Early Renaissance); by

Leonardo da Vinci (National Gallery, Washington).
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Fig. 2.4 (top from L–R) Holbein-Henry VIII, Madrid, portrait of a young woman; 1630

(Northern Baroque); Vienna, Kunsthistorisches Museum, Kneller self-portrait; 1685 (British

17th-18th centuries); (London, National Portrait Gallery; NPG 3794), by Franois Clouet

or Jacques Decourt (BnF, Estampes, Paris; Rs. Na 22), ed Bacchi, et al, Bernini and the

Birth of Baroque Portrait Sculpture (Los Angeles 2008) p.86,Montagu, Alessandro Algardi

(New Haven 1985) v.2, fig. 150.

Fig. 7 From left to right- Top row: Museo nazionale del Bargello, (London, National Por-

trait Gallery; NPG 3794), by Franois Clouet or Jacques Decourt (BnF, Estampes, Paris; Rs.

Na 22),Lady with the Primroses; c. 1475 (Italian Early Renaissance); attributed to Verroc-

chio (Bargello), painting, http://expositions.bnf.fr/renais/grand/071.html, Marcus

Gheeraerts the Younger, c. 1605-1610 (Norton Simon Museum, Pasadena; F.1965.1.027.P),

published 1793 after a lost painting of 1601 by Santi di Tito (from Clemente de Nelli, Vita

e commercio letterario di Galileo Galilei matematico e filosofo); c. 1616; attributed to

William Larkin (National Portrait Gallery; NPG 3840, attributed to Abraham van Blijen-

berch (Scottish National Portrait Gallery; PG 1096), engraving by George Vertue (1723)

after a painting by Michiel Van Mierevelt (1613) (National Portrait Gallery, London; NPG

D17977) , 1st Earl of Portland; after Anthony Van Dyck; late 1620s (Government Art Col-

lection; GAC 1507) ,by Robert Peake the Elder; 1605 (National Galleries of Scotland; PG

9)

Fig. 7 bottom row from left to right: death mask casting; c. 1472; by Francesco Lau-

rana (Louvre; RF 1171), National Portrait Gallery, London; NPG 96, c. 1475 (Italian Early

Renaissance); attributed to Botticelli (Victoria and Albert), National Portrait Gallery, Lon-
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don; NPG 96, c. 1475 (Italian Early Renaissance), c. 1595-1600 (National Portrait Gallery,

London; NPG 1723), c. 1590; artist unknown (private collection), painting 1627; attributed

to Cornelius de Neve (National Portrait Gallery, London; NPG 1346), artist unknown; c.

1610 (National Portrait Gallery, London; NPG 1195), c. 1617-1620; artist unknown (Na-

tional Portrait Gallery, London; NPG 40) , 1627 (National Portrait Gallery, London; NPG

1344), c. 1595-1600 (National Portrait Gallery, London; NPG 1723).
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Appendix B

Discussion of Identification

Paradigms

Note: Test results are indicated as match/non-match/no decision as per the anal-

ysis procedure described in this paper. The images in each test are marked alphabetically

and the result between possible image pairs is given. For example, for paradigm 1, the test

result ”match” indicates that images a and b gave a match score. ”(?)” indicates that the

identity of the sitter is hypothesized but uncertain.

-1: Battista Sforza paradigm

-a: Battista Sforza; bust; c. 1474; by Francesco Laurana (Museo nazionale del Bargello,

Florence)

-b: Battista Sforza (?); death mask casting; c. 1472; by Francesco Laurana (Louvre; RF

1171)
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Table B.1: Test result for the image pair under consideration

Image pair Result

1a, 1b Match

This paradigm tested an analogue (an unmediated image of the subject, not a

work of art) against a three-dimensional work of art that, in this case, physically approaches

the subject in form and size but that nevertheless partakes of the subjectivity of artistic

interpretation. The match score indicates the probability of a match, despite the obvious

challenges in testing an image rendering the death throes of an individual against a work

of portrait art.

-2: Eva Visscher paradigm

-a: Eva Visscher; c. 1685; by Michiel Van Musscher (Amsterdam, Rijksmusseum, SK-A-

4233)

-b: Family of the Artist; 1694-1701; by Michiel Van Musscher; the figure of the adult fe-

male is unknown, with some scholars believing that it represents the artist’s first wife, Eva

Visscher, and others that it portrays his second, Elsje Klanes (Antwerp, Royal Museum of

Fine Arts; Inv. 739)

-c: Interior with Eva Visscher (1651-1684), the artists first wife, and their two children, and

with his self-portrait on the wall; c. 1683; by Michiel Van Musscher (Private collection, The

Netherlands).

-d: Eva Visscher (1651-1684), first wife of Michiel van Musscher; c. 1690; by Michiel Van

Musscher (Collection of the Wawel Royal Castle, Cracow; Inv. 1126).
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Table B.2: Test result for the image pair under consideration

Image pair Result

2a, 2b Match

2a, 2c Non-match

2a, 2d Match

This paradigm tested four portraits of the artist’s wife, three of which are known

to be of his first wife (Eva Visscher) and the fourth is thought by some to represent his

second wife. Some of the figures involved made around ten to fifteen years apart. The test

resulted in two matches and a non-match, the non-match possibly being accounted for by

strong profile of the portrait.

-3: Mary Queen of Scots paradigm

-a: Unknown: Mary Queen of Scots (?); formerly identified as Mary of Lorain, Queen of

James V of Scotland; painting; c. 1570; (National Portrait Gallery, London; NPG 96)

-b: Mary Queen of Scots; drawing; c. 1558; by Franois Clouet or Jacques Decourt (BnF,

Estampes, Paris; Rs. Na 22)

-c: Mary Queen of Scots; c. 1560; Franois Clouet (BnF, Estampes, Paris; Rs. Na 22)

-d: Mary Queen of Scots; painting; c. 1560-1592; artist unknown (National Portrait Gallery,

London; NPG 1766)

-e: Mary Queen of Scots; cast of head from tomb in Westminster; 1606-1616; Cornelius and

William Cure (National Portrait Gallery, London; NPG 307a and 307B)

-f: Mary Queen of Scots; c. 1558; by Franois Clouet; miniature (Royal Collection; RCIN

401229)

-g: Mary Queen of Scots; c. 1560-1561; by Franois Clouet (Royal Collection; RCIN 403429)
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-h: Mary Queen of Scots; c. 1555; by Franois Clouet and workshop (Zakad Narodowy im.

Ossoliskich, Wrocaw)

-i: Mary Stuart (and Francois II of France); c.1558; workshop of Franois Clouet (from

Catherine de’ Medici’s Book of Hours, Bibliotheque nationale de France MS NAL 82)

-j: Mary Queen of Scots; miniature; 1579; by Nicholas Hilliard (Royal Collection; RCIN

420641)

This paradigm tested a portrait thought at one time to be of Mary Queen of Scots

against eight other portraits known to be of Mary returning four scores in the match range

and four in the ”no decision” range, some of the latter being quite close to the match range,

despite the differences in style in the representation of the face. The score in the non-match

range was with her tomb sculpture in Westminster Abbey, made 18-28 years after her death.

The results indicate the strong probability that the test portrait is of Mary.

-4: James Scott paradigm

-a: Unknown: James Scott, Duke of Monmouth and Buccleuch (?); Edward Sackville, son

Table B.3: Test result for the image pair under consideration

Image pair Result

3a, 3b No decision

3a, 3c No decision

3a, 3d No decision

3a, 3e Non-match

3a, 3f Match

3a, 3g Match

3a, 3h Match

3a, 3i No decision

3a, 3j Match
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of the 4th Earl of Dorset (?); Launcelot Northbrook (?); 1640s; artist unknown (National

Portrait Gallery, London; NPG 1566)

-b: James Scott, Duke of Monmouth and Buccleuch; 1678; by studio of Godfrey Kneller

(National Portrait Gallery, London; NPG 5225)

-c: James Scott, Duke of Monmouth and Buccleuch; c. 1683; possibly after William Wissing

(National Portrait Gallery, London; NPG 151)

-d: James Scott, Duke of Monmouth and Buccleuch; c. 1660-1690; by Abraham Blooteling,

after Sir Peter Lely (National Portrait Gallery, London; NPG D19810)

Some scholars believe that the test image (a) represents James Scott, nephew of

King James II, after having been beheaded for treason. Match scores with two portraits

made during his life lend support to this view. The ”no decision” comes from a poor quality

engraving of an earlier, lost portrait.

-5: Anne Boleyn paradigm

-a: The ”Moost Happi” medal; 1534; lead (London, British Museum)

-d: Anne Boleyn; late 16th-century copy of a portrait whose source ultimately goes back

to around 1533-1536; painting; this is considered the oldest and best iteration of this group

(London, National Portrait Gallery; NPG 668)

Table B.4: Test result for the image pair under consideration

Image pair Result

4a, 4b Match

4a, 4c Match

4a, 4d No decision
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-e: Anne Boleyn, Hever Castle portrait; late 16th-century copy of a portrait whose source

ultimately goes back to around 1533-1536; painting (Hever Castle, Broadland Properties

Limited)

-f: Anne Boleyn; 1590-1610 copy of a portrait whose source ultimately goes back to around

1533-1536; painting (London, National Portrait Gallery; NPG 4980)

-g: Anne Boleyn (?), Nidd Hall portrait; painting; late 16th century; although the figure

wears jewelry believed to have belonged to Anne Boleyn, many think that the image is

of her successor, Jane Seymour, Henry VIII’s third wife (private collection/Bradford Art

Galleries and Museums)

-31h: Jane Seymour; chalk; 1536-1537; chalk, ink; by Hans Holbein the Younger (The Royal

Collection)

-31i: Jane Seymour; 1536-1537; by Hans Holbein the Younger (Kunsthistorisches Museum,

Gemldegalerie, Vienna)

While it seems certain that a number of portraits of Anne were made during her

life, only one has survived that can said to be of her with a historical basis, a small, worn

lead medal. When tested against four portraits probably most commonly said to be of

Table B.5: Test result for the image pair under consideration

Image pair Result

5a, 5d No decision

5a, 5e Non-match

5a, 5f Non-match

5a, 5g Match

5a, 31h Match

5a, 31i Match
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Anne, the results were a ”no decision” (a copy of an older portrait), two non-matches, and

match. However, we also tested the medal against two portraits of Jane Seymour, third wife

of Henry VIII (a painting and preparatory drawing for the painting) and received match

scores. This suggested to us that the test image, the medal, did not provide sufficient

portrait data for a reliable test, and that match returns must be understood in the larger

context.

-6: Shakespeare paradigm

-b: William Shakespeare; sculpted bust; believed to be before c. 1620; probably by Gerard

Johnson (Gheerart Janssen) the Younger (Holy Trinity Church, Stratford; cast NPG 1735)

-c: William Shakespeare, Droeshout engraving, second state; from the First Folio, first pub-

lished 1623, but probably copied from an existing portrait; by Martin Droeshout; implied

to be an accurate rendering by Ben Jonson in the prefatory matter to the First Folio (Folger

Shakespeare Library)

-d: William Shakespeare, Chandos portrait; c. 1600-1610; painting and infrared reflec-

togram; attributed to John Taylor; believed by some to be the only image done from life

(London, National Portrait Gallery; NPG 1)

-g: William Shakespeare (?), Janssen portrait; c. 1610; painting, x-ray, and infrared re-

flectogram; this is said by some to have engendered its own group of copies; others feel it

is an early copy of the Cobbe portrait, which they believe acted to engender the group;

others still are convinced that it is a portrait of Thomas Overbury, a contemporary courtier

(Washington, Folger Shakespeare Library; FPS 17)

-h: William Shakespeare (?), Cobbe portrait; c. 1610; painting; said by some to be the
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original source of the Janssen portrait group, by others to be an early copy in that group,

and by others to represent Thomas Overbury (Hatchlands Park, Surrey, UK)

-l: William Shakespeare (?), Hampton Court Palace portrait; x-ray of painting; thought by

some to represent William Herbert, 3rd Earl of Pembroke; Hampton Court Palace.

Two poor quality posthumous portraits of Shakespeare exist that are thought

by many to have been made from a now lost portrait made from life. A relatively large

number of other portraits are sometimes said to also be of Shakespeare. This paradigm

received a very particular pattern of results suggesting that, as this technology advances

future research on this and perhaps a broader body of portraits may very well contribute

to untangling this very tangled body of portraits to a useful degree.

-7: Galileo paradigm

-a: Galileo Galilei (?); painting; c. 1590; artist unknown (private collection)

-b: Galileo Galilei; engraving made in 1750 by Giuseppe Calendi and Rafaello Morghen

(published 1793) after a lost painting of 1601 by Santi di Tito (from Clemente de Nelli,

Table B.6: Test result for the image pair under consideration

Image pair Result

6b, 6g No decision

6b, 6h Non-match

6b, 6l Non-match

6c, 6g No decision

6c, 6h No decision

6c, 6l Non-match

6d, 6g No decision

6d, 6h No decision

6d, 6l No decision
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Vita e commercio letterario di Galileo Galilei matematico e filosofo)

-c: Galileo Galilei; painting; c. 1604; by Domenico Tintoretto (National Maritime Museum,

Greenwich)

-d: Galileo Galilei; painting; c. 1612; attributed to Filippo di Nicola Furini (Vienna Kun-

sthistorishe; INV GG 7976)

-e: Galileo Galilei; drawing; 1624; by Ottavio Leoni (Biblioteca Marucelliana, Florence)

-f: Galileo Galilei; painting; 1624; by Domenico Passignano (private collection, Helsinki)

-g: Galileo Galilei; painting; 1636; by Justus Sustermans (Suttermans) (Uffizi Florence)

-h: Galileo Galilei; painting; 1639; Mellin (private collection)

-i: Galileo Galilei; painting; 1640; by Justus Sustermans (Suttermans) (Palazzo Pitti, Flo-

rence)

A painting believed by some to be the earliest known portrait of Galileo, when

tested against a broad spectrums of portraits known to be of Galileo, returned results that

neatly broke down into consistently decreasing similarity scores: first, within the match

range for the chronologically three closest likenesses (1601-c. 1612); then, within the ”no

decision” range for the next two (1624); and, finally, within the non-match range for the

Table B.7: Test result for the image pair under consideration

7a, 7b Match

7a, 7c Match

7a, 7d Match

7a, 7e No decision

7a, 7f No decision

7a, 7g Non-match

7a, 7h Non-match

7a, 7i Non-match
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final three (1635-1640). Not only does this tend to support the identification of the test

image, but it provides a convincing spread of test results regarding age as a factor in portrait

identification.

-8: George Villiers paradigm

-a: Unknown; painting; 1627; attributed to Cornelius de Neve (National Portrait Gallery,

London; NPG 1346)

-b: George Villiers, 1st Duke of Buckingham; painting; c. 1616; attributed to William

Larkin (National Portrait Gallery; NPG 3840)

-c: George Villiers, 1st Duke of Duke of Buckingham, and his family; painting; 1628; after

Gerrit van Honthorst (National Portrait Gallery, London; NPG 711)

-d: George Villiers, 1st Duke of Buckingham; painting; 1625; by Peter Paul Rubens (Palazzo

Pitti, Florence)

-e: George Villiers, 1st Duke of Buckingham; painting; 1625; by Michiel Van Mierevelt

(Cambridge University Library; accession no. 30)

-f: George Villiers, 1st Duke of Buckingham; chalk; 1625; by Peter Paul Rubens (Graphische

Sammlung Albertina, Vienna)

A portrait thought by some to represent George Villiers, 1st Duke of Buckingham

(1592-1628), when tested against a body of other portraits known to be of Villiers, returned

Table B.8: Test result for the image pair under consideration

8a, 8b Non-match

8a, 8c Non-match

8a, 8d No decision

8a, 8e No decision

8a, 8f Non-match
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a mixed body of non-match and ”no decision” results, something that does not lend support

to the identification of this painting as Villiers.

-9: Michelangelo paradigm

-a: Michelangelo; chalk; 1548-1553; by Daniele da Volterra (Haarlem, Netherlands, Teylers

Museum)

-b: Michelangelo; bronze bust; 1564-1566; by Daniele da Volterra (Florence, Museo Nazionale

del Bargello)

-c: Michelangelo; bronze bust; 1564; by Daniele da Volterra (Galleria dell’Accademia, Flo-

rence)

-d: Michelangelo (?), the figure of Nicodemus in The Entombment of Christ ; painting;

1602-1604; by Caravaggio (Vatican Museums)

It has recently been proposed that the famous seventeenth-century Italian painter,

Caravaggio, gave one of the figures in his painting of The Entombment of Christ the features

of Michelangelo. In this particular case, our results may have been affected by angle-views

of some of the images. Further testing with better angles might give more dependable

results for this possible crypto-portrait.

-10: Arabella Stuart paradigm

-a: Unknown, possibly Lady Arabella Stuart; artist unknown; c. 1595-1600 (National

Portrait Gallery, London; NPG 1723)

Table B.9: Test result for the image pair under consideration

9a, 9d No decision

9b, 9d Non-match

9c, 9d No decision
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-b: Lady Arabella Stuart; by Robert Peake the Elder; 1605 (National Galleries of Scotland;

PG 9)

-c: Lady Arabella Stuart; artist unknown; c. 1605 (Government Art Collection; GAC 399)

-d: Lady Arabella Stuart; Marcus Gheeraerts the Younger, c. 1605-1610 (Norton Simon

Museum, Pasadena; F.1965.1.027.P)

The National Portrait Gallery in London possesses a portrait thought by some

to represent Lady Arabella Stuart (1575-1615). When tested against three other portraits

known to represent Stuart, the results were mixed. We also tested the known portraits

against each other, again with mixed results. This reinforced the obvious point that the

ability of the individual artist must always be taken into consideration in this type of testing.

-11: William Drummond paradigm

-a: Unknown; painting; artist unknown; c. 1610 (National Portrait Gallery, London; NPG

1195)

-b: William Drummond; painting; 1612; attributed to Abraham van Blijenberch (Scottish

National Portrait Gallery; PG 1096)

In some ways, this might be thought of as a ”classic” paradigm: the comparison of

a single unknown portrait against a single known one. The result, ”no decision,” illustrates

the challenge of such a paradigm. When testing for identification, it is always preferable

Table B.10: Test result for the image pair under consideration

10a, 10b Non-match

10a, 10c Match

10a, 10d Non-match

10b, 10c No decision

10c, 10d Non-match
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Table B.11: Test result for the image pair under consideration

11a, 11b No decision

to have a larger number of reference images. Whereas in larger paradigms, a ”no decision”

can sometimes be interpreted, no matter how partially, here it remains a simple statement

of uncertainty.

-12: Ralph Winwood paradigm

-a: Unknown; painting; c. 1617-1620; artist unknown (National Portrait Gallery, London;

NPG 40)

-b: Sir Ralph Winwood; engraving by George Vertue (1723) after a painting by Michiel Van

Mierevelt (1613) (National Portrait Gallery, London; NPG D17977)

-c: Sir Ralph Winwood; painting; 1613; attributed to Abraham Blyenberch (Collection of

the Duke of Buccleuch and Queensberry)

This paradigm illustrates the potential complexities of testing: while there is a

match between the test image and one of the reference images, there is a non-match between

the test image and another of the reference images, in this case an engraving of an earlier lost

portrait. At the same time, there is a ”no decision” in the result of testing of the engraving

and the painted reference image. This suggests the possibility that the test image represents

Winwood, while the engraving carries a different set of facial signifiers (either because the

Table B.12: Test result for the image pair under consideration

12a, 12b Non-match

12a, 12c Match

12b, 12c No decision
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lost image it copies did or in its own right).

-13: Richard Weston paradigm

-a: Unknown; painting; by Cornelius Johnson; 1627 (National Portrait Gallery, London;

NPG 1344)

-b: Richard Weston, 1st Earl of Portland; after Anthony Van Dyck; late 1620s (Government

Art Collection; GAC 1507)

Like the William Drummond paradigm, the Richard Weston paradigm is an ex-

ample of the desire for a larger body of reference images with which to compare the test

image.

-14: Lady at the Window/Lady with the Primroses paradigm

-a: Portrait of a Lady at the Window, Smeralda Brandini (?); c. 1475; attributed to

Botticelli (Victoria and Albert)

-b: Lady with the Primroses; c. 1475; attributed to Verrocchio (Bargello)

Having noted the desire for a large body of reference images with which to compare

the test image–and insisting that it is a principle of FACES that this technology does not

prove the identity of its subjects–the match return from this limited paradigm is high and

convincing, despite the two distinctly different personas conveyed in the images.

-15: Ginevra de’Benci paradigm

-a: Bust of a Young Woman; bust; 1465-1466; attributed to Verrocchio (Frick, New York)

Table B.13: Test result for the image pair under consideration

13a, 13b No decision
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Table B.14: Test result for the image pair under consideration

14a, 14b Match

-b: Ginevra de’Benci; painting; c. 1474; by Leonardo da Vinci (National Gallery, Washing-

ton)

While the negative results of this test are no less subject to the ”no decision” or

match results of other limited tests, the low score tends to refute the position that the two

different images represent the same person.

-16: Niccol Strozzi/Robert de Masmines (?) paradigm

-a: Niccol Strozzi; bust; 1454; by Mino da Fiesole (Berlin, Bodemuseum)

-b: Robert de Masmines (?); painting; before 1444; by Robert Campin (Master of Flmalle)

(Thyssen-Bornemisza Collection, Lugano-Castagnola, Switzerland) The ”no decision” here

is complicated by an approximately ten year age difference between the two images (and so

presumably between the ages of the sitter at the time of sitting). The effect of age differences

varies widely among various individuals. While ten years difference in age usually doesn’t

play a strong part in test results, the effectiveness of the testing depends upon other factors

as well, such as the age of the person, weight gain, and so on. In a paradigm of Isaac

Newton, probable age differences of up to twenty-nine years did not strongly affect test

results.

-17: Battista Sforza painting paradigm

Table B.15: Test result for the image pair under consideration

15a, 15b Non-match
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Table B.16: Test result for the image pair under consideration

16a, 16b No decision

-a: Battista Sforza; painting; c. 1472; by Piero della Francesca (Uffizi, Florence)

-b: Battista Sforza (?); death mask casting; c. 1472; by Francesco Laurana (Louvre, Paris)

In an earlier Battista Sforza paradigm, we established a probable match between

a known bust of Sforza and a death mask casting long thought to be of her. Here, the ”no

decision” between the casting and a painting known to be of her is in all likelihood the

result of the relatively limited information available from the profile view of the painting,

an indictor that the profile view needs further research.

-18: Andrea Mantegna paradigm

-a: Mantegna, self-portrait; bronze bust; c. 1490; (on his tomb, SantAndrea, Mantua)

-b: Warrior, Saint James before Herod, self-portrait of Mantegna (?); 1452; (Eremitani,

Padua)

-c: Face in vegetal design, Mantegna (?); c. 1474; by Mantegna (Camera degli Sposi,

Palazzo Ducale, Mantua)

Some scholars have believed that images b and c represent crypto-portraits of the

artist, Andrea Mantegna. When tested against a self-portrait by Mantegna, the first came

up ”no decision” while the second was a non-match.

Table B.17: Test result for the image pair under consideration

17a, 17b No decision
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Table B.18: Test result for the image pair under consideration

18a, 18b No decision

18a, 18c Non-match

-19: Vincenzo Giustiniani/Antonio Cepparelli paradigm

-a: Unknown: thought by some to be Vincenzo Giustiniani; bust; c. 1670; by Bernini

(private collection)

-b: Vincenzo Giustiniani; chalk; 1631; by Claude Mellan (Vienna, Albertina Sammlung)

-c: Antonio Cepparelli; bust; 1622-1623; by Bernini (San Giovanni de Fiorentini, Rome)

Table B.19: Test result for the image pair under consideration

19a, 19b No decision

19a, 19c No decision

19b, 19c No decision

It has been suggested that a bust by Bernini in a private collection represents

Vincenzo Giustiniani. When tested against a known image of Giustiniani, however, it

received a ”no decision,” as it did when tested against a portrait of Antonio Cepparelli (both

the Giustiniani and Cepparelli portraits also receiving a ”no decision” when tested against

teach other). This paradigm is a cautionary tale about possible similar physiognomies,

the alteration of facial components (the eyes in the Giustiniani portrait), and sometimes

possibly even the testing of images in different mediums (e.g., chalk against sculpture), the

latter being a subject that requires further research.
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